
Desalination and Water Treatment 
www.deswater.com
1944-3994/1944-3986 © 2011 Desalination Publications. All rights reserved
doi: 10/5004/dwt.2011.2491

*Corresponding author.

PERMEA 2010 – Membrane Science and Technology Conference of Visegrád Countries (Czech Republic, Hungary, Poland, Slovakia), 
September 4–8, 2010, Tatranské Matliare, Slovakia

35 (2011) 209–221
November

Interaction between the electric and concentration fi elds in the fractionation 
of two macromolecules using a Hybrid Membrane Cell – CFD study

Sónia Isabel Silva Pinto, João Mário Miranda*, João Bernardo Lares Moreira de Campos
Centro de Estudos de Fenómenos de Transporte, Departamento de Engenharia Química, Faculdade de Engenharia da 
Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto Portugal
Tel. +351 917933708; Fax: +351 225081692; email: jmiranda@fe.up.pt

Received 16 November 2010; Accepted 11 April 2011

A B S T R AC T

The numerical study of membrane separation processes with electric interactions requires 
the simultaneous solution of Poisson-Boltzmann, Navier-Stokes and Nernst-Planck equations. 
A numerical method was developed, and implemented, to deal with the coupling between 
the electric fi eld, the fl ow fi eld and the concentration fi elds of the ionic species in solution. 
The numerical method was validated supposing limit conditions: a-for a binary ionic solu-
tion, the results are similar to those obtained with a simplifi ed method which assumes the 
Boltzmann distribution of the ionic species; b-for high molecular diffusivity of the compo-
nents, the convection is negligible, relatively to the diffusion, and the numerical solution is 
similar to the one obtained for a stagnant fl uid. The numerical code developed was applied to 
study m acromolecules fractionation in a hybrid membrane cell (HMC) composed by negatively 
charged semi-permeable membranes (impermeable to the solutes and permeable to the solvent) 
and neutral fully-permeable membranes, alternating in series. The normalized concentration 
profi les of the species along the normal and tangential directions were obtained, as well as 
the non-dimensional electric potential along the normal direction. When the charge of the 
semipermeable membrane is identical to the charge of the component with the highest diffusiv-
ity, this component moves away from the membrane and the other, with the lowest diffusivity, 
approaches the membrane. However, due to the interactions between electric and concentration 
fi elds, in the region crossed by the streamlines of the concentrate stream, the separation in the 
fully p ermeable membranes is worsened.

Keywords:  Numerical methods; Electrically charged membranes; Membrane separation 
p rocesses; Poisson-Boltzmann equation; Nernst-Planck equation; Navier-Stokes 
equation; Hybrid Membrane Cell

1. Introduction

The authors of the present paper have been explor-
ing the potential of different types of hybrid membrane 
cells (HMC) to fractionate macromolecules [1,2]. Generi-
cally, an HMC is composed by two kinds of membranes 

alternating in series: a semi-permeable membrane and a 
fully-permeable membrane [1,2].

The fi rst study was about a HMC with a semi -
permeable membrane only permeable to the solvent, and 
a fully-permeable membrane permeable to both solutes 
and solvent [1]. The macromolecules separation is done 
by differential diffusivity. The solute with lower diffu-
sivity remains concentrated near the semi-permeable 
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surface while the solute with higher diffusivity leaves the 
membrane surface into the bulk. The solute with lower 
diffusivity, accumulated at the semi- permeable sur-
face, is, preferentially, recovered at the fully- permeable 
m embrane. Therefore, the outfl ow stream of the cell is 
rich in the solute with higher diffusivity (Fig. 1) [1].

The second study was about a HMC in which both 
solutes are transmitted through the semi-permeable 
membrane, depending on their macromolecules sizes 
[2]. In this type of HMC, the macromolecules with a size 
lower than the size of the pores cross preferentially the 
semi-permeable membrane. The permeate stream leav-
ing this section is then rich in these macromolecules. 
The solute with macromolecules higher than the size of 
the pores is retained and leaves the cell, preferentially, 
through the fully-permeable membranes. This solute has 
also the lower molecular diffusivity, remaining close to 
the semi-permeable membranes, a factor that increases 
the effi ciency of the separation.

However, the potential of a HMC can be further 
explored. Electrical effects were not taken into account 
in previous works. The careful selection of the charge of 
the membranes could contribute to optimize the perfor-
mance of the cells. Further work is needed to understand 
the infl uence of the electrical effects on the separation.

The electrical interactions between the membrane 
and the charged components in the polarized boundary 
layer are usually neglected in most of the studies. Some 
attempts have been made to include them in analytical 
and numerical studies [3–8]. Analytical studies of mass 
transport in the polarized boundary layer are usually 
based on the stagnant fi lm model and are not suitable 
for complex problems involving concentration depen-
dent properties, solutions containing multiple ionic spe-
cies and membranes with non-uniform zeta potentials. 
Numerical methods have been applied to the transport in 
pores or to stagnant boundary layers [8–10]. Related elec-
trochemical problems have been studied in other areas of 
research, namely electroosmotic fl ows [11–16]. However, 
these systems do not combine, as membrane separation 
processes do, electrochemical transport with tangential 
and normal convection and concentration polarization.

To study the electric interactions between membrane 
and components, the Poisson-Boltzmann, the Navier-
Stokes and the Nernst-Planck equations need to be 
solved. In a previous work, these set of equations were 
solved by a simplifi ed approach [17]. A binary ionic 
solution was considered and the effect of convection on 
the ionic distribution was neglected. This simplifi cation 
removed the coupling between the Poisson-Boltzmann 
and the Nernst-Planck equations, and the electric 
potential was determined in a simplifi ed way from the 
Boltzmann distribution of the charged ions. Moreover, 
the electric terms of the Navier-Stokes equations were 
also neglected [17]. However, in practice, most systems 
have a large number of ionic species and the tangential 
velocity near the membrane has an important contribu-
tion to the mass transport in the cell.

In the present study, the Poisson-Boltzmann, the 
Navier-Stokes and the Nernst-Planck equations were 
solved without any simplifi cation. A numerical method 
was developed to deal with the coupling between the 
electric and concentration fi elds of all the species in solu-
tion. Both mass transport equations and fl ow equations 
have the electric terms incorporated.

The new numerical code developed will be applied 
to the fractionation of two macromolecules with oppo-
site charges in an ionic solution of NaCl, using a HMC 
composed by negatively charged semi-permeable mem-
branes (only permeable to the solvent) and neutral fully-
permeable membranes (permeable to all components and 
to the solvent), alternating in series. Additionally to the 
diffusion mechanisms, already studied by Pinto et al. [1], 
the importance of the electric interactions in this type of 
separation is analyzed in this work.

2. Cell description

The HMC under studied is composed by n mem-
brane sections, where each membrane section has a semi-
permeable membrane with a zeta potential, Φw

s
 , only 

permeable to the solvent, and a neutral fully- permeable 
membrane, permeable to all components (Fig. 2).

In the separation process, the feed stream is sepa-
rated into three streams: the retentate stream, which 
leaves the cell through the principal channel, the per-
meate stream (solvent stream) and the concentrate 
stream. The solvent is the only component crossing the 
semi-permeable sub-sections. All the species in solution 
leave the cell through the neutral fully-permeable sub-
sections, which are permeable to all components and to 
the solvent (concentrate stream).

The characteristics of the conventional cell (CC), 
with only one semi-permeable membrane, and the char-
acteristics of the HMC, both used in this study, are listed 
in Table 1. The operational conditions are also presented 
in this table.

B

A

B

A A

Fig. 1. Differential diffusivity in a Hybrid Membrane Cell.
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General assumptions:

• The semi-permeable membrane is considered to be 
permeable to the solvent but completely impermeable 
to the solutes;

• The osmotic pressures of the macromolecules, M1

and M2, and of the ionic species, Na+ and Cl–, are 
considered negligible, since the concentrations of 
these s pecies are, everywhere in the cell includ-
ing over the semi-permeable membranes, very low 
(dilute s olution);

• The transport properties (viscosity and diffusivity) 
of all the species are considered constant. In a very 
diluted solution, viscosity and diffusivity are practi-
cally independent of the concentration of the species, 
including at the membrane surface [18–20];

• The viscosity of the solution is considered identical 
to that of pure water everywhere inside the cell (very 
diluted solution);

• Electric effects inside the membrane are not c onsidered.

The properties of the components used are repre-
sented in Table 2.

4. Numerical method

In order to study the effect of the electric interactions, 
it was necessary to determine the electric, the concen-
tration and the fl ow fi elds. The Poisson-Boltzmann, the 
Nernst-Planck and the Navier-Stokes equations were 
then solved by numerical methods (CFD).

4.1. Domain

The equations were solved in the numerical domain 
represented in Fig. 3; Fig. 3a) shows the domain of a con-
ventional cell with a semi-permeable membrane; and 
Fig. 3b) the domain of the HMC represented in Fig. 2. 
Since the cell is symmetric, the numerical domain 
encloses half of the cell and comprises an inlet section, 
an outlet section and the membrane sub-sections.

Fig. 2. HMC composed of negatively charged semi- permeable 
membranes and neutral fully permeable membranes.

Table 1
Characteristics of the conventional cell (CC) and hybrid 
membrane cell (HMC)

Membrane CC OMEGA 
Polysulfone 
membrane

HMC OMEGA 
Polysulfone 
membrane

Rm 5.714 × 1012 m–1 5.714 × 1012 m–1

H 0.001 m 0.001 m
Lm 0.250 m 0.2778 m

s
−LL 0.250 m 0.125 m

Lf – 0.0139 m
ε f

a – 10%

nsec 1 2

Ls,k
k=

n
−LL∑

1

0.250 m 0.250 m

Lf,k
k

n

=
∑

1
– 0.0278 m

L Lin out 0.02 m 0.02 m
ΔP0PP 1 × 104 Pa 1 × 104 Pa

a ε f
f

f s

L

L Lf
= ×−LL

100.

3. Characterisation of the inlet feed and general 
a ssumptions

Inlet feed:

• A mixture of two macromolecules, M1 and M2, with 
opposite charges, in an ionic solution of NaCl (Na+ 
and Cl–);

• All the species have the same molar concentration 
(CM, i
0 ) and the solution is electrically neutral, since the 

sum of the inlet ionic concentrations of all the species 
is equal to zero.

Table 2
Properties of the components M1 and M2 in an ionic 
solution of NaCl

Component M1 M2 Na+ Cl–

Mi(kg/kmol) 69000 10000 23 35.45
Zi +2 –2 +1 –1
Pei 1.37 × 106 8.00 × 104 7.14 × 104 

[19]
4.68 × 104 

[19]
Re 100 100 100 100
Ci

0 ( )g 3 6.9 × 10–5 1.0 × 10–5 2.30 × 10–8 3.545 × 10–8

CM, i
0 ( / )m// 3 1.0 × 10–3 1.0 × 10–3 1.0 × 10–3 1.0 × 10–3
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4.2. Conservative equations

For a better understanding, from now on, all the 
lowercase variables symbolize normalized variables: 
the non-dimensional electric potential is normalized by 
the absolute value of the semi-permeable membrane 
potential (Φw), the concentrations by the inlet concentra-
tions of the solutes, the velocities by the inlet velocity and 
the geometric dimensions by the height of the cell. The 
uppercase variables symbolize dimensional variables.

4.2.1. Electric potential equation

Assuming that the ions in solution can be considered 
point charges, the electric potential follows the Poisson-
Boltzmann equation:

∂
∂

= ∂
∂

+
∂

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ϕ ϕ∂⎛⎛⎛ ∂ ϕ Π
t x∂⎝⎝⎝ y∂

r
2

2

2

2 err2ΠΠ
 (1)

where ϕ is the normalized electric potential, re the sum 
of the ionic concentrations of all the components and Π2 
a non-dimensional number defi ned by:

Π
Φ2

2
=

ε
FC
M

ref

ref wΦ

0 H
(2)

where F is the Faraday constant, Cref
0  the concentration 

of the reference component in the bulk, Mref the molar 
mass of the reference component and ε the permittivity. 
The cation of the solution, Na+, was arbitrarily chosen as 
the reference component:

C Cref
0

Na
0

+ (3)

M Mref Na+ (4)

The sum of the normalized ionic concentrations was 
determined according to the local ionic concentrations:

r z
C

C
M
M

ce ir zr i
i

i

N

=
∑

0

0
ref

ref

i1  
(5)

where zi is the electric charge, ci the normalized con-
centration of the component i and Mi the molar mass of 
component i.

The electric potential Eq. (1) was solved by a frac-
tional-step method with the diffusive terms separated 
from the independent term. Firstly, the independent 
term was solved by direct integration. In a second step, 
the diffusive terms of the electric potential equation 
were discretized through a fi nite difference method. The 
second derivatives were approximated by central differ-
ences and the discretized equations were solved by an 
implicit method.

The boundary conditions of the domain to solve the 
electric potential equation are listed below:

• At the surface of the semi-permeable and fully-
permeable membranes (y = 0), the non-dimensional 
electric potential is equal to the ratio between the 
potential at the membrane surface and the potential 
(absolute value) of the semi-permeable membrane:

ϕ =
Φ

Φ
( )=y

w  
(6)

• At the axis of symmetry, the non-dimensional electric 
potential is equal to zero:

ϕ = 0  (7)

• At the cell inlet and at the cell outlet, the non- 
dimensional electric potential is also equal to zero:

ϕ = 0  (8)

• At the wall of the cell (impermeable areas), the varia-
tion of the non-dimensional electric potential along 
the normal direction is equal to zero:

∂
∂

=ϕ
y

0
 

(9)

4.2.2. Flow equations

The fl ow in the cell is described by the Navier-Stokes 
and mass conservation equations for a fl uid subjected to 
an electric fi eld [21]:

Fig. 3. Schematic representation of the domain: a) con-
ventional cell (CC) b) hybrid membrane cell (HMC) and 
respective boundaries (I – cell inlet; II – symmetric axis; 
III – cell outlet; IV – wall; V – wall; VI – semi-permeable mem-
brane with negative zeta-potential; VII – fully- permeable 
m embrane with zeta-potential equal to zero).
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where Π1 is a non - dimensional number given by:

Π
Φ

1 =
FC
M V

wref

ref

0

0VV2ρ
(13)

ρ is the fl uid density and V0 the feed velocity. The 
R eynolds number (Re), based on the height of the par-
allel plate cell (H) and on the viscosity of the solution 
(μ) is given by:

Re = ρ
μ

V H0VV
(14)

The nondimensional number Eu0 is the Euler n umber:

Eu0
0

0
2= P0

V0ρ
(15)

where P0 is the feed pressure.
The Navier-Stokes and the mass conservation 

eq uations can also be written for secondary variables 
(vorticity, ω, and stream function, ψ). For these variables, 
the equations take the form of the vorticity transport 
equation:
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and of a Poisson equation for the stream function:

ω ψ ψ= ∂
∂

+ ∂
∂

2

2

2

2x y∂2 (17)

The vorticity transport equation is obtained by dif-
ferentiating Eq. (10) in order to y and Eq. (11) in order 
to x, and subtracting member by member the r esulting 

equations. The term − ∂
∂

∂
∂

− ∂
∂

∂
∂

⎛
⎝⎜
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⎞
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r
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 of the
 
vortic

ity transport equation accounts for the vorticity gen-
eration due to the momentum induced by the electric 
fi eld. The Poisson equation results from the defi nition of 
vorticity:

ω = ∂
∂

−
∂
∂

v
y

v

x
x y

 
(18)

and from the defi nition of stream function:

v
y xx yy

= ∂
∂

; =vyv − ∂
∂

ψ ψ
v; v

∂

 
(19)

The convective, diffusive and independent term 
(electric term) of the vorticity transport Eq. (16) were 
discretized by an implicit method. A hybrid method 
combining upwind and central differences discretiza-
tions was used for the convective terms. Central dif-
ferences discretizations of second order were used for 
the diffusive terms and for the independent term. The 
derivatives of Eq. (17) were approximated by second 
order central differences. The boundary conditions 
to solve the Navier-Stokes equations are presented in 
detail in reference [1].

4.2.3. Mass transport equations

The mass transport equation, Nernst-Planck equa-
tion, of each component is given by:
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∂
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Pei is the Peclet number based on the height of the 
parallel plate cell (H) and on the diffusivity (Di) of com-
ponent i:

Pei
i

V H
D

= 0VV

 
(23)
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and Π3 is a non-dimensional number defi ned by:

Π Φ
3 = F

RT
w (24)

The terms 
∂ ( )

∂
v̂ c
x
x ic

 and
 

∂ ( )
∂y  

are pseudo- convective 

terms, and, from a numerical point of view, can be 
treated by the same method used to discretize the con-
vective terms of the vorticity transport equation. In 
order to simplify the convergence and resolution of the 
mass transport equation, Eq. (20) was solved by a frac-
tional-step method, with the pseudo-convective terms 
separated from the diffusive terms [17].

A fi nite volume method was used to discretize the 
pseudo-convective and the diffusive terms. To assure 
mass conservation, the pseudo-convective terms were 
discretized by the donor-cell upwind method [17]. More 
details about the discretization and respective boundary 
conditions can be found in [17].

4.2.4. Iterative method

The iterative method used to solve the discretized 
equations is schematically represented in Fig. 4. Starting 
with the initial conditions (electric potential, concentra-
tion and velocity), an iterative cycle was performed to 
solve the mass transport equation, the electric potential 
equation, the Poisson equation, and the vorticity trans-
port equation. The velocity components were deter-
mined from the stream function defi nition – Eq. (19).

Electric, concentration and fl ow fi elds were studied 
to analyse the convergence of the numerical method. 
This study was based on the errors in the concentration 
of the solutes, in the electric potential and in the vortic-
ity of the fl ow, in a critical node of the cell. This criti-
cal node was located near the cell exit, at the end of last 
negatively charged semi-permeable membrane, where 
the convergence is very slow.

Convergence?
No Yes

Results

Mass transport equation sand
respective boundary conditions

Electric field equation and
respective boundary conditions

Poisson equation for the stream function
and respective boundary conditions Velocity components

Vorticity transport equation and
respective boundary conditions

Initial conditions

Fig. 4. Flowsheet describing the iterative method to solve the 
discretized equations.

The error of the concentration of component i in the 
critical node was determined by:

εci
i,
k kc ci
k

crit

crit i,crit

i,crit
=

−1

ck
 

(25)

The error of the electric potential in the same critical 
node was determined by:

ε ϕ ϕ
ϕϕcrit

crit

crit
=

−k kϕ
k

1

 
(26)

and the error of the vorticity in the same critical node 
was determined by:

ε ω ω
ωωcrit

crit crit

crit
=

−k kω
k

1

 

(27)

where crit refers to the critical node and k to the current 
iteration.

Moreover, to assure that the numerical method con-
verges to the correct solution, the total sum of the residues 
of the electric potential equation, Rϕ, was determined by:

R
th

m

g g,h

ϕ
ϕ= ∂

∂=

−

=

−

∑∑
2

1

2

1n

 

(28)

where ∂
∂
ϕ
t g,h

 is the time derivative of the electric poten-

tial at the node (g, h).
The normalized concentration, the non-dimensional 

electric potential and the vorticity must converge to a 
constant value (Fig. 5a and 5b). The total sum of the 
residues of the electric potential equation dependent on 
the concentration of the components has to decrease to 
a very small value (Fig. 5c). The iterative process stops 
when the following criteria were observed:

ε
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1
 

(29)

Fig. 5 is an example of the convergence of the numer-
ical data in the separation of M1 from M2, in an ionic 
solution of NaCl, processed in a hybrid membrane cell 
with diffusivity and electric mechanisms (most drastic 
condition used in this paper).
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4.2.5. Grid optimization

Grid tests were performed to select the best grid. A 
special care was taken since in a HMC there is an abrupt 
concentration change in the boundary between semi 
and fully-permeable membrane sub-sections [1,2]. The 
independent parameter chosen to perform these tests 
was the discretization error of the solute concentration 
expressed by:

εc
i
m,s,

i
m,s

i
m,s,ic

m,s
c ci

, ,
i

ci

=
refgrid

refgrid (30)

Fig. 5. a) Normalized concentration of the species and 
vorticity of the fl ow; b) normalized electric potential and 
n ormalized ionic concentration; c) Total residues of the 
electric potential equation ( CM1

0 = 6.90 × 10–5 kg/m3, CM2
0

 
=

5 31.00 10×1.00 kg/m ,3  CNa kg/m ,+ = ×0 8= × − 32.30 10  CCl− =0 = 3.545

kg/m ,× 8× − 310
 
Re = 100,

 
Pe ,M1

61.30 10= ×1.30
 
PeM2 = 8.00 × 104,

PeNa+ = ×7.14 10 ,4
 
PeCl− = ×4.68 104

  
Π1

41.07 10 ,= ×1.07 −
 
Π2 =

51.36 10 ,×1.36
 
Π3 = 0.387, ΔP0PP 41 10= 1  P

,
a).

Table 3
Grid tests for the normal direction y (CM1

0  = 6.90 × 10–5 kg/m3, 
CM2

0  = 1.00 × 10–5 kg/m3, CNa+ = −0 2 3. 0 1× 0 8 kg/m3, CCl−
0  = 3.545 × 

10–8 kg/m3, Re = 100, PeM1= 1.30 × 106,  PeM2 = 8.00 × 104, PeNa+ = 
7.14 × 104, Pe ,Cl− = ×4.68 104

 Π1
41.07 10 ,= ×1.07 −

 Π2 = 1.36 × 105, 
Π3 0.387,=  ΔP0PP 4= 1 1× 0  Pa)

Grid (n × m) nimb εcM1
m,s ε

cM
m,s

2

149 ×   251 132 0.53% 0.08%
149 ×   501 132 0.12% 0.06%
149 × 1001 132 Reference grid Reference grid

b
mni  is the number of grid nodes along the total length of the 

membrane.

Table 4
Grid tests for the tangential direction x (CM1

0  = 6.90 × 10–5 kg/m3, 
CM2

0  = 1.00 × 10–5 kg/m3, CNa+ = −0 2 3. 0 1× 0 8 kg/m3, CCl−
0  = 3.545 ×

10–8 kg/m3, Re = 100, PeM1= 1.30 × 106,  PeM2 = 8.00 × 104, PeNa+ = 
7.14 × 104, Pe ,Cl− = ×4.68 104

 Π1
41.07 10 ,= ×1.07 −

 Π2 = 1.36 × 105, 
Π3 0.387,=  ΔP0PP 4= 1 1× 0  Pa)

Grid (n × m) nimc εcMc m,s
1

εcM
m,s

  85 × 501 68 0.48 % 0.31%
149 × 501 132 0.12 % 0.06%
281 × 501 264 Reference grid Reference grid
c

mni  is the number of grid nodes along the total length of the 
membrane.

where cicc
m,s refers to the mean normalized concentration 

of component i at the semi-permeable membrane sur-
face and the superscript refgrid refers to the reference 
grid. The results of the grid tests are summarized in 
Tables 3 and 4.

The results (Tables 3 and 4) show that all the grids 
are suffi ciently accurate since the error is less than 1% 
relatively to the reference grid. The grid of 149 × 501 was 
chosen to obtain the numerical results.

4.2.6. Comparison with previous method

The numerical method developed in the present 
work is an improvement of the work developed by Pinto 
et al. [17]. In the method developed by Pinto et al., the 
electric term of the vorticity equation was neglected [17]:

− ∂
∂

∂
∂

− ∂
∂

∂
∂

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=Π1 0
r
y x∂ x y∂
e ∂rr ϕ ϕ∂ ∂re∂rr

 
(31)

The Boltzmann distribution of ionic species:

c c zi i i−ci −( )⎡⎣⎡⎡ ⎤⎦⎤⎤
0

0−exp Π ϕ(3 ( ϕ
 

(32)
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was used to determine re. In this way, the equation of the 
electrical potential becomes independent of the concen-
tration fi eld:

∂
∂

= ∂
∂

+ ∂
∂

⎛
⎝⎜⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ( )⎡⎣ ⎤⎦⎤⎤
ϕ ϕ∂⎛

⎜
⎛⎛ ϕ ϕ ϕ−

t x∂⎝⎝⎝ y

2

2

2

2 2 3⎣⎡⎡ 02 Π⎡⎡⎡⎡⎡Π2 i h (33)

The electric potential was determined by solving 
Eq. (33). This step was followed by an iterative method 
to solve the fl ow and mass transport equations.

5. Results and discussion

In the work of Pinto et al., the electric fi eld was con-
sidered independent of the concentration fi elds and the 
electric term of the vorticity equation was neglected [17]. 
In the present work, the electric fi eld and the concentra-
tion fi elds interact and the electric term of the vorticity 
equation is taken into account. In the following sections, 
the effect of these modifi cations on the concentration 
and electric fi elds are going to be studied. Afterwards, 
a study of the mass transport in a hybrid membrane cell 
with electric effects will be presented.

5.1. Coupling mass and electric fi elds

The mass transport in a conventional cell with a neg-
atively charged semi-permeable membrane was simu-
lated to study the interaction between mass and electric 
fi elds. The feed stream is an ionic solution of NaCl (Na+ 
and Cl–) and the concentration profi les of the ionic spe-
cies along the direction perpendicular to the membrane 
(at the end of the semi-permeable membrane) are shown 
in Fig. 6 (a and b). The concentration profi les obtained 
by solving the coupled Poisson-Boltzmann and Nernst-
Planck equations are similar to those obtained by the 
method developed by Pinto et al. [17]. Also shown in 
the fi gures are the concentration profi les obtained with 
the Boltzmann distribution (stagnant liquid conditions). 
Due to the total rejection of the solutes by the semi-
permeable membrane, the concentration values obtained 
for the permeable system are much higher than those 
given by Boltzmann distribution.

A maximum is observed in the Cl– concentration 
(Fig. 6b). Near the membrane, the solvent is depleted of 
Cl– because this ion is repelled by the membrane. Nev-
ertheless, Cl– accumulates in the boundary layer due to 
the convective transport. The maximum results from the 
balance between this transport and the electrical repul-
sion by the membrane.

The concentration profi les in Fig. 6 depend on the 
Peclet number (Fig. 7). For decreasing Peclet numbers, 
the concentration profi les converge to those given by 
Boltzmann distribution. For small Peclet numbers, the 

Fig. 6. a) Normalized concentration of Na+; b) Normalized 
concentration of Cl–, along the vertical direction, y, at the end 
of the negatively charged semi-permeable membrane, x = 260 
(CNa+

0 = 2.30 × 10–8 kg/m3, CCl−
0

 
= 3.545 × 10–8 kg/m3, Re = 100, 

PeNa+ 7.14 10 ,4= ×7.14  Pe ,Cl− = ×4.68 104
 Π1 =  1.07 × 10–4, Π2 = 

1.36 × 105, Π3 0.387= , ΔP0PP 41 10= 1  Pa).

Fig. 7. Normalized concentration of Cl– along the v ertical 
direction, y, at the end of the negatively charged semi- 
permeable membrane (x = 260), for different Cl−  number:
PeCl− = 4.68 × 103, PeCl−  = 4.68 × 104, and PeCl−  = 4.68 × 105, 
(CCl−

0  = 3.545 × 10–8, kg/m3, Re = 100, Π1 =  1.07 × 10–4, Π2 =
1.36 × 105, Π3 0.387= , ΔP0PP 41 10= 1  Pa).
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tangential convection is negligible and the mass trans-
port becomes similar to the mass transport in a stagnant 
liquid, for which the Boltzmann distribution is accurate.

The electric potential as a function of the normal 
distance to the membrane is represented in Fig. 8. This 
fi gure shows that the electric potential obtained by solv-
ing the coupled Poisson-Boltzmann and Nernst-Planck 
equations is higher than that obtained by solving the 
Poisson-Boltzmann equation assuming Boltzmann dis-
tribution (Pinto et al. [17]). The difference results from 
the fact that the ionic concentrations are also signifi -
cantly different. The electric potential has a maximum in 
a region very close to the membrane surface.

5.2. Coupling electric and fl ow fi elds

The separation of two macromolecules, M1 and M2, 
in an ionic solution of NaCl, was used to study the effect 
of the electric term of the vorticity equation. A con-
ventional cell with only one negatively charged semi-
permeable membrane was simulated. The results are 
represented in Fig. 9.

Fig. 9 shows that the velocity profi les (Figs. 9a and 
9b), obtained by solving the vorticity equation with and 
without the electric term, are similar. As a consequence, 
the concentration profi les and the electric fi eld are also 
unaffected by the electric term (Figs. 9c–9e).

Fig. 9d shows that the concentration fi elds interact 
with the potential fi eld leading to the formation of a 
maximum of the electric fi eld for y = 0.005. This maxi-
mum attracts the negatively charged ions and repels the 
positively charged ions. In the case of species with high 
diffusivity, a pronounced maximum (Cl–) and a pro-
nounced minimum (Na+) are observed.

Fig. 8. Non-dimensional electric potential along the ve rtical 
direction, y, at the end of the negatively charged semi- 
permeable membrane, x = 260 (CNa kg/m ,//+ = ×0 8= × − 32.30 10
(CCl−

0  = 3.545 × 10–8 kg/m3, Re = 100, Pe ,Na
4

+ = ×7.14 10  PeCl−  = 
4.68 × 104, Π1

41.07 10= ×1.07 − , Π2
51.36 10 ,= ×1.36  Π3 0.387,=

ΔP0PP 41 10= 1  Pa).

Fig. 9. a) Longitudinal velocity component; b) Normal veloc-
ity component; c) Normalized c oncentration of M1 and M2; 
d) Normalized concentration of Na+ and Cl–; e) Non-dimen-
sional electric potential, at the end of the negatively charged 
semi-permeable membrane, x = 260 (CM1

0 =  6.90 × 10–5 kg/m3, 
CM2

0 5 31.00 10= ×1.00 kg/m ,3//  CNa+
0

 = 2.30 × 10–8 kg/m3, CCl−
0

g

 
= 

3.545 × 10–8 kg/m3, Re = 100, PeM1 = 1.30 × 106, PeM1 = 8.00 × 104,
PeNa+ = 7.14 × 104, PeCl− = 4.68 × 104, Π1 =  1.07 × 10–4, Π2 =

 
1.36 

× 105, Π3 = 0.387, ΔP0PP =  1 × 104, Pa).
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Fig. 10. Normalized concentration profi les of M1 and M2
along the tangential direction, x, at the hybrid membrane cell 
s urface (CM1

0
g
=  6.90 × 10–5 kg/m3, CM2

0 5 31.00 10= ×1.00 kg/m ,3//
CNa+

0
 = 2.30 × 10–8 kg/m3, CCl−

0

 
= 3.545 × 10–8 kg/m3, Re = 100,

PeM1 = 1.30 × 106, PeM2  = 8.00 × 104, PeNa+ = 7.14 × 104, PeCl− = 
4.68 × 104, Π1 =  1.07 × 10–4, Π2 = 1.36 × 105, Π3 = 0.387, ΔP0PP =
1 × 104, Pa).

Fig. 11. Normalized concentration profi les of M1 and M2 
along the last (2nd) fully-permeable sub-section at the 
hybrid membrane cell surface (CM1

0 =  6.90 × 10–5 kg/m3, 
CM2

0 5 31.00 10= ×1.00 kg/m ,3//  CNa+
0

 = 2.30 × 10–8 kg/m3, CCl−
0

gg

 
= 

3.545 × 10–8 kg/m3, Re = 100, PeM1 = 1.30 × 106, PeM2  = 
8.00 × 104, PeNa+ = 7.14 × 104, PeCl− = 4.68 × 104, Π1 =  1.07 × 10–4, 
Π2 = 1.36 × 105, Π3 = 0.387, ΔP0PP =  1 × 104 Pa).

Fig. 12. Streamlines and iso-concentration lines of M1: a) 
nega tively charged semi-permeable membrane, Φw

s = −0.01; 
b) neutral semi-permeable membrane, Φw

s = 0 (CM1
0 =  6.90 ×

10–5 kg/m3, CM2
0 = 1.00 × 10–5 kg/m3, CNa+

0
 = 2.30 × 10–8 kg/m3, 

CCl−
0

 
= 3.545 × 10–8 kg/m3, Re = 100, PeM1 = 1.30 × 106, PeM2  = 

8.00 × 104, PeNa+ = 7.14 × 104, PeCl− = 4.68 × 104, Π1 =  1.07 × 10–4, 
Π2 = 1.36 × 105, Π3 = 0.387, ΔP0PP =  1 × 104 Pa).

5.3. Fractionation of two macromolecules in a HMC

The fractionation of two macromolecules, M1 and M2, 
in a HMC was numerically simulated. Fig. 10 c ompares 
the concentration of the solutes at the membrane surface 
for a system with electrically charged semi-permeable 
membranes (Φw

s = −0.01) with data from a system with 
electrically neutral semi-permeable membranes (Φw

s = 0). 
Fig. 11 is a detailed representation of the concentration 
profi les at the surface of the second fully-permeable 
membrane.

When negatively charged semi-permeable mem-
branes are used:

• the concentration of the positively charged macromol-
ecule (M1) is higher at the semi-permeable membrane 
surface and lower at the fully-permeable membrane 
surface;

• the concentration of the negatively charged mac-
romolecule (M2) is lower at the surface of the semi-
permeable membranes and higher at the surface of the 
fully-permeable membranes.
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At the surface of the semi-permeable membrane, 
the separation of the components increases because the 
electrical effects add to the diffusional effects. The com-
ponent with the lower diffusivity is also the positively 
charged component and so its concentration over the 
surface of the semi-permeable membrane increases. The 
opposite occurs with the negatively charged component: 
higher diffusivity and electrical repulsion contribute to 
a low concentration of this component over the semi-
permeable membrane.

At the surface of the fully-permeable membranes, 
the separation of the components decreases. To under-
stand this decrease, the concentration fi eld in the region 
near the surface of the membranes must be analysed. 
The concentration fi elds of the positively charged 
component in this region are represented in Fig. 12 for 
Φw

s = −0.01 and Φw
s = 0.

The concentration at the fully-permeable membranes 
is a consequence of the transport of solutes along the 

Fig. 13. a) Normalized concentration profi le of M1; b) Nor-
malized concentration profi le of M2 along the vertical 
direction, y, at the end of the last (2nd) negatively charged 
semi-permeable membrane, x = 260 (CM1

0 =  6.90 × 10–5 kg/m3, 
CM2

0 = 1.00 × 10–5 kg/m3, CNa+
0

 = 2.30 × 10–8 kg/m3, CCl−
0

  = 3.545 ×
10–8 kg/m3, Re = 100, PeM1 = 1.30 × 106, PeM2  = 8.00 × 104, PeNa+ = 
7.14 × 104, PeCl− = 4.68 × 104, Π1 =  1.07 × 10–4, Π2 = 1.36 × 105, Π3 = 
0.387, ΔP0PP =  1 × 104 Pa).

Fig. 14. Non-dimensional electric potential along the vertical 
direction, y, at the end of the last (2nd) negatively charged 
semi-permeable membrane, x = 260 (CM1

0 =  6.90 × 10–5 kg/m3, 
CM2

0 = 1.00 × 10–5 kg/m3, CNa+
0

 = 2.30 × 10–8 kg/m3, CCl−
0

  = 3.545 ×
10–8 kg/m3, Re = 100, PeM1 = 1.30 × 106, PeM2  = 8.00 × 104, PeNa+ = 
7.14 × 104, PeCl− = 4.68 × 104, Π1 =  1.07 × 10–4, Π2 = 1.36 × 105, Π3 = 
0.387, ΔP0PP = 1 × 104 Pa).

streamlines that cross these sub-sections. The concentra-
tion of the positively charged component along these 
streamlines, in the region slightly above the end of the 
semi-permeable membranes, is lower for Φw

s = −0.01. 
The reverse phenomenon occurs for the negatively 
charged component.

Fig. 13 shows the concentration profi les along 
the vertical direction, y, at the end of the second semi 
-permeable membrane. In the region crossed by the 
streamlines of the concentrate stream (around y = 0.005), 
the concentration of M1 is lower for Φw

s = −0.01 than 
for Φw

s = 0 and the concentration of M2 is higher for 
Φw

s = −0.01 than for Φw
s = 0. For y = 0.005, the con-

centration of M1 has a sudden change in slope and the 
c oncentration of M2 has a maximum. These features of 
the concentration profi les are related to a m aximum in 
the electric potential (Fig. 14). This maximum, φ = 0.6, 
repels the positively charged component and attracts the 
negatively charged one.

6. Conclusions

A new numerical code was developed to simulate the 
fractionation of macromolecules by membrane cells. The 
main goal is to extend to multi-component ionic solu-
tions the code developed by Pinto et al. [17] for binary 
ionic solutions.

The Poisson-Boltzmann, Nernst-Planck and Navier-
Stokes equations were solved by numerical methods, 
without any simplifi cation. The results were compared 
with those given by a simplifi ed version developed 
by Pinto et al. [17]. The data from both methods, for a 
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binary ionic solution, are very similar. If the Peclet num-
ber of the components is low (high diffusivity), the con-
vection is negligible relatively to the diffusion. In this 
case, the solution is similar to that obtained considering 
stagnant fl uid.

A sensitivity analysis of the electric terms of the 
vorticity equation was also done. The infl uence of the 
electric terms of the vorticity equation on the numerical 
results is negligible.

The new numerical code was applied to the fractionation 
of two macromolecules using a HMC. The HMC comprised 
neutral fully permeable membranes and semi-permeable 
membranes with the charge of the component with higher 
diffusivity. The numerical results were compared to those in 
a HMC but supposing semi-permeable membranes electri-
cally neutral. The separation improves in the boundary layer 
over the semi-permeable membrane. However, the separa-
tion in the fully-permeable membranes is lower.

In a future work, the numerical code developed will 
be applied to the separation of two macromolecules by a 
hybrid membrane cell but with charged semi-permeable 
membranes selective to the components, i.e., permeable 
to the macromolecules, according to the size of macro-
molecules and to the membrane pore size. In this type 
of cell, it is expected that electric effects can increase 
the separation, as long as the most transmitted compo-
nent through the membrane is also the most electrically 
attracted to the membrane.
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Symbols

Ci — Concentration of component i
ci — Normalized concentration of component i
Ci

0 —  Concentration of component i at the feed/
bulk

ci0 —  Normalized concentration of component i 
at the feed/bulk

Cref
0  —  Concentration of the reference component 

at the feed/bulk
cref

0  —  Normalized concentration of the reference 
component at the feed/bulk

CM, i
0  —  Molar concentration of component i at the 

feed/bulk
c0

M, i —  Normalized molar concentration of 
co mponent i at the feed/bulk

Ci
m —  Concentration of component i at membrane 

surface

ci
m —  Normalized concentration of component 

i at membrane surface
Ci

m, f  —  Concentration of component i at 
fully- permeable membrane surface

ci
m, f  —  Normalized concentration of component 

i at fully-permeable membrane surface
Ci,

k
crit —  Concentration of component i on a critical 

l ocation
ci,

k
crit —  Normalized concentration of component 

i on a critical location
Ci

m,s
 —  Mean concentration of component i at 

semi-permeable membrane surface
cicc

m,s —  Mean normalized concentration of 
component i at semi-permeable mem-
brane surface

Ci
m,s,refgrid

 —  Mean concentration of component i at 
semi-permeable membrane surface for a 
reference grid

cicc
m,s,refgrid —  Mean normalized concentration of 

component i at semi-permeable 
m embrane surface for a reference grid

Di — Molecular diffusivity of component i
F — Faraday constant
H — Distance between parallel plates
k — Current time step
Lout — Length of the outlet section
Lin — Length of the inlet section
Lm — Total length of the membrane
Ls

−LL  —  Length of the negatively charged 
semi -permeable sub-section

Ls,k
k

n
−LL

=
∑

1

 —  Total length of the negatively charged 
semi- permeable membrane

Lf —  Length of the neutral fully-permeable 
sub- section

Lf,k
k

n

=
∑

1

 —  Total length of the neutral 
fully- permeable membrane

L — Total length of the cell
Mi — Molar mass of component i
Mref — Molar mass of the reference component
m —  Total number of nodes in the vertical 

direction of the grid
n —  Total number of nodes in the horizontal 

direction of the grid
nim —  Number of nodes along the total length 

of the membrane
nsec —  Number of sections of the hybrid 

m embrane cell
R — Gas constant
re —  Sum of the normalized ionic concentrations
Rm —  Membrane resistance of the 

semi- permeable membrane
T — Temperature
t — Non-dimensional time
V0 — Mean feed velocity
Vx — Longitudinal component of the velocity
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vx —  Normalized longitudinal component of the 
velocity

v̂x  — Normalized pseudo-velocity (component x)
Vy — Vertical component of the velocity
vy —  Normalized vertical component of the 

velocity
v̂y — Normalized pseudo-velocity (component y)
X — Longitudinal coordinate
x — Normalized longitudinal coordinate
Y — Vertical coordinate
y — Normalized vertical coordinate
zi — Electric charge of component i

Non-dimensional numbers

Pei — Peclet number of component i
Re — Reynolds number of the solution
Π1 —  Non-dimensional number defi ned by 

equation 13
Π2 —  Non-dimensional number defi ned by 

equation 2
Π3 —  Non-dimensional number defi ned by 

equation 24

Greek Symbols

ΔP0 —  Static pressure difference across the 
semi- permeable membrane

Δt — Time step range
ε — Permitivity
εcicrit

 —  Numerical error of the concentration of 
component i on a critical location

εcrit —  Numerical error of the electric potential on 
a critical location

εωcrit —  Numerical error of the vorticity on a critical 
location

εcic
m,s —  Discretization error of concentration of 

component i at semi-permeable membrane 
surface

ψ — Stream function
ω — Vorticity
ωcrit

k
 — Vorticity on a critical location

ρ — Density
μ — Mean viscosity of the solution
Φ — Electric potential
φ — Normalized electric potential
Φ0 — Electric potential of the bulk
φ0 — Normalized electric potential of the bulk
Φw — Membrane electric potential
φw — Normalized membrane electric potential
Φw

s  —  Electric potential at semi-permeable 
membrane surface

ϕcrit
k  —  Normalized electric potential on a critical 

location
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