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A B S T R AC T

Data was taken from a full scale sidestream membrane bioreactor (MBR) plant that has been 
treating industrial wash water from a salad processing factory based in Worcestershire. Vari-
ous online and offl ine measurements were taken during an intensive sampling period for the 
complete fl ow train. Offl ine tests included measuring extra-cellular polymeric substance (EPS) 
and soluble microbial product (SMP) levels in the sludge water which are the main foulants 
on the associated membrane [1]. Two modifi ed phenomenological Activated Sludge models 
based upon the ASM1 and ASM3 that included EPS/SMP concentrations were calibrated and 
validated using these offl ine and online measurements [2–6]. In order to see whether a simpler 
model structure could be formulated for advanced control purposes that was based wholly 
upon measured historical data sets, further conceptual models were developed based on sys-
tem identifi cation procedures and input-output times series analysis methods [7]. These model 
forms utilised autoregressive, state-space and subspace formulations, and were calibrated and 
validated in Matlab© using the collated plant data. A poor model fi t was shown for the modifi ed 
Oliveira and Lu Activated Sludge models, although their parameters were changed from the 
original models’ values to refl ect an MBR system [5,6]. In comparison the subspace and ARX 
formulated biological models were reasonably accurate when compared to the Activated Sludge 
version, although a much longer historical data set is needed to confi rm these initial fi ndings.
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1. Introduction

This research work uses phenomenological models 
based on membrane bioreactor (MBR) biochemical pro-
cesses to measure the effectiveness of alternative time 
series input-output (IO) models based upon system 
identifi cation methods. Both model types are calibrated 
an d validated using a similar plant layout and data set 
derived for this purpose. The focus of this research is to 

create practical MBR computer models which can then 
be applied in MBR design, control and optimisation [8].

The eventual purpose of this study is to create an inte-
grated biological and membrane fi ltration model based 
on IO modelling methods to accurately predict fouling 
propensity of the mixed liquor on the membranes. This 
fouling propensity is determined by various factors such 
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as biological conditions, operational/cleaning regimes, 
environmental factors (e.g., temperature), and infl uent 
conditions. Primary among these factors is the concen-
tration of unbound extra-cellular polymeric substance 
(EPS) within the liquor which determine irreversible 
fouling, and suspended solids levels which determine 
the reversible fouling [9].

1.1. Problems with using phenomenological activated sludge 
biological models for design, operation and control of MBR 
plant

For a MBR system treating wastewater, capturing 
biological membrane fouling phenomena in the form 
of mathematical models has been a task of many differ-
ent research teams around the globe for the past decade. 
Most researchers model the biological processes occur-
ring in the reactor using a phenomenological Activated 
Sludge approach that obeys the basic laws of physics 
and can be deduced from fi rst principles and scientifi c 
theories [2]. However, all Activated Sludge models do 
suffer from the following disadvantages:

• A purely mathematical and automated optimisation 
of Activated Sludge variety model can prove problem-
atic due to the complexity and resulting unidentifi able 
nature of the highly non-linear processes involved, 
especially for the International Water Association 
(IWA) ASM1 which has its circular death regeneration 
concept [3]. Hence mathematical optimisation should 
always be supported by suffi cient expert process 
knowledge, since an optimisation algorithm cannot 
differentiate between more defi ned (i.e., stoichiomet-
ric parameters) or less defi ned parameter values, and 
will often end up producing rather small modifi ca-
tions to a considerable number of parameters.

• Another major problem encountered in calibration 
of these models is the lack of identifi ability of the 
model parameters since often more than one combi-
nation of infl uent characteristics and model param-
eters can give a reasonable fi t based on the available 
data. Hence expert knowledge is required for these 
model types, so that all obtained information is care-
fully assessed, and so that the model parameters are 
constrained within realistic boundaries for the specifi c 
wastewater treatment processes under investigation.

• A proper Activated Sludge model that introduces new 
soluble microbial product (SMP) processes to include 
mechanisms for membrane fouling requires consider-
able expertise and process knowledge to fully develop. 
This expertise in model development ranges from 
checks to the model processes to ensure balancing of 
components, through to parameter estimation and 
performance of the model calibration and validation 

procedures. It also includes extensive knowledge to 
carry out a proper infl uent and sludge characterisation 
procedure to determine the state components for the 
model [10].

• The complexity of this variety of phenomenological 
models means they require specialist knowledge to 
set up and often prove diffi cult to use in practice espe-
cially for existing plant operation and control. In the 
main, they have tended to be used for research pur-
poses or for the concept design of new plant.

• For many applications insuffi cient data is available 
to allow a full model calibration and validation, and 
thus the verifi ed model is not omnipotent for every 
situation.

• The general application of such complex models, 
which in themselves require considerable calibra-
tion experience to give suffi cient predictive accuracy, 
means their take up for process control and the devel-
opment of future operational strategies will always 
prove limited [11].

In order to overcome the inherent defi ciencies in 
the traditional activated sludge modelling approach, a 
growing group researchers are utilising non-traditional 
approaches to describe the biological processes for a 
MBR that impact on membrane fouling.

1.2. Input-output (IO) models as a possible alternative – time 
series system identifi cation methods

In an ideal world, a quick and easy approach to 
wastewater treatment modelling is required that can be 
easily applied to a real life situation. This would ideally 
be coupled with very simple calibration procedures so 
that any model can be constantly “retrained” on newer 
plant data sets as and when they become available. Since 
this “retraining” would prove straight forward, it could 
be performed as many times as necessary. To make this 
proposed new approach easy to apply, it should not 
require an intimate knowledge of the exact processes 
occurring in the MBR, so it could be applied by any 
non-specialist who was new to wastewater treatment 
modelling [12].

Very few alternative approaches have been used 
to date when compared to the traditional mechanis-
tic models developed for wastewater treatment plant 
[11]. A lesser known approach is time series modelling 
using autoregressive models. It is more commonly used 
in econometric system forecasting for international 
fi nancial markets [7]. It has only been used in a limited 
manner for wastewater treatment modelling, and even 
then, only for the simple modelling of effl uent leaving 
a plant [13]. It has been hypothesized under this study 
that a formulation based on simplifi ed IO times series 
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 models, should be developed as an alternate, simpler 
and faster way of calibrating and verifying MBR Acti-
vated Sludge models. This would mean that the exact 
nature of the biology in the bioreactor and its effects on 
the membrane fouling process need not be fully under-
stood, as the time series models would be based solely 
on historical IO data sets that would be used to predict 
future plant output. This procedure if it proves effec-
tive is largely linearised around an operating point or 
range so that any solutions are easily obtained. It would 
then be very useful for plant control and operation, and 
be much quicker to develop than a phenomenological 
model since an intimate knowledge of the physics and 
chemistry behind the process is not required. Addition-
ally, complex theory and mathematics to describe this 
theory would not be needed thus again saving time in 
model development [12].

Under this study two different model types, namely 
phenomenological model structures and IO times series 
model structures, were tested to ascertain which gave 
best results. The main research questions posed were:

 i) How easy is it in practice to calibrate and validate a 
relatively simple phenomenological biological Acti-
vated Sludge model for a real life MBR plant which 
is still rich enough in complexity to include the major 
biological/biochemical agents involved in the foul-
ing of MBRs?

ii) Is a system identifi cation procedure using time series 
analysis a simpler, quicker modelling approach to 
use to accurately determine the biological interac-
tions within the bioreactor of a real life MBR plant? 
Can it give the same degree of accuracy as a phenom-
enological model? Is it as useful? Is it as robust?

An IO models based on standard mathematical for-
mulations such as ordinary differential equations or 
difference equations of various orders can be used as a 
quick method for model prediction as no prior process 
knowledge is required for model calibration and vali-
dation [7]. The procedure automatically selects the best 
order model based on the number of lags in output data 
that give the optimal prediction. Little skill is needed by 
the simulator to obtain best fi t, and a signifi cant amount 
of time is saved when compared to the complex needs of 
verifying a typical mechanistic model.

2. Description of models utilised

2.1. Phenomenological models used

The most widely known and used Activated Sludge 
model is the IWA’s ASM1, which has become a major 
reference for many scientifi c and practical projects. 

It was fi rst introduced in 1987 by Henze, et al. and is 
still considered as a “state-of-the-art” global model with 
its kinetic and stoichiometric parameters having being 
extensively studied and calibrated on an international 
basis [3]. This model contains seven soluble, S, and, 
six particulate, X, components in the wastewater. Each 
of the thirteen components represents an independent 
state and has different growth and decay processes. The 
IWA’s ASM3 is another powerful and commonly used 
biological model [4]. It was formulated by the same 
international working group that initially created the 
ASM1. The basic idea of the ASM3 is to give a much 
clearer and easier distinction between the soluble and 
particulate components that practically refl ect the reality 
faced by plant operators.

Many researchers have modifi ed these basic Acti-
vated Sludge models to refl ect the processes occurring 
in a MBR especially those thought to contribute to mem-
brane fouling. Hence the start point of this research 
was to take two versions of existing modifi ed Activated 
Sludge models that take into account the production of 
EPS as SMP were tested using real life data produced 
from a full scale sidestream confi guration MBR plant.

2.1.1. ASM1 Lu (2002) model

The fi rst version of the modifi ed biological model 
used the ASM1 combined with a SMP model and is 
based on the work carried out by Lu, et al. [3,5]. The 
mechanisms involved in this combined ASM1 and SMP 
model are described in Fig. 1. This fi gure depicts the 
SMP formation–degradation processes based on the 
ASM1 where the SMP consists of two types, namely 
utilisation associated products (UAP) and biomass asso-
ciated products (BAP).

Fig. 1. Schematic of modifi ed ASM1 Lu model with SMP for-
mation and decay.
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2.1.2. ASM3 Oliveira (2005) model

The second version of the modifi ed biological model 
used the ASM3 combined with a microbial product 
(MP) model based on the work carried out by Oliveira-
Esquerre, et al. [4,6]. Fig. 2 outlines the combined ASM3 
Oliveira-Esquerre model which takes into account the 
microbial product (MP) as part of the biotransformation 
process [6]. This MP is analogous to total SMP in other 
models.

2.2. IO models used – Autoregressive model structures

System identifi cation is an iterative process in which 
models with different structures are identifi ed from 
data, and the individual model performance compared. 
The normal start point is by estimating the parameters 
of very simple model structures. If the performance 
still proves poor, then the model structure is gradually 
increased in complexity. Ultimately the simplest of all 
model structures tested is eventually selected that best 
describes the dynamics of the system under scrutiny. 
In this iterative process, which can be automated, the 
system identifi cation procedure commences by initially 
using linear continuous IO polynomial model struc-
tures, such as autoregressive exogenous (ARX) and 
autoregressive exogenous moving average (ARMAX) 
ones. Later on linear continuous IO state-space model 
structures are also tested using the supplied times series 
data [7]. The best fi t structure is then chosen as the opti-
mal model formulation.

Incidentally the ARX model is the simplest one of a 
group of linear prediction formulas based upon a general 
linear case. This model type attempts to predict an output 
y[n] of a system based on the previous outputs (y[n − 1], 
y[n − 2]...) and inputs (x[n], x[n − 1], x[n − 2]...). Deriv-
ing the linear prediction model for the estimated output, 
ye[n], involves determining the coeffi cients a1, a2, .. and b0, 
b1, b2, ... in Eq. (1).
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
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An ARX model formulation is simple and has good 
noise-to-signal ratios, while the ARMAX is designed 
when the dominate disturbances enter via the input 
states which is the case for wastewater treatment plant. 
The state-space models are fi rst order versions of the 
autoregressive form that utilise intermediate state vec-
tors in the calculation procedure. The state space model 
structure is a good choice for quick estimation because it 
requires only two parameters, namely the model order 
and one or more input delays.

All these model formulations are solved using itera-
tive optimisation techniques and algorithms like the 
least squares method. However, this requires a lot of 
computing power and they are prone to inherent inac-
curacies. A much more attractive model formulation 
is the subspace one which does not need to be solved 
using iterative optimisation techniques and algorithms, 
but by only using algebraic calculations [14]. This means 
the subspace model formulation is a very powerful ver-
sion of the state-space one that uses only a single-shot 
solving procedure with improved accuracy.

3. Model calibration and validation

3.1. Experimental procedure – full scale MBR plant

Both biological model types have been tested on data 
obtained from an full scale MBR plant designed and 
installed by Aquabio Ltd., and located in Worcestershire 
that treats salad wash water as industrial effl uent. This 
plant has been operational since 2001 and is owned by 
Kanes Foods Ltd., a UK vegetable processor. This plant 
enables the reuse of up to 75% of the wastewater and is 
based on pre-treatment and aerated fl ow balancing fol-
lowed by a crossfl ow sidestream MBR, reverse osmosis 
and ultraviolet disinfection (see Figs. 3 and Fig. 4).

In order to effectively separate the biomass, 4 banks 
of specialized ultrafi ltration modules are used, fed by 
a recirculation system from the two bioreactor tanks. 
To allow a fully calibrated model to be produced mea-
surements were taken at the following points in the 
fl ow train: i) at the infl ow; ii) in the bioreactors; iii) in 
the permeate fl ow; and, iv) at the wastage point. Table 1 
summarizes some of the typical biological and nutrient 
loading data that was collected from the plant during 
an intensive three weekly sampling programme. The
fi gures are given as either a range or as an average with 
plus or minus the largest variance. The measured data 
was used to carry out a full wastewater characterisation 
and then simulations were run on Matlab© [10].

Fig. 2. Schematic of modifi ed ASM3 Oliveira model with MP 
products.
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3.2. Model simulation – results for phenomenological model 
formulations

One aspect of both these models that was dis-
covered was that neither model was fully tested as 
should have been done by their developers, so nei-
ther model as they original stand are accurate in pre-
dicting sludge yields, aeration demands, etc. Hence 

before being used, both these models were exten-
sively tested, and then modifi ed to make them accu-
rate as possible within the constraints of each model 
structure. This meant changing the stoichiometry and 
kinetic parameter values as necessary to refl ect a typi-
cal MBR scenario.

Several simulations were run using the fraction-
ated infl uent and bioreactor component state data on 
both the original ASM1 and ASM3 models followed 
by runs using the modifi ed ASM1 Lu model and the 
modifi ed ASM3 Oliveira model. All outputs from each 
simulation run were plotted on the same graphs so 
results could be directly compared. Figs. 5 and 6 are 
plots of measured values against simulated values of 
COD and Ammonia concentration in Reactor B for the 
four model runs. It is clearly evident from the results 
of all four model type simulation runs, that the origi-
nal untouched models overall performance is nearly 
always better than the modifi ed versions that include 
SMP components. This is as would be expected due to 
the increased parameter sets that in themselves have 
not been properly verifi ed by extensive global research 

Table 1
Some of the typical averaged biological, nutrient and other measurements made during 3 week sampling period

Measured data Infl ow Bioreactor Permeate Wastage

COD unfi ltered (mg/l) 455 ± 179 7032 − 19240 8 − 30 1012 − 19600
TSS / MLSS (mg/l) 72 − 692 15250 ± 2000 4 − 68 820 − 22890
Total Nitrogen (mg/l) 22 ± 17 53 ± 19 0.7 – 16.9 12 − 204
Ammonia (mg/l) 0.2 – 4.8 5.2 ± 3.1 0 – 0.6 3.2 – 13.0
Total Phosphorous (mg/l) 2.4 – 8.4 3.9 – 22.4 0.2 – 4.4 4.0 − 25.3
Return Flow rate (m3/hr) 254 ± 6 – – –
Viscosity (cP) – 170 ± 63 – 177 ± 302

Fig. 3. Flow train of Kanes Foods Ltd. full scale MBR plant.

Fig. 4. Picture of Kanes Foods Ltd. full scale MBR plant.

Fig. 5. Measured COD in Reactor B versus simulated values 
from ASM1, ASM1 Lu, ASM3, and ASM3 Oliveira models.
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as is the case with those for the original untouched 
Activated Sludge model varieties.

3.3. Model simulation – results for IO model formulations

After various assumptions and simplifi cations of the 
plant data, a multi-input multi-output (MIMO) model 
structure was tested. As shown in Eq. (2), the fl ow into 
the membrane module and the infl uent component 
states were used as variables in the input model vector, 
x, with a limited number of reactor component states 
being the variables in the output model vector, y. In this 
case only a maximum of ten input states was utilised 
while the output states were limited to two in order to 
improve the fi t, since there was only a limited data set 
available. The MLSS and viscosity were specifi cally cho-
sen as output states as they directly and indirectly con-
tribute to membrane fouling processes [1].

x
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,
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Fig. 7 shows the best fi t results obtained for simula-
tion of this MIMO model structure when it is run as a 
subspace formulation. As can be seen the fi t for MLSS is 
reasonable although the viscosity fi t is poor.

Several other simulations were run using different 
autoregressive model formulations, and also a reducing 
set of input states. The fi nal runs only use a single input 
multi-output (SIMO) model structure. Table 2 details 
the results of these simulation runs. As can be seen a 
reduced input data set gives better model fi ts as there 
is less correlation needed between component states, so 
the fi nal validated model structure is greatly simplifi ed. 
The subspace formulation performs best with the ARX 
formulation proving next best in accuracy. The other 
two standard autoregressive formulations either per-
form very badly or fail to run.

Fig. 7. MIMO Subspace formulation – Best fi t using all bio-
logical variables as inputs with MLSS and viscosity levels in 
bioreactor as outputs.

Fig. 6. Measured Ammonia in Reactor B versus simulated 
values from ASM1, ASM1 Lu, ASM3, and ASM3 Oliveira 
models.

Table 2
Comparison of best fi ts for various autoregressive model formulations

Input data set type Subspace ARX ARMAX State-space

All ten input data components 30.29% MLSS
−16.50% μ

59.26% MLSS
55.48% μ

did not run too few data

COD and DO as inputs only 48.16% MLSS
−49.74% μ

9.055% MLSS
13.13% μ

did not run 5.127% MLSS
5.672% μ

Only COD as input only 64.88% MLSS
0.2194% μ

10.60% MLSS
18.01% μ

did not run no fi t
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4. Conclusion

Table 3 summarises qualitatively the simulation 
results for both the phenomenological models and the 
MIMO models. The following summarised points can be 
made regarding behavioural IO Activated Sludge vari-
ety model structures:

• These model structures are intuitively easily deter-
mined structures since they mainly represent the vari-
ous state variable components in the model.

• They can be easily set up and run without expert 
knowledge and the input and output component 
states can be very easily altered to allow numerous 
simulations scenarios to be tested.

• A major limitation of these models are that they 
require a considerable amount of data taken over a 
long time period to run adequately which increases 
greatly when using large MIMO structures. This can 
be overcome to some extent by using SIMO structures 
instead.

• This study proves that a subspace procedure and a 
standard ARX method can give comparable accuracy 
when directly compared to the two main unaltered 
IWA Activated Sludge models [2].

It initially looks like this novel approach has many 
advantages over traditional mechanistic models while 
giving comparable results for some IO structures. Early 
simulation results described in this study prove this 
especially for subspace methods. However these meth-
ods can prove very fragile particularly the ARMAX for-
mulation which is prone to crashing. They also require 
very large data sets to produce accurate formulations, 
and these linear models are only useful around a very 
narrow operating range or operating point.

When answering the research questions posed, then 
generally speaking the overall performance of both the 
phenomenological models and the IO models proved 
similar. All the phenomenological models proved diffi -
cult to set up and run for reasons already discussed ear-
lier, while all the IO model forms proved the opposite. 
The optimal way ahead in this area of research may be 

the prudent use of a combination of both model types. 
Hence this means using a conventional phenomenologi-
cal Activated Sludge model to predict most process states 
while using a reduced IO model structure to predict the 
process states that impinge directly on membrane foul-
ing (i.e., SMP levels). This has the advantage of using 
well defi ned existing standard IWA models with all their 
benefi ts, with the SMP state components/s only being 
used in the IO model version which would be easy to 
calibrate. In conclusion, further research is required 
using longer historical data sets to defi nitively ascertain 
whether this autoregressive modelling approach can be 
further developed and improved upon.
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Symbols

μ — Viscosity (cP)
COD —  Chemical oxygen demand 

(mg/l)
CODfi l —  Filtered chemical oxygen 

demand (mg/l)
TSS / MLSS —  Total suspended solids/mixed 

liquor suspended solids (mg/l)
TN —  Total nitrogen (mg/l)
TP —  Total phosphorous
PO3

− —  Phosphate concentration (mg/l)
Ss / Xs —  Readily/slowly biodegradable 

substrate (mg/l)
SI / XI —  Soluble/particulate inert con-

centration (mg/l)
XBH (XH) —  Heterotrophic biomass con-

centration (mg/l)
XBA (XA) —  Autotrophic biomass concen-

tration (mg/l)

Table 3
Summary of results of both model types

 Phenomenological models MIMO models

Results from 
data

Original 
ASM3

Modifi ed 
ASM3 
Oliveira

Original 
ASM1

Modifi ed 
ASM1 Lu

Subspace ARX ARMAX State-space

Full scale MBR 
plant

Good fi t Poor fi t Good fi t Very poor fi t Reasonable fi t Reasonable fi t – –
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SUAP —  Utilisation associated product 
concentration (mg/l)

SBAP —  Biomass associated product 
concentration (mg/l)

MP —  Concentration of microbial 
products (mg/l)

SO (SO2 or DO) —  Dissolved oxygen concentra-
tion (mg/l)

SNO (SNOX or NO3
−) —  Nitrate and nitrite nitrogen 

concentration (mg/l)
SNH (SNH4 or NH3

+) —  Ammonium concentration 
(mg/l)

SND /XND —  Soluble/particulate organic 
nitrogen concentration (mg/l)

XSTO —  Cell internal storage product of 
heterotrophic organisms (mg/l)

FB (FI) —  Inert fraction of biomass lead-
ing to soluble products

FP —  Fraction of biomass yielding 
particulate products

FSI —  Fraction of XS that hydrolyses 
to soluble inert products
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