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A B S T R AC T

The focus of the paper was the description of a feedback control system that, based on the pre-
dictions of a previously formulated hybrid neural model, allowed improving the performance 
of proteins UF, carried out in pulsating conditions. The behavior of three classical feedback con-
trollers, i.e., proportional (P), proportional integral (PI) and proportional-integral-derivative 
(PID), were compared and analyzed in different situations. The characteristic equation defi ning 
each type of controller was added to the already developed hybrid model in order to obtain the 
true closed-loop responses, thus allowing achieving a proper design and an accurate tuning of 
the controllers. It was observed that when no control action occurred, the permeate fl ux tended 
to progressively decay and that a proportional control was capable to reduce this decay only 
to a limited extent. The differences between the actual permeate fl ux and the desired set-point 
tended, instead, to nil when a properly tuned PI or PID controller was utilized. The selection 
of the best values for the adjustable parameters of the controller was eventually attained by a 
time-integral performance criterion, i.e., the minimization of the integral of the time-weighted 
absolute error (ITAE), using, as a starting point, the values provided by the application of the 
Ziegler-Nichols tuning method.
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1. Introduction

Pulsating conditions represented a simple and rather 
effective method aimed at reducing the permeate fl ux 
decay occurring during membrane fi ltration [1,2]. In a 
previous paper [3], a hybrid system modeling the behav-
ior of BSA ultrafi ltration in pulsating conditions was pre-
sented. The developed hybrid neural model consisted of 
two different parts: a classic theoretical model and a very 
simple artifi cial neural network, together concurring, in 
an iterative scheme, at the obtainment of the time evo-
lution of permeate fl ux decay, Jp(t), as a function of the 
system inputs. The theoretical model was characterized 

by the solution of momentum, continuity and convec-
tion-diffusion equations in the module channel, coupled 
to the Brinkman and the continuity equation written 
to determine the velocity fi eld within the membrane, 
which was assumed to completely reject BSA. The neu-
ral model, consisting of two end-layers with one neu-
ron each and one hidden layer with fi ve neurons, was 
used to determine the complex functional relationship 
existing between the BSA concentration adsorbed on 
the membrane surface, Ca(t), and the additional resis-
tance due to membrane fouling, Rad(t). A schematic 
representation of the hybrid neural model is shown in 
Fig. 1. Five different inputs were identifi ed: the trans-
membrane pressure (TMP), the current value of feed 
fl ow rate (Q), the feed concentration of BSA solutions 
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and, fi nally, the duration of each square wave upstream 
pressure release, i.e., the pulse time (tpul) and the dura-
tion of upstream operating pressure restoration, i.e., the 
operating time (top) during which UF was actually per-
formed. The permeate fl ux decay represented the sole 
output of the system. The main advantage of the devel-
oped hybrid model actually regarded the possibility of 
describing some well-assessed phenomena by means 
of a theoretical approach, leaving the analysis of other 
aspects, very diffi cult to interpret in a fundamental way, 
to a rather simple cause-effect model. The developed 
model, therefore, incorporates both an a priori knowl-
edge of the UF process and an adaptive neural network 
aimed at identifying the diffi cult-to-model (uncertain) 
part of the UF dynamics. The proposed hybrid system 
gave very accurate predictions of the behavior of UF 
modules operating in pulsating conditions and demon-
strated a more effi cient alternative to both fundamental 
and pure neural network (NN) modeling. As compared 
to NN, the developed hybrid model exhibited much 
better extrapolation properties; the validity of its predic-
tions, in fact, could be extended well outside the range 
of the training data.

Generally speaking, a control system is called on 
to satisfy three general classes of needs, e.g., suppress-
ing the infl uence of external disturbances, ensuring the 
stability of the process, optimizing the performance of 
the process. Two of the major issues regarding feedback 
controllers were their design, i.e., what kind of controller 
should be used to control a given process, and their tun-
ing, i.e., how to select the best values for the adjustable 
parameters of the controller. Among feedback control-
lers, both Proportional-Integral (PI) and Proportional-
Integral-Derivative (PID) controllers were extensively 

used in process industries. The use of feedback control-
lers is rather common in membrane technology. Feed-
back controllers were proposed to decide either when 
to perform the membrane backwash [4] or the duration 
of backwash process [5]. Both proportional–integral (PI) 
and proportional–integral–derivative (PID) control algo-
rithms were adopted in water desalination to regulate the 
process fl ow rates and to adjust the operating pressure 
so as to achieve a desired rate of clean water production 
[6]. A feedback controller was proposed to determine the 
dosing strategy of a coagulant in an UF process so as to 
promote a reduction of hydraulic resistance of the foul-
ing layer deposited on the membrane surface. It was 
found that the developed control system performed well, 
exhibiting a signifi cant reduction of coagulant consump-
tion as compared to the traditional dosing strategies [7]. 
A feedback control system was integrated with a SEC-
based energy optimization algorithm in order to main-
tain RO system operation at energy-optimal conditions. 
The developed controller made use of multiple system 
variables and of a user defi ned permeate production 
rate. The optimal operating set-points were calculated 
so as to minimize the specifi c energy consumption of a 
reverse osmosis desalination system, thus satisfying the 
process and control system constraints [8]. A robust PID 
controller was developed for a proton exchange mem-
brane fuel cell (PEMFC) system. The authors modeled 
the PEMFC as a multivariable system and applied the 
identifi cation techniques to obtain the system’s transfer 
function matrices, whereas both the system variations 
and the disturbances were regarded as uncertainties. 
Based on the evaluation of stability, performance, and 
effi ciencies, the proposed robust PID controllers showed 
to be effective [9]. The tuning of a feedback controller can 
be achieved in several ways, depending on the dynamics 
and on the main features of the system to be controlled, 
and various methods were developed and proposed in 
the last decades. Many researchers provided the settings 
of PI and PID controller for various process models and 
different performance criteria. Ziegler and Nichols [10] 
proposed a classical method to tune feedback control-
lers; the method does actually represent a rather good 
starting point that is still used as a preliminary design 
by many. Another alternative to preliminary design of 
feedback controllers was that proposed by Cohen and 
Coon [11]. These well-known tuning relationships were 
developed to provide closed-loop responses with one-
quarter-decay ratio as the performance criteria. Lopez, 
Murrill, and Smith [12] provided the PID tuning rela-
tionships using a minimum error integral performance 
criterion. Other tuning techniques based on achiev-
ing a desired closed-loop response were also proposed 
[13,14]. Another popular approach was the tuning of PI 
or PID controllers by the specifi cation of gain margin 
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Fig. 1. Block diagram of the formulated hybrid model (TMP: 
trans-membrane pressure; Q: feed fl ow rate; C0: feed concen-
tration of BSA solutions; tpul: pulse time; top: operating time; 
Jp(t): permeate fl ux decay).
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and phase margin, both representing a signifi cant mea-
sure of robustness [15]. In particular, the phase margin, 
being related to the damping of the system, was used 
as a performance measure [16]. Most of the proposed 
tuning techniques, however, were based on a strong 
simplifi cation hypothesis, i.e., fi rst-order dynamics 
plus time delay approximation of the actual process 
dynamics, and, therefore, were not capable to ensure 
the best control performance. Many processes of phys-
ical signifi cance, in fact, exhibit signifi cant non-linear 
dynamics. If these processes deviate only slightly from 
steady-state conditions, the effects of nonlinearities 
might not be severe and traditional control schemes 
provide satisfactory control performance. On the con-
trary, if the processes are required to work over a wide 
range of operating conditions, conventional linear 
control approaches are not capable to handle the sys-
tem non-linearities. In these conditions, a mathemati-
cal model providing reliable predictions of the actual 
system behavior is essential for the implementation of 
high-performance control systems [17]. The presence 
of uncertainties and parameters change, in fact, can 
determine a mismatch between the formulated model 
and the true process. This degrades the control perfor-
mance and may lead to serious stability problem, espe-
cially when the process is non linear. In recent years, 
advanced tuning methods coupled to optimization 
algorithms received more consideration in the litera-
ture, since they provide better stability and robustness 
of the controlled system [18]. The utilization of mod-
ern optimization techniques and the formulation of 
reliable models of the actual dynamics of the system 
under study make possible to tune a feedback con-
troller using the actual transfer function of the plant, 
thus optimizing the true closed-loop performance 
[19]. Among the proposed performance criteria, the 
integral of the time-weighted absolute error (ITAE) 
was defi nitely one of the most popular performance 
index for the design and the tuning of different control 
systems [20,21].

The present paper was organized as follows:
Starting from the already-described hybrid neural 

model [3], a feedback control system was developed and 
exploited with reference to the UF of BSA solutions, car-
ried out in pulsating conditions. It is expected that the 
reliability of the hybrid model, as provided by the com-
bination of a set of transport equations and of a neural 
network aimed at estimating the uncertainties and the 
parameters change typical of UF process, does indeed 
allow overcoming the actual limitations, as reported in 
the literature, related to the implementation of proper 
control systems.

The behavior of three classical feedback controllers, 
i.e., a proportional (P), a proportional integral (PI) and a 

proportional-integral derivative (PID), were compared 
analyzing the closed-loop responses of the controlled 
systems in three different situations:

1) The set point, i.e., the permeate fl ux, Jp,SP , was kept 
constant throughout the experiment, except when 
each pulse occurred (Fig. 2). The control system, 
therefore, was called on to modify the manipulated 
variable so as to avoid or limit the permeate fl ux 
decay;

2) The disturbance, i.e., the feed concentration, C0 , did 
not change, whereas the set-point was modifi ed 
according to a specifi c pattern (servo problem). Two 
positive steps and Jp,SP two negative steps occurred, at 
defi nite times, as far as was concerned (Fig. 3);

3) The disturbance underwent a change (Fig. 4) accord-
ing to a defi nite pattern (regulator problem), whereas 
the set-point assumed the same pattern as described 
in Case 1.
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Fig. 2. Case 1 – Uniform Set-point – The set point, Jp,SP, is kept 
constant throughout the experiment.
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Fig. 3. Case 2 – Servo problem – The disturbance, C0, does 
not change, wherea s the set-point is modifi ed according to 
a specifi c pattern.
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Then, the tuning of both PI and PID controllers was 
actually achieved by the minimization of the integral of 
the time-weighted absolute error (ITAE). As a starting 
point for the selection of the best value for the adjustable 
parameters of the controller, the well-known Ziegler-
Nichols tuning rule was adopted. The methodology 
proposed in the present paper, although implemented 
with reference to traditional controllers, defi nitely rep-
resents a novelty in membrane science and technology; 
in fact, due to the neural part of the hybrid model, it 
is possible designing robust control systems for a wide 
spectrum of non-linear processes subject to uncertainties 
and parameters changes.

2. Feedback controller development

Since the previously developed hybrid neural model 
described rather well the actual behavior of BSA ultra-
fi ltration in pulsating conditions [3], it seemed worthy 
to develop a feedback control system that, on the basis 
of hybrid model predictions, allowed suppressing the 
infl uence of external disturbance and optimizing the 
performance of membrane operations. Among the fi ve 
inputs of the system, the inlet concentration was consid-
ered as the sole disturbance since it infl uenced the time 
evolution of adsorbed BSA and – therefore – strongly 
affected the permeate fl ux decay. TMP was, instead, 
chosen as the sole manipulated variable that, properly 
instructed by the control block, should allow maintain-
ing the permeate fl ux as much similar as possible to the 
desired set-point pattern. Feed fl ow rate (Q), pulse time 
(tpul) and operating time (top) were fi xed at defi nite val-
ues before performing each simulation. The block dia-
gram corresponding to the developed control system is 
shown in Fig. 5. The characteristic equations (Eqs. (1–3)) 
relating the controller output, c(t), to the difference, 
e(t), existing between the set-point value, Jp,SP(t), and 
the actual permeate fl ux, were added to the developed 

hybrid model in order to ascertain how the type of 
controller and its adjustable parameters affected the 
closed-loop responses of the controlled system:

P controller:

( ) ( )c sc t K t cε= +  (1)

PI controller:

0

( ) ( ) ( )
t

c
c s

I

K
c t K t t dt cε ε

τ
= + +∫  (2)

PID controller:

0

( )
( ) ( ) ( )

t
c

c c D s
I

K d t
c t K t t dt K c

dt
εε ε τ

τ
= + + +∫  (3)

It is worthwhile observing that both the dynamics of 
the measuring device and that of the fi nal control element 
were assumed to be negligible. For the latter, in particu-
lar, this means that its dynamics is simply described by 
its static, dimensional gain, a, relating the control signal, 
c(t), to the manipulated variable, TMP(t), as:

( ) ( )TMP t a c t= ⋅  (4)

Generally speaking, P controller is very simple but 
the offset tends to zero only as the proportional gain, Kc, 
tends to infi nity, thus leading to stability problems. PI 
controller is more complicated than P controller but the 
offset can be eliminated; moreover, as Kc increases, the 
response becomes faster but more oscillatory to set point 
changes; fi nally, the response is faster as the reset time, tI, 
decreases, for constant values of Kc. As far as the PID con-
troller is concerned, its closed-loop response has the same 
qualitative dynamic characteristics as those resulting 
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Fig. 4. Case 3 – Regulator problem – Disturbance pattern – The 
disturbance undergoes a change according to a defi nite pattern.
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from PI control alone; however, the introduction of the 
derivative mode, accounted for by the parameter tD, 
brings a stabilizing effect to the system.

Appendix 1 reported the transport equations, actu-
ally a system of PDEs, used to formulate the hybrid 
neural model and briefl y described the implementation 
of each control system. The simulations of UF process, 
controlled by either P or PI or PID controller, were per-
formed by Comsol Multiphysics 3.4 that allowed deter-
mining the infl uence of controller parameters on the 
system behavior.

3. Feedback controller tuning

Actually, on developing the present feedback control 
system it was necessary not only to choose the type of 
controller, but also to select the best values of its adjust-
able parameters. Controller tuning methods should 
ensure stable closed-loop responses and the attainment 
of given objectives. All the methods proposed in the 
literature for the tuning of a feedback controller were 
based on the knowledge about the process to be con-
trolled. This knowledge was generally formulated in 
terms of a transfer function, i.e., a mathematical rela-
tionship usually expressed in the Laplace’s domain, 
relating the output(s) of the process to its input(s) [21]. 
In the case of BSA ultrafi ltration performed in pulsat-
ing conditions, the knowledge about the complex pro-
cess dynamics is defi nitely precise since it was provided 
by the developed hybrid model, which demonstrated 
offering very accurate predictions of the time evolution 
of permeate fl ux as a function of the signifi cant process 
inputs.

As a starting point for the selection of the best value 
for the adjustable parameters of the present control sys-
tem, the Ziegler-Nichols (Z-N) tuning rule was adopted; 
then, the parameters were improved by the minimiza-
tion of the integral of the time-weighted absolute error 
(ITAE) that allowed achieving the fi nal tuning of the 
developed feedback controllers.

Unlike other proposed methods, the Z-N tuning 
technique is a closed-loop procedure and, therefore, fi ts 
better in those cases, like the present one, in which the 
controlled system (Fig. 5) can be simulated over a wide 
range of both process conditions and controller param-
eters. According to the rule, a PID controller was tuned 
by fi rstly setting it to the P-only mode and with the feed-
back loop closed; a set point change was introduced and 
the proportional gain was then varied until the system 
oscillated continuously. The gain providing the con-
tinuous oscillations was referred to as the ultimate gain 
(Ku) and the oscillation period was termed as the ulti-
mate period (Pu). Starting from the calculated Ku and Pu 

values the feedback controller parameters were, eventu-
ally, determined according to the following Table 1.

The actual shape of the complete closed-loop response, 
from time t = 0 until a defi nite time, tfi n, considered as 
representative of system dynamics and chosen – in the 
present case – as equal to 15 min, was used for the for-
mulation of a dynamic performance criterion based on the 
minimization of the ITAE, defi ned as [21]:

( )
0

fint

ITAE t t dtε= ∫  (5)

where e (t) = Jp,SP(t) – Jp(t). With respect to other similar 
time-integral performance criteria proposed in the lit-
erature, the ITAE criterion was chosen since it is capa-
ble to suppress errors that might persist for long times. 
The minimization of ITAE was performed by available 
numerical algorithms implemented within the exploited 
simulation software.

4. Results and discussion

4.1. Analysis of the closed-loop responses

The closed-loop responses of the three types of feed-
back controllers are shown in Fig. 6 and compared to 
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Fig. 6. Closed-loop responses of the three types of feedback 
controllers and comparison to the uniform set-point pattern 
(Case 1).

Table 1
Settings for feedback controllers as provided by the Z-N 
tuning rule

Controller Kc tI tD

P Ku/2 – –
PI Ku/2.2 Pu/1.2 –
PID Ku/1.7 Pu/2 Pu/8



S. Curcio et al. / Desalination and Water Treatment 34 (2011) 295–303300

 the uniform set-point pattern (Case 1). The input vari-
ables were set equal to: Q = 6.67 10−5 m3/s, tpul = 10 s, 
top= 90 s and were never changed from now on, even 
though they represented the actual process inputs. It is 
worthwhile observing that, with no control action, the 
permeate fl ux tends to progressively decay and that a 
proportional control is capable to limit this decay only to 
a certain extent, since a signifi cant increasing-with-time 
e(t) can be observed. Any observable difference between 
the set-point pattern and the actual permeate fl ux, 
instead, tends to nil when either a PI or a PID controller 
is utilized. Actually, PI controller exhibits much better 
performance as compared to P controller and similar 
responses, which overlap throughout the considered 
time horizon, to PID controller. However, PI controller 
is much simpler to operate and to tune than PID. For 
this reason, the behavior of PI controller was analyzed 
in more detail since it gave high-quality responses and 
required a lower computational effort, as compared to 
PID, to achieve a proper tuning. The effect of reset time, 
tI, on permeate fl ux decay is shown in Figs. 7 and 8 in the 
case of a servo- and of a regulator problem, respectively. 
In both the situations, it is observed that, for a constant 
value of Kc = 2.2, the control action is faster and more 
effective when tI is decreased from 44 s to 7.33 s. When a 
lower value of tI is chosen, the actual trend of permeate 
fl ux decay reproduces rather well each required change 
on set-point pattern (Fig. 7) and is not actually affected 
by the imposed step changes on BSA feed concentration 
(Fig. 8).

4.2. Ziegler-Nichols analysis

The developed control system exhibits good per-
formance in all the tested conditions; however, it is 
necessary to perform a more rational choice of the con-
troller parameters so as to obtain improved closed-loop 

responses of the present membrane system. The Ziegler-
Nichols tuning technique is initially used. The con-
trolled system shown in Fig. 5 is simulated using a P 
control only and introducing a set-point change; then, Kc 
is modifi ed deliberately until a continuous oscillation of 
permeate fl ux is observed. The value of the proportional 
gain providing this oscillation, Ku, is equal to 4.508, 
whereas the ultimate oscillation period, Pu, is equal to 
5 s. According to the Z-N tuning rule, the values of the 
parameters are determined for both a PI and a PID con-
troller (Table 2). The corresponding ITAEs, as calculated 
by Eq. (4), in a case in which both the controllers are 
called on to reproduce the set-point change shown in 
Fig. 3 (servo problem) are reported too.

4.3. ITAE analysis for optimal control tuning

Starting from the calculated Z-N parameters and 
according to the performance criterion based on the 
minimization of the ITAE, a new set of optimized con-
troller parameters is eventually obtained with reference 
to the previously described servo problem. The mini-
mization of the objective function, ITAE, is performed 
numerically repeating the simulations with different 
values of the controller parameters, which are changed 
in an iterative scheme, until a minimum is reached. 
Table 3 summarizes the so obtained values of Kc, tI and 
tD referred to both a PI and a PID controller, together 
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Table 2
Settings for feedback controllers calculated by the Z-N 
tuning rule

Controller Kc tI tD ITAE

PI 2.049 4.17 – 0.041
PID 2.652 2.5 0.625 0.044
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with the corresponding value of minimum ITAEs. It is 
worthwhile observing that the controller parameters, 
as estimated by the present improved technique, are 
rather different from those calculated according to the 
Z-N tuning rule. A considerably lower value of ITAE 
is also obtained, thus proving the effectiveness of the 
proposed tuning methodology. Fig. 9 shows a compari-
son among the closed-loop responses obtained using 
either the Ziegler-Nichols tuning rule or the tuning rule 
based on the minimization of ITAE. It can be observed 
that the control action is faster and more effective when 
the improved controller parameters are used, since the 
actual trends of permeate fl ux decay reproduce very 
well each imposed change on the set-point. On the con-
trary, the performance of Z-N PI controller is character-
ized by a much larger e(t), especially when the steps on 
set-point pattern actually occur. The time evolutions of 
the manipulated variable, TMP, relative to the PI con-
troller tuned by either the Z-N or the proposed tech-
nique are shown in Fig. 10. In both cases, TMP tends to 
increase continuously over the considered time horizon 
in order to contrast the decay of permeate fl ux, which, 
instead, would be enhanced by the absence of any con-
trol action. However, due to the faster responses charac-
terizing the set of controller parameters as provided by 

the proposed tuning technique, the TMP variations are 
much steeper than those corresponding to the Ziegler-
Nichols rule, especially when the step changes on set-
point actually occur.

5. Conclusions

The present paper showed a novel, effective and ver-
satile methodology for the design and the tuning of feed-
back controllers aimed at improving the performance of 
membrane processes. A hybrid neural model provided 
the necessary knowledge about the complex process 
dynamics and represented the basis on which to develop 
the feedback control loop. It was proved that both PI and 
PID controllers were capable of reproducing quite well 
the desired set-point pattern, even though PI control-
ler, as compared to PID, was actually much simpler to 
operate and required a lower computational effort when 
it had to be tuned. Finally, a more rational choice of the 
controller parameters was proposed. Starting from a set 
of controller settings, as provided by the Ziegler-Nichols 
tuning rule, an improved criterion, based on the minimi-
zation of the ITAE, was developed so as to obtain a new 
set of optimized controller parameters. The utilization of 
this calculated set of improved settings allowed obtaining 
faster and more effective control actions, as compared to 
the classical Z-N tuning rule. Moreover, the correspond-
ing ITAEs, computed accounting for the actual shape of 
the closed-loop responses, were about threefold lower 
when the improved controller settings were used.

On the basis of the obtained results, it can be con-
cluded that the methodology proposed in the present 
paper has several advantages, which can be successfully 
exploited during the implementation and the optimiza-
tion of a feedback control system. These advantages can 
be briefl y summarized as follows:

Table 3
Optimized settings for PI and PID controllers obtained by 
minimizing the ITAE

Controller Kc tI tD ITAE

PI 2.724 1.911 – 0.0153
PID 2.928 2.272 0.033 0.0169
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proposed improved technique (Servo problem).
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• The proposed control system was developed starting 
from the predictions of a reliable model that exhibited 
good performance over a wide range of process and 
operating conditions;

• The neural part of the hybrid model, due to its main 
characteristics and particularly to its adaptive nature, 
allowed identifying the diffi cult-to-model (uncertain) 
part of the UF dynamics, i.e., the actual value of the 
additional resistance due to membrane fouling. The 
proper estimation of any uncertainty and parameters 
change was defi nitely necessary so as to avoid a dete-
rioration of the control system performance;

• No simplifi cation, e.g. linearization, approximation of 
the true process dynamics to a fi rst-order plus time 
delay dynamics, etc., was performed;

• The minimization of the integral of time-weighted 
absolute error (ITAE) allowed tuning the developed 
feedback controller on the basis of the actual trans-
fer function of UF process, thus optimizing the true 
closed-loop performance.

The proposed methodology, based on the formula-
tion of a proper hybrid neural model and on the opti-
mization of a defi nite performance criterion, is very 
general as it may be exploited to implement and opti-
mize the performance of feedback controllers operating 
on different kinds of membrane processes.

Appendix 1

Formulation of the hybrid neural model and imple-
mentation of the control system:

Model formulation

Momentum transport for the BSA solution fl owing 
in the module:

General equation of motion in un-steady-state con-
ditions and continuity equation:

( )( ) ( ) 0
T

p
t

η ρ ρ ∂− ⋅ + + ⋅ + + =
∂
u

u u u u∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇
 

(A.1)

0⋅ =u∇∇  (A.2)

where r denoted the liquid density (assumed constant 
with time), u was the velocity vector, h was the viscosity of 
BSA solution and p the pressure developing in the module.

Momentum transport in the membrane

Brinkman equation in un-steady state conditions 
combined to the continuity equation:

112
1 1 1 1 1 0

( )
p

k t t
ηη ρ ∂

− + + + =
∂
u

u u∇ ∇∇ ∇  (A.3)

1 0⋅ =u∇∇  (A.4)

where h1 and r1 denoted the viscosity and the density of 
the fl uid fl owing within the membrane, u1 the velocity 
vector and p1 was the pressure.

The membrane permeability, denoted as k(t), was 
actually a function of time since an additional resistance, 
Rad, due to the adsorption of BSA on the membrane sur-
face, arose.

Mass balance equation

Assuming that the membrane under study exhibited 
total rejection towards BSA, the calculation of rejected 
species concentration was performed solving, in the 
module channel only, the convection-diffusion equation:

( ) 0AB
C

D C C
t

∂
⋅ − + + =

∂
u∇ ∇∇ ∇  (A.5)

where, C was the BSA concentration and DAB was the 
diffusion coeffi cient of BSA in water.

Boundary conditions

Apart from the non-permeable boundaries where no-
slip conditions applied and no mass fl ux could be obtained, 
the following boundary conditions were employed:

Interface between the membrane and the channel

The components of velocity vectors were continuous.
Moreover, on the basis of the osmotic pressure model, 

the pressure p1, evaluated on the “membrane-side”, was 
equal to the pressure p, calculated on the “channel-side”, 
diminished by the difference of osmotic pressure, ΔΠ(x,t), 
between the membrane surface and the permeate:

1  ( , )p p x t= − Δ ∏  (A.6)

where:

( ) ( ) ( )
( )

2 2

3 3

, , ,

, .......

w p w p

w p

x t C x t C C x t C

C x t C

α β

γ

⎡ ⎤⎡ ⎤ΔΠ = − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − +⎣ ⎦

(A.7)

Cw(x, t) and Cp were, respectively, the local concentra-
tion of rejected species at the membrane surface and the 
concentration of BSA in the permeate, whereas a, b and g 
were the virial coeffi cients calculated for BSA solutions.

Module inlet section:
Momentum balance: inlet solution velocity: 

0( ),  0 xu U t= =yu  (A.8)
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 Mass balance: inlet solution concentration:

C = C0 (A.9)

Module outlet section:
 Momentum balance: superimposition of the pressure:

p = pout (t) (A.10)

 Mass balance: convection prevailing over diffusion:

ABD C− ∇  = 0 (A.11)

Both outlet pressure, pout (t), and feed velocity, U0 (t), were 
varied in order to reproduce, as a function of top and tpul 
values, negative pulses for TMP(t) and positive pulses 
for Q(t), according to periodic square-wave profi les.

Membrane outlet section:
Superimposition of the atmospheric pressure: 

p1 = patm (A.12)

The trans-membrane pressure, TMP(t) was defi ned as:

( ) ( )
2

in out
atm

p p t
TMP t p

+
= −  (A.13)

where pin was the inlet pressure.

By a material balance in the membrane, a relation-
ship between the amount of BSA adsorbed on membrane 
surface, Ca [Kg/m2], and the diffusive and the convec-
tive contributions to mass transport was obtained:

( ) ( ),
0a

AB w

C x t
D C C

t
∂

− ∇ + + =
∂

u  (A.14)

The subscript w indicated that the fl ux vector was evalu-
ated at the membrane wall.

Rad, which contributed to the defi nition of permeabil-
ity k(t), was expressed as a function of Ca by means of a 
neural network consisting of only one hidden layer with 
fi ve neurons and two end-layers with one neuron each.

The so-developed hybrid neural model allowed both 
simulating the UF process behavior over a wide range of 
process and operating conditions and implementing a 
feedback controller as schematized in Fig. 5.

On performing the simulations of the controlled UF 
process, the manipulated variable, TMP(t), was defi ned 
as a function of the closed-loop response, Jp(t). In the 
case of a PID controller and assuming that the dynamics 
of the measuring device was negligible, it was obtained:

( ) ( )

( )

, ,
0

,

( ) ( ) ( )

( )

t
c

c p SP p p SP p
I

p SP p
c D s
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dt
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τ

⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤−⎣ ⎦+ +

∫

  
 (A.15)

Assuming that the dynamics of the fi nal control ele-
ment was negligible, in particular, its dynamics was 
simply described by its static, dimensional gain, a, relat-
ing the control signal, c(t), to the manipulated variable, 
TMP(t), was expressed as:

( ) ( )TMP t a c t= ⋅  (A.16)
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