Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2012 Desalination Publications. All rights reserved
doi: 10/5004/dwt.2012.2544

38 (2012) 254–258 January

Preparation of poly (4-vinylpyridine-DVB) based anion exchangers and its applications on the separation of ${}^{99}\text{TcO}_4^-$ ions from reprocessing waste solution

Dayamoy Banerjee*, Manjula A. Rao, Annie Joseph, Ajay Manjrekar, Inderjit Singh, Piaray Kishen Wattal

Process Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India Tel. +91 22 25594106, Fax: +91 22 25505150; email: dayabanerjee@gmail.com

Received 9 December 2010; Accepted 3 November 2011

ABSTRACT

Three strong-base anion exchange resins were prepared by quaternization of poly(4-vinylpyridine-DVB) with different alkyl (-CH₃, -C₂H₅, and -*n*-C₄H₉) halides. The base polymer in granular form was also synthesized in the laboratory. All three synthesized anion exchangers and a conventional strong-base anion exchanger were tested for separation of TcO₄⁻ ions from acidic and alkaline test solutions, each containing 1.0 M NO₃⁻ ions and ^{99m}Tc radiotracer. These resins were also evaluated for batch uptake of ⁹⁹TcO₄⁻ ions from actual reprocessing waste solution. Both batch results showed that the resin with *n*-butyl group on the pyridine nitrogen has higher affinity for ⁹⁹TcO₄⁻ ions. Further, removal of ⁹⁹TcO₄⁻ ions from actual reprocessing waste solution was examined using column of poly(4-vinylpyridine-DVB) resin containing *n*-butyl group on the pyridine nitrogen. Almost complete removal of ⁹⁹TcO₄⁻ ions was obtained for 150 bed volumes of waste treated, indicating excellent column performance of the resin. Elution of ⁹⁹TcO₄⁻ ions was carried out using 6 M HNO₃ solution, whereby a broad elution profile is obtained. These results indicate the usefulness of this novel resin in the treatment of effluent generated at the back end of nuclear fuel cycle.

Keywords: Separation; Pertechnetate; Radioactive waste; Anion exchange resin; Vinylpyridine; Removal

1. Introduction

⁹⁹Tc is one of the radioelements produced with very high yield in thermal neutron induced fission of ²³⁵U. The radioisotope enters the fuel reprocessing cycle predominantly as pertechnetate ⁹⁹TcO₄⁻ ion during dissolution of spent fuel in concentrated nitric acid. The ⁹⁹TcO₄⁻ ions are highly soluble in water and because of its high mobility, traces of the radioelement is often encountered in effluents generated from reprocessing plants. Further, radiochemical characteristics of the element ($t_{1/2} = 2 \times 10^5 y$, $\beta_{max} = 290$ KeV) coupled with high ability to migrate into the environment makes it a potential candidate for long term hazard to the environment [1,2].

Many efforts have been made over the last two decades on selective separation of ⁹⁹TcO₄ from various types of aqueous medium viz., acidic, alkaline and neutral as well as actual alkaline intermediate level waste solution [3–14]. Although the concentration of ⁹⁹Tc in such waste is very low, few ppm only, the presence of molar level of competing nitrates makes its separation very difficult. Among conventional resins, the Dowex 1, a strong base anion exchanger based on poly styrene-divinyl benzene (DVB) matrix with quaternary ammonium ion as functional group was first reported as an effective resin for separation of ⁹⁹TcO₄⁻ ions [3].

Proceedings of DAE-BRNS Biennial Symposium on Emerging Trends in Separation Science and Technology, Kalpakkam, India, March 1–4, 2010

^{*}Corresponding author.

However, throughput is very low owing to lower selectivity in presence of high NO₃ ions [4]. Recent development of a strong-base anion exchange resin containing methylated quaternary pyridinium cation on poly (4-vinylpyridine-DVB) backbone showed remarkably improved performance for removal of the radioelement [5–9]. It is also reported that the resin is promising for separation of the anion from high nitrate containing acidic, neutral and alkaline waste solution [5,7]. Better performance of this resin is attributed to the more hydrophobic nature of the pyridinium amine cation.

It is therefore of interest to prepare strong-base anion exchange resins based on poly (4-vinylpyridine-DVB) matrix quaternized with alkyl halides for selective separation of ⁹⁹TcO₄⁻ ions from the nuclear waste effluents generated in reprocessing plants in India. Further, efforts were also made to enhance the selectivity for ⁹⁹TcO₄⁻ ions by incorporating more hydrophobic alkyl groups on pyridine nitrogen. This paper reports the preparation of three anion exchange resins by quaternization of poly (4-vinylpyridine-DVB) with different alkyl halides such as $-CH_{3'}$, $-C_{2}H_{5'}$ and $-n-C_{4}H_{9}$ and evaluation of their performance for removal of 99mTcO4 ions from acidic and alkaline test solutions containing 1.0 M NO₃⁻ ions. The performance of these resins for removal of 99TcO₄ - ions from actual radioactive waste solution, including loading and elution behavior of ⁹⁹Tc from n-C₄H_o group containing poly(4-vinylpyridine-DVB) resin column is also discussed.

2. Experimental

2.1. Preparation of resins

Initially, beads of poly(4-vinylpyridine-DVB) were prepared by suspension polymerization technique from freshly distilled 4-vinylpyridine (distilled under reduced pressure) and DVB in the molar ratio 3:1 and 0.1% benzoyl peroxide. Aqueous solution containing 0.5% carboxy methyl cellulose (Na-salt) and 3% NaCl was used as suspension medium in the ratio of organic to aqueous of 1:8 vol vol⁻¹. The polymerization was carried out under N₂ atmosphere at 55°C for 5 h followed by another 3 h at 90°C. After polymerization, the product was washed with water and methanol, filtered, airdried, sieved to 0.3–0.85 mm size. This polymer was then used for preparation of resins, which involves soaking the polymer (10 g) in methanol (100 ml) for about 2 d, addition of alkyl halide and heating the mixture at 50°C for 8 h on two consecutive days. Alkyl halide to pyridine nitrogen ratio of 2:1 was used for alkylation reaction. The product resin was washed in methanol, converted to chloride form by passing NaCl (2.0 M), washed with distilled water, air dried, sieved to 0.3-0.85 mm size.

2.2. Determination of uptake of ${}^{99}TcO_4^-$ ions Batch equilibration tests, using 0.1 g of resin and 10 ml

of solution, were carried out to measure the uptake of 99 TcO₄ - ions. Two test solutions (i) 1.0 M NaNO₃ + 0.1 M HNO₃ and (ii) 1.0 M NaNO₃ + 0.1 M NaOH, each spiked with ^{99m}TcO₄⁻ tracer, were used in this study. After 2 h of equilibration, the solid-liquid mixture was separated by filtration and the concentration of ^{99m}TcO₄⁻ in solution was determined by measuring the activity of 99m Tc (E_{y} = 140 KeV) using NaI/Tl scintillation detector. From the measured counts, the uptake of ${}^{99}\text{TcO}_4^-$ ions was calculated and expressed as % removal. Similar batch tests were also carried out using actual reprocessing waste solution of composition shown in Table 1. Details of origin and composition of the waste solution is given elsewhere [12]. After 24 h of equilibration, the solution was separated by filtration using whatman 42 paper and the filtrate was used for analysis of 99Tc. The 99Tc present in waste was separated as a white precipitate of tetraphenylarsonium pertechnetet and tetraphenylarsonium perchlorate (carrier), then the precipitate was collected by filtration using microfiltration system, dried under IR lamp and counted using GM counter [15].

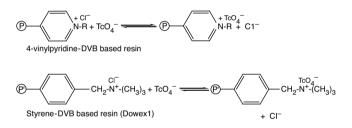
2.3. Column tests

About 1.5 g of nC4H9-PVP resin was loaded in a glass column provided with sintered disc support for the resin. The volume of the bed obtained was 5 ml. The column was conditioned by passing of about 50 ml 0.1 M NaOH solution, and then waste solution was passed through the column from top to bottom at the flow rate of 5 bed volumes per hour. The effluent was collected periodically and analyzed for ⁹⁹Tc activity. The column run was terminated after passing of about 300 bed volumes of waste.

The loading was followed by rinsing the column using 5 bed volumes of 0.1 M NaOH solution. Thereafter, elution of ⁹⁹Tc was carried out using 6 M HNO₃ solution at the flow rate of 3 bed volumes per hour. Eluates were collected in 10 ml fractions and monitored by measuring gross β activity.

Table 1

Composition of ¹⁰⁶Ru and ⁹⁹Tc bearing effluent


Constituent	Concentration
pH	12.8
TDS, g l ⁻¹	140
Gross β, mCi l ⁻¹	0.06
¹³⁷ Cs, mCi l ⁻¹	4.0×10^{-5}
¹⁰⁶ Ru, mCi l ⁻¹	5.2×10^{-3}
⁹⁹ Tc, mCi l ⁻¹	5.1×10^{-2}

3. Results and discussion

Suspension polymerization of 4-vinylpyridine crosslinked with 25% DVB initiated by benzoyl peroxide was used to prepare the poly(4-vinylpyridine-DVB) (Fig. 1). The final product was obtained in the form of cream colored irregular granules. Though not exactly spherical, the granules were in the 0.3–0.85 mm size range, suitable for column application.

The nucleophilic addition reaction of the polymer to alkyl halides (also shown in Fig. 1) was used for preparation of the anion exchange resins [16]. The alkyl halides, viz., CH_3 -I, C_2H_5 -Br and n- C_4H_9 -I were used for preparation of the three anion exchange resins (Fig. 1). Detailed characteristics of the resins have been discussed earlier [17].

Results of batch equilibration tests on removal of ${}^{99}\text{TcO}_4^-$ ions from alkaline radioactive waste solution are shown in Table 2. The uptake of ${}^{99}\text{TcO}_4^-$ ions by the strong-base anion exchange resin can be represented as follows:

It can be seen that all the synthesized anion exchangers have much higher affinity for ${}^{99}\text{TcO}_4^-$ ions than the conventional anion exchange resin (Dowex 1). Furthermore, the affinity of the synthesized *N*-alkylated resins

Polymerization reaction:

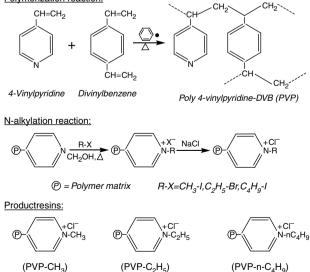


Fig. 1. Synthesis of poly(4-vinyl pyridine-DVB) and *N*-alkylated anion exchange resins.

for ${}^{99}\text{TcO}_4^-$ was found to increase in the order PVP-CH₃ < PVP-C₂H₅ < PVP-*n*-C₄H₉.

Although the affinity of an anion to the resin is governed by many factors, including ion-water interaction, degree of hydration of the resin and the effect of the anion on the water structure, the relative solvation ability of the coions in aqueous phase plays a major role in deciding the affinity sequence [7,18]. Among the ions, solvation needs for TcO_4^{-} is weaker (because of bigger size) and therefore it is pushed into the phase of poorer solvation (resin phase) to yield a minimization of free energy of the system as a whole. In other words, hydrophilic anions like OH⁻/NO₃⁻ form strong hydrogen bonds with water and reduce the free water availability for other anions. This results in a more favorable ion pairing between Na⁺/ NO_3^- or Na^+/OH^- than Na^+/TcO_4^- . These two factors increase retention of NO3⁻ by external aqueous phase and push the bulkier TcO_4^- to the resin phase. In resin phase, the exchange of highly hydrated anion (OH-/ NO_3^{-}) with the poorly hydrated anion (TcO₄⁻) is energetically favorable because of the release of large number of water molecules and formation of stronger ion pairs. This is experimentally proved by Ashley et al. by conducting batch tests as a function of OH-ion concentration and it was found that the Kd for TcO₄ increases with the increase of OH- concentration [5]. At higher OH- concentration, the solvation for TcO₄⁻ is further reduced, leading to higher uptake. The same logic holds good in explaining the observed sequence of TcO_4^- uptake among the synthesized resins, which are different only with respect to the size of the alkyl group attached to pyridine nitrogen. With increase of alkyl chain length, hydrophobicity of pyridine nitrogen also increases, making the site weaker for solvation and hence TcO_4^- ion uptake.

The observed sequence of TcO_4^- uptake by the synthesized can also be explained by hard-soft acid base theory [19,20]. The alkyl group attached to pyridine nitrogen imparts an inductive effect (+I effect) on the nitrogen, making the +ve charge more diffuse (soft acid). The magnitude of +I effect increases with the increase in length of the alkyl group and is expected to be maximum when *n*-butyl group is attached on nitrogen. The TcO₄⁻, the softest base among the anions present in waste, forms a stronger complex with the acids (soft–soft interaction) whose charge is diffused to a greater extent. This explains stability of the ion pairs and hence uptake of TcO₄⁻ increase as PVP-CH₃ < PVP-C₂H₅ < PVP-*n*-C₄H₉.

In the case of acidic test solution, it is seen that even the base polymer has high affinity for ${}^{99}\text{TcO}_4^-$ ions (Table 2). This is attributed to the fact that the pyridine nitrogen of the polymer is protonated in acidic medium and functions as an anion exchanger. In this case also,

Table 2 Removal of ${}^{99}\text{TcO}_4^-$ ions from acidic and alkaline waste by anion exchange resins

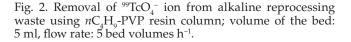
Resin	% Removal of ⁹⁹ TcO ₄ ⁻ ions from			
	Alkaline soln.ª (0.1 M NaOH)	Acidic soln.ª (0.1 M HNO ₃)	Actual reprocessing waste solution	
PVP	13.3	81.2	NT	
PVP-CH ₃	78.3	78.1	78	
$PVP-C_2H_5$	84.7	82.9	80	
$PVP-n-C_4H_9$	88.5	85.9	88	
Dowex 1	74.6	71.1	70	

^aBatch size: 0.1 g resin + 10 ml solution containing 1.0 M NaNO₃ + 99m TcO₄⁻ tracer, NT: not tested.

the PVP-n- C_4H_9 resin shows superior performance amongst the anion exchangers tested.

Results of batch uptake of ⁹⁹TcO₄⁻ ions from alkaline low level reprocessing waste solution showed similar performance as that obtained using alkaline test solution (Table 2). It can therefore be concluded that uptake of ⁹⁹TcO₄⁻ ions by the resins remained same even in the presence of higher concentrations of competing NO₃⁻ ions in actual waste. In this case also, the resin containing *n*-butyl group on pyridine nitrogen (PVP-*n*-C₄H₉) is superior for removal of ⁹⁹TcO₄⁻ ions. In view of this encouraging result, the resin was used in further studies, as described below.

Column performance of PVP-n-C₄H₉ resin for the separation of ⁹⁹TcO₄⁻ ions from reprocessing waste solution is shown in Fig. 2. The effluent samples generated during initial stages of column run contained a negligible amount of ⁹⁹Tc (<1 × 10⁻⁴ mCi l⁻¹) activity and this


60

50

40

0

Breakthrough of ⁹⁹Tc (%)

150

Number of bed volumes

200

250

300

100

50

trend was found to continue till breakthrough point, during which about 150 bed volumes of waste was treated. Complete removal of ⁹⁹Tc from 150 bed volumes of waste indicated the excellent performance of the resin. After breakthrough point, the concentration of ⁹⁹Tc is found to increase slowly, as indicated by the slow rise of the breakthrough curve. The sample collected before run termination, that is, after about 300 bed volumes of waste treatment showed that only about 55% breakthrough is reached. The column run could not be continued further due to limitation of waste volume. From the measured ⁹⁹Tc activity in accumulated effluent and in feed solution, the loading of ⁹⁹Tc on bed was calculated and found to be about 60 µCi. The breakthrough capac-

ity for ⁹⁹Tc, calculated from ⁹⁹Tc concentration (5.1×10^{-2} mCi l⁻¹) in solution and the volume of waste treated (750 ml) upto breakthrough point, was found to be 1.5 mg g⁻¹ (0.45 mg ml⁻¹) of the resin. This value is significantly lower than that of the total strong base ion exchange capacity of the resin, possibly due to low ⁹⁹Tc concentration in waste.

The elution profile of ⁹⁹TcO₄⁻ ions from PVP-*n*-C₄H₉ resin column is shown in Fig. 3. It can be seen that a maximum of about 5% activity was eluted in a fraction, leading to a broad elution profile. Complete elution was achieved after passing about 36 bed volumes of eluate. This broad elution profile is attributed to the very high affinity of ⁹⁹TcO₄⁻ ion for the exchanger. This result also indicates that higher concentration of HNO₃ may lead to effective elution of the anion in a small volume. However, the use of higher concentration of HNO₃ is of concern in practical application mainly with respect to the management of the eluate. It will be interesting to examine other options like use of reducing and complexing agents for effective elution of the radioelement [9]. Two factors such as further management of the ⁹⁹Tc rich

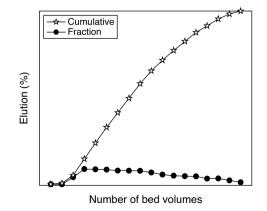


Fig. 3. Elution of ${}^{99}\text{TcO}_4^-$ ion from $nC_4\text{H}_9$ -PVP resin column using 6 M HNO₃.

solution (eluate) and reusability of the resin are being addressed to ascertain the overall utility of the highly selective anion exchanger.

4. Conclusions

Three strong-base anion exchangers were prepared by reaction of poly(4-vinylpyridine-DVB) with different alkyl halides. Uptake of ⁹⁹TcO₄⁻ ions from actual reprocessing waste solution by synthesized anion exchangers was found to be superior to conventional strong base anion exchange resins. Among the synthesized resins, affinity for ⁹⁹TcO₄⁻ ions was found to increase with increase in length of alkyl group (-CH₃ < -C₂H₅ < -*n*-C₄H₉). The anion exchanger containing *n*-butyl group on pyridine nitrogen showed excellent column performance for removal of the ⁹⁹TcO₄⁻ ions from reprocessing waste.

Acknowledgements

Authors wish to thank to Dr. S.K. Samanta, BETDD for his valuable guidance throughout the course of resin development work. Authors thank to Shri S.D. Misra, Director, NRG for his keen interest in the work.

References

- R.E. Wildung, K.M. McFadden and T.R. Garland, Technetium sources and behavior in the environment, J. Environ. Qual., 8 (1979) 156–161.
- [2] F.O. Hoffman, C.T. Garten, Jr., D.M. Lucas and J.W. Huckabee, Environmental behavior of technetium in soil and vegetation. Implications for radiological assessments, Environ. Sci. Technol., 16(4) (1982) 214–217.
- [3] M. Kawasaki, T. Omari and K. Hasegawa, Adsorption of pertechnetate on an anion exchange resin, Radiochim. Acta., 63 (1993) 53–56.
- [4] D. Banerjee and S.K. Samanta, Studies on the removal of ⁹⁹Tc from reprocessing waste, Proceedings of Nuclear and Radiochemistry Symposium (NUCAR-2003), Mumbai, Feb 10–13, 2003, p. 293–294.
- [5] K.R. Ashley, S.L. Cobb, S.D. Radzinski and N.C. Schroeder, Sorption behavior of perrhenate ion Reillex[™]-HP anion exchange resin from nitric acid and sodium nitrate / hydroxide solutions, Solvent Extr. Ion Exch., 14(2) (1996) 263–284.
- [6] N.C. Schroeder, S. Radzinski, K.R. Ashley, J. Ball, F. Stanmore and G. Whitener, Technetium Partitioning for the Hanford Tank Waste Remediation System: Sorption of Technetium-From DSS and DSSF-7 Waste Simulant Using Reillexm-HPQ Resin. LA-UR-95-40, Los Alamos National Laboratory, Los Alamos, New Mexico, 1995

- [7] K.R. Ashley, G.D. Whitener, N.C. Schroeder, J.R. Ball and S.D. Radzinski, Sorption behavior of pertechnate ion on Reillex[™]-HP anion exchange resin from handford and melton vally tank waste stimulants and sodium nitrate/hydroxide solutions, Solvent Extr. Ion Exch., 16(3) (1998) 843–859.
- [8] K.R. Ashley, G.D. Whitener, N.C. Schroeder, J.R. Ball and S.D. Radzinski, Reillex[™]-HPQ anion exchange column chromatography: Removal of pertechnetate from DSSF-5 simulant at various flow rates, Solvent Extr. Ion Exch., 17(6) (1999) 1543–1555.
- [9] D.L. Blanchard Jr, D.E. Kurath, G.R. Golcar and S.D. Conradson, Technetium removal column flow testing with alkaline high salt radioactive tank waste, PNNL-11398, Pacific Northwest National Laboratory, Richland, Washington, 1996.
- [10] A.H. Bond, F.W.K. Chang, A.H. Thakkar, J.M. Williamson, M.J. Gula, J.T. Harvey, S.T. Griffin, R.D. Rogers and E.P. Horwitz, Design, synthesis, and uptake performance of ABEC resins for the removal of pertechnetate from alkaline radioactive wastes, Ind. Eng. Chem. Res., 38 (1999) 1070–1082.
- [11] P.V. Bonnesen, G.M. Brown, S.D. Alexandratos, L.B. Bavoux, D.J. Presley, V. Patel, R. Ober and B.A. Mayer, Development of bifunctional anion exchange resins with improved selectivity and sorptive kinetics for pertechnetate: Batch equilibrium experiments, Environ. Sci. Technol., 34(17) (2000) 3761–3766.
- [12] D. Banerjee, M.A. Rao, A. Joseph, A. Manjrekar, I.J. Singh, R.D. Changrani and P.K. Wattal, Chemical treatment formulation for decontamination of ¹⁰⁶Ru and ⁹⁹Tc bearing effluents of power reactor spent fuel reprocessing plant origin, Proceedings of DAE-BRNS Symposium On Emerging Trends in Separation Science and Technology (SESTEC—2010), March 1–4, Indira Gandhi Centre for Atomic Research, IGCAR, Kalpakkam, India, 2010.
- [13] C.S. Dileep, P. Jagasia, P.S. Dhami, P.V. Achuthan, A. Dakshinamoorthy, B.S. Tomar, S.K. Munshi and P.K. Dey, Distribution of technetium in PUREX process streams, Desalination, 232 (2008) 157–165.
- [14] L. Liang, B. Gu and X. Yin, Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials, Sep. Technol., 6 (1996) 111–122.
- [15] I.M. Kolthoff, P.J. Elving and E.B. Sandell (eds.), Treatise on analytical chemistry, Part-2, John Wiley & Sons, Inc., New York, 6 (1964) 407.
- [16] J.M.J. Frechet and M.V. deMeftahi, Poly(vinyl pyridine): Simple reactive polymers with multiple applications, Br. Polym. J., 16 (1984) 193–198.
- [17] D. Banerjee, S.K. Sharma and S.K. Samanta, Preparation and testing of poly(4-vinylpyridine-DVB) based anion exchangers with enhanced selectivity for ⁹⁹TcO₄⁻ ions present in radioactive effluents, Proceedings of Nuclear and Radiochemistry Symposium (NUCAR-2007), The Maharaja Sayajirao University of Boroda, Vadodara, Feb 14–17, 2007, p. 341.
- [18] R.M. Diamond and D.C. Whitney, Ion exchange, Vol. I, J.A. Marinskey (ed), Marcel Dekker, Inc., New York, 1996, Chapter 8.
- [19] S.D. Alexandratos, Polymer-supported reagents: The role of bifunctionality in the design of ion-selective complexants, DOE/ER13591-1 (2002).
- [20] E.A. Katayev, G.V. Kolesnikov and J.L. Sessler, Molecular recognition of pertechnetate and perrhenatew, Chem. Soc. Rev., 38 (2009) 1572–1586.