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A B S T R AC T

In the electrodialysis process there is a nonlinear relationship between a variety of infl uencing 
factors and separation percent (SP), and the relationship is hard to predict. This paper discusses 
a predictable method via back propagation (BP) neural networks and introduces BP neural net-
works to forecast separation percent in the electrodialysis process. Moreover, the paper aims 
to predict the nonlinear relationships between separation percent and its four infl uencing fac-
tors (voltage, concentration, temperature, fl ow rate). Back propagation neural networks is based 
on multilayer feedforward neural networks, and achieves nonlinear mappings from inputs to 
outputs, it is called BP neural networks, hence this method is suitable to predict the nonlinear 
relationship of separation percent and its infl uencing factors in the electrodialysis process. We 
obtained predictable values of separation percent using BP neural networks. Separation per-
cent from experiments compared with its predictable values, and the correlation coeffi cient was 
more than 0.99, MSE and MSRE were less than 0.2. Prediction accuracy was high in the range of 
permissible error, and acquired a good fi tting. Therefore, it is verifi ed that BP neural networks 
is a nice prediction performance and reference value in the electrodialysis process.
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1. Introduction

Desalinated water is providing an increasing portion 
of the total fresh water supply in a growing number of 
countries [1]. Electrodialysis (ED) is an electrochemi-
cal process for separation of ions across charged mem-
branes from one solution to another under the infl uence 
of an electrical potential difference used as a driving 
force. This process has been widely used for production 
of drinking and process water from brackish water and 
seawater, treatment of industrial effl uents, recovery of 
useful materials from effl uents and salt production [2−4]. 

The prediction of electrodialysis process is an impor-
tant issue in the realm of membrane science, and there 
are many infl uencing factors for electrodialysis, such as 
voltage, concentration, temperature, fl ow rate, mem-
brane permeability and so on. And voltage, concentra-
tion, temperature and fl ow rate are the most remarkable 
factors. Separation percent is considered as a function of 
concentration, temperature, fl ow rate and voltage, but 
an exact formula cannot expressed, namely, there is a 
nonlinear relationship between them. Thus, it is so hard 
to predict separation percent.

Artificial neural network (ANN) utilizes intercon-
nected mathematical nodes or neurons to form a network 
that can model complex functional relationships [5]. 
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 Its development started in the 1940s to help cognitive 
scientists to understand the complexity of the nervous 
system. It has been evolved steadily and was adopted 
in many areas of science. Basically, ANNs are numerical 
structures inspired by the learning process in the human 
brain. They are constructed and used as alternative math-
ematical tools to solve a diversity of problems in the 
fields of system identification, forecasting, pattern rec-
ognition, classification, process control and many others 
[6]. Artificial neural networks have powerful, nonlinear, 
mapping ability, and the modeling process is easier and 
more direct than for empirical models [7]. Artifi cial neural 
networks can treat with nonlinear relationships, so in the 
recent years, it has used widely in the realm of different 
membrane processes, such as reverse osmosis, nanofi ltra-
tion, ultrafi ltration, microfi ltration, membrane separation, 
gas separation, membrane bioreactor and fuel cell.

2. BP neural networks

The argument of Minsky and Papert made many 
people lose confi dence on neural networks, but many 
scholars still had insisted on the academic research. 
Rumelhart, McClelland and their colleagues had insight 
into the importance of information processing of neural 
networks, and a PDP team was found in 1982, they stud-
ied how to deal with parallel-processing information. In 
1985, they developed learning algorithm of BP networks 
and achieved multi-layer networks which Minsky had 
assumed.

There are many types of neural networks, mainly 
two kinds: one is feedback model which is represented 
by Hopfi eld networks model, it is useful to memory 
and solve nonlinear optimization; the other is feedfor-
ward model which bases on multi-layer perceptron, and 
uses mainly for classifi cation, pattern recognition, self-
organization and memory. BP neural networks is typical 
of this kind [8].

Back propagation neural networks is a multi-layer 
feedforward neural networks, transfer functions of 
neurons are S-type functions, outputs are continuous 
between 0 and 1, and BP neural networks can achieve 
any nonlinear mapping from inputs to outputs. Owing 
to adjustment of weights by learning algorithm of BP, 
therefore, it is called BP networks.

At present, in the practical application of artifi cial 
neural networks, the vast majority of neural networks 
models employ BP networks. It is also the core of the 
feedforward networks, and embodies the essence of 
artifi cial neural networks [9].

The BP networks are extensively employed in the 
back-analysis because of its simplicity and power to 
extract useful information from patterns. It allows 
specifi cation of multiple input criteria and generation 

of multiple output recommendations without pre-
assumptions regarding the form of functions related to 
input and output variables. The BP model eliminates the 
limitations of the traditional regression methods, and 
accurately establishes the mapping between the input 
and output variables. It can approximate an arbitrary 
nonlinear function with better precision [10].

BP networks is a typical feedforward networks, 
including input layer, hidden layer and output layer. All 
connections are between an upper layer and a lower one, 
but neurons of every layer are no connection. Weights of 
each layer can be regulated by learning rules, and the 
basic processing unit of networks (excluding input units) 
is used to express the nonlinear relationships of inputs 
and outputs. Learning processing of BP networks con-
tains output calculation and backward error propaga-
tion. When input modes are given, they transport from 
input-layer unit to hidden-layer unit, and output-layer 
unit generates output modes, this process is named as 
feedforward propagation. The errors are between output 
responses and the desired output modes. If the errors 
are beyond the given scope, it will transfer through the 
opposite direction. When the errors transport layer-by-
layer inversely, and modify weights of each layer. For a 
given set of samples, outputs calculate repeatedly in the 
processing of BP networks, until fulfi lling the demand of 
training, then training is completed (Fig. 1).

3. Experimental

3.1. Experimental principle

Electrodialysis technology has been widely used in 
different realms for its high effi ciency and low energy con-
sumption. Under the direct electric fi eld, electrodialysis 
utilizes the permeability of ion-exchange membrane to 
separate the electrolyte from the solution, with the poten-
tial difference, in order to realize the purposes of dilution, 

Fig. 1. The structure of BP neural networks.
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concentration or purifi cation of the solution (Fig. 2). More-
over, cation exchange membrane penetrates only cation 
ions, and it is the same with anion exchange membrane.

3.2. Experimental design

This experiment used self-designed electrodialy-
sis cell which was made of PMMA. Electrodialysis cell 
composed of two clamping devices (A, B) and a parti-
tion. The side of Device A had two inlets and two out-
lets, and the side of Device B had an inlet and an outlet. 
Feed entered ED cell from three inlets which were under 
two clamping devices, and discharged from three out-
lets which were the upper end of clamping devices. Feed 
was divided into two parts through the electrodialysis 
cell: one part was dilute water and needed to measure 
fl ow rates and electrical conductivities of its outlet; the 
other was brine which recycled at outlet and needed to 
supply solution which was the same concentration as 
feed, then added to feed for reuse (Fig. 3).

Experiments were carried out under limiting current 
density. Four factors were studied: feed concentration 
(500 ppm, 1000 ppm and 1500 ppm), fl ow rate of dilute 
compartment (0.05 ml/s, 0.5 ml/s and 1 ml/s), reaction 

temperature (288.15 K, 308.15 K and 323.15 K), applied 
voltage (2 V, 5 V and 8 V).

4. BP neural networks model predict separation 
percent of NaCl solution

4.1. Establishment of the samples

In the experiments, 81 sets of data were obtained. 
Based on these data, BP algorithm predicted separation 
percent of NaCl solution. Obviously, four inputs were 
concentration C, temperature T, voltage V and fl ow rate 
Q, and one output was separation percent (SP) of NaCl 
solution. Samples were divided into two categories, 
respectively, training data and test samples. Doing this was 
to prevent over-fi tting phenomenon and improve fore-
cast accuracy. In all the experiments, 18 sets of data were 
considered as testing data (Table 1), and the remaining 
63 sets were training samples (Table 2).

4.2. Preprocessing of data

In the learning process, Pretreatment of data is of 
importance, this is due to training and refl ecting rela-
tionships between various factors [11]. Different input 

Fig. 2. The principle of electrodialysis process. Fig. 3. Electrodialysis cell.
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Table 1
Test samples

T(K) C(ppm) E(V) Q(ml/s) SP(%) T(K) C(ppm) E(V) Q(ml/s) SP(%)

288.15   500 5 1 7.32 308.15 1500 8 0.5 18.47

288.15   500 8 1 10.98 323.15   500 2 0.5 18.24

288.15 1000 2 0.5 4 323.15   500 5 0.5 24.53

288.15 1000 5 0.5 8 323.15 1000 8 0.5 25.6

288.15 1000 8 0.5 8.67 323.15 1000 2 1 8.65

308.15   500 2 0.05 41.32 323.15 1000 5 1 15.22

308.15   500 5 0.05 57.85 323.15 1000 8 1 15.57

308.15   500 5 1 12.46 323.15 1500 2 0.05 52.87

308.15   500 8 1 13.22 323.15 1500 5 0.05 73.1
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 Table 2
Training data

T(K) C(ppm) E(V) Q(ml/s) SP(%) T(K) C(ppm) E(V) Q(ml/s) SP(%)

288.15   500 5 1 7.32 308.15 1000 8 0.5 17.18

288.15   500 8 1 10.98 308.15 1000 2 1 5.73

288.15 1000 2 0.5 4 308.15 1000 5 1 10.53

288.15 1000 5 0.5 8 308.15 1000 8 1 11.89

288.15 1000 8 0.5 8.67 308.15 1500 2 0.05 23.57

288.15   500 2 0.05 41.32 308.15 1500 5 0.05 69.1

288.15   500 5 0.05 57.85 308.15 1500 8 0.05 88.54

288.15   500 5 1 12.46 308.15 1500 2 0.5 7.64

288.15   500 8 1 13.22 308.15 1500 5 0.5 15.6

288.15   500 2 0.05 37.04 308.15 1500 2 1 3.18

288.15   500 5 0.05 59.76 308.15 1500 5 1 9.87

288.15   500 8 0.05 62.2 308.15 1500 8 1 12.42

288.15   500 2 0.5 3.66 323.15   500 2 0.05 61

288.15   500 5 0.5 12.2 323.15   500 5 0.05 71.7

288.15   500 8 0.5 17.07 323.15   500 8 0.05 77.98

288.15   500 2 1 3.66 323.15   500 8 0.5 27.04

288.15 1000 2 0.05 27.3 323.15   500 2 1 12.03

288.15 1000 5 0.05 55.3 323.15   500 5 1 14.56

288.15 1000 8 0.05 64 323.15   500 8 1 21.54

288.15 1000 2 1 2 323.15 1000 2 0.05 58.82

288.15 1000 5 1 5.3 323.15 1000 5 0.05 77.85

288.15 1500 8 1 6.28 323.15 1000 8 0.05 81.66

308.15   500 8 0.05 67.77 323.15 1000 2 0.5 12.11

308.15   500 2 0.5 9.92 323.15 1000 5 0.5 21.45

308.15   500 5 0.5 17.35 323.15 1500 8 0.05 87.56

308.15   500 8 0.5 21.48 323.15 1500 2 0.5 17.32

308.15   500 2 1 7.44 323.15 1500 5 0.5 23.67

308.15 1000 2 0.05 30.4 323.15 1500 8 0.5 25.45

308.15 1000 5 0.05 67.84 323.15 1500 2 1 10.83

308.15 1000 8 0.05 69.74 323.15 1500 5 1 16.74

308.15 1000 2 0.5 7.93 323.15 1500 8 1 25.8

308.15 1000 5 0.5 15.86      

variables exist magnitude difference, and this difference 
makes larger input and output nodes remain in the range 
of the largest gradient of transfer functions [12].

Inputs normalize to [0,1]. When the data are [0,0.1] and 
[0.9,1], transfer functions change slowly, so we keep inputs 
between 0.1 and 0.9, specifi c methods are as follows:

% p stands for normalization of inputs
% t stands for normalization of outputs
for i = 1:4
p(i,:) = 0.1+0.8*(P(i,:)-min(P(i,:)))/(max(P(i,:))-

min(P(i,:)));
end

for i = 1
t(i,:) = 0.1+0.8*(T(i,:)-min(T(i,:)))/(max(T(i,:))-

min(T(i,:)));
end

4.3. Design of BP networks

Owing to four dimensional input vectors, input layer 
has four neurons. Likewise, output layer has one neu-
ron. And the neurons of hidden layer are calculated [13]:

z x y a= +x +  (1)
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where x is the neurons of input layer; y is the  neurons of 
output layer; and a is the constants [1,10].

In the paper we chose eight neurons of hidden layer, 
so the structure of net was 4 × 8 × 1. Transfer functions 
are linked to the neurons of two layers. According to 
general design, the transfer function of input layer was 
S-type function, the transfer function of output layer 
was linear function. We chose “tansig” transfer function 
of input layer, for its output range was between −1 and 1. 
This paper used default training function, namely, 
“trainlm”. “trainlm” makes use of Levenberg-Mar-
quardt algorithm to deal with medium-sized BP neural 
networks well. It can reduce calculation during training 
process, but need a larger amount of memory spaces. 
The training parameters of “trainlm”: maximum time 
of training was 2000, minimum mean square error was 
0.00001, minimum step of training was 50, minimum 
gradient (min_grad) was 1e-20, other parameters were 
default.

4.4. BP networks training

The experimental results were processed by Matlab 
7.8.0 (R2009a). Each initialization was random. When 
training was terminated, the errors were not the same, 
likewise, weights and thresholds were slightly differ-
ent, so the results of each training were different. During 
several trainings, a team was acquired (namely, the best 
team of training).

4.5. BP networks simulation

Simulation function (sim) was to simulate networks. 
After training, additional data tested (test samples 
are shown in Table 1), predictable values of separa-
tion percent were treated by anti-normalization, com-
pared predictable values of separation percent with its 
experimental values. If the errors of the two values were 
relatively low, the preformance met with practical appli-
cations. Simulation was expressed as follows:

Y = sim(net, A).

5. Results and discussion

Using MATLAB, we obtained fi nal predictable val-
ues. And compared experimental values with predictable 
values, the data are listed in Table 3 and Table 4:

Training data and test samples trained to acquire the 
best results, fi nally, we obtained predictable values of 
training data and test samples, compared experimental 
values of separation percent with its predictable values, 
X axis represented the numbers of test samples or train-
ing data, Y axis was output values (Fig. 4).

Fig. 4. Fitting of experimental values and predictable values.
(a) Fitting of experimental values and predictable values of 
test samples. (b) Fitting of experimental values and predict-
able values of training data.

Table 3
Comparison of experimental values and predictable values 
of test samples

Experimental 
values

Predictable 
values

Experimental 
values

Predictable 
values

7.32 7.2772 18.24 18.5926

10.98 10.7279 24.53 24.0769

4 4.324 25.6 25.9908

8 8.287 8.65 8.7559

8.67 8.9077 15.22 15.3516

41.32 41.5814 15.57 15.7658

57.85 57.4849 52.87 53.1205

12.46 12.8475 73.1 72.8075

13.22 13.7618 18.24 18.5926

18.47 18.0401 – –
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In statistics, correlation coeffi cient (R) describes lin-
ear correlation between two variables, the correlation 
coeffi cient calculates as follows:
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where “cal” is the predictable values of separation per-
cent; and “exp”-stands for experimental values of separa-
tion percent.

Generally |R| is more than 0.8, it is treated as linear 
correlation between the two variables.

R2 can be positive values, ranging from R2 = +1.0 for 
a perfect correlation (positive or negative) down to 
R2 = 0.0 for a complete absence of correlation. The advan-
tage of R2 is that it can indicate the method of coeffi cient 
strength, namely, the closest to the line of best fi t [14].

Using MATLAB toolbox, we got the correlation dia-
gram of experimental values and predictable values (Fig. 5).

Different groups of training data were examined and 
with respect to the mean squared error (MSE) of testing 

samples, the proper model was developed. MSE is cal-
culated as follows:

MSE = ∑ N

N

( )cal −SPc SPPP p
2

 (3)

where subscripts “cal” and “exp” denote predictable val-
ues and experimental values of SP, respectively. N is the 
numbers of testing samples and training data.

Another measure standard of fi t is MSRE, the for-
mula is as follows:

MSRE cal=
−⎛
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Put experimental values and predictable values of 
training data and test samples into formulas, and the 
results are as follows:

According to Table 5, it is found that there is an accep 
agreement (R>0.9 and R2>0.81) between experimental 
values and predictable values. The lower the values of 
MSE and MRSE, the higher the model fi tting. So experi-
mental values and predictable values performed fi tting 
effect greatly.

Table 4
Comparison of experimental values and predictable values of training data

Experimental 
values

Predictable 
values

Experimental 
values

Predictable 
values

Experimental 
values

Predictable 
values

37.04 37.4277 6.28 6.0883 9.87 9.3332

59.76 60.0509 67.77 67.8288 12.42 12.8889

62.2 62.1455 9.92 9.6023 61 61.5352

3.66 3.7768 17.35 17.4744 71.7 71.5966

12.2 12.4256 21.48 21.5103 77.98 77.9643

17.07 16.9505 7.44 7.806 27.04 27.3677

3.66 4.14 30.4 30.0105 12.03 11.7832

27.3 27.1435 67.84 67.2323 14.56 14.7492

55.3 55.8219 69.74 69.5436 21.54 21.1143

64 64.185 7.93 7.4376 58.82 59.0518

2 2.4729 15.86 15.4873 77.85 78.1495

5.3 5.671 17.18 17.5463 81.66 81.4415

8 8.4549 5.73 5.2469 12.11 11.8691

19.56 19.7281 10.53 10.4877 21.45 21.4707

49.55 49.5247 11.89 12.2654 87.56 87.7923

58.74 58.8225 23.57 23.6153 17.32 17.5223

2.24 2.9588 69.1 70.8494 23.67 24.1559

7.62 7.8081 88.54 88.5281 25.45 25.8196

11.21 10.9765 7.64 7.753 10.83 10.2092

1.35 1.0281 15.6 15.1456 16.74 16.7155

4.48 4.4539 3.18 3.0102 25.8 25.2615
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predict electrodialysis process. Meanwhile, this theory 
may spread to other similar fi elds.
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Fig. 5. The correlation diagram of experimental values and predictable values. (a) the correlation diagram of experimental values 
and predictable values of training data (b) the correlation diagram of experimental values and predictable values of test samples.

Table 5
Statistical criteria for evaluation of the fuzzy model

Evaluation 
standards

Training data Test samples

MSE 0.15604 0.10205
R 0.99926 0.92695

R2 0.99852 0.85924

MSRE 0.00439 0.00767

6. Conclusions

This paper discussed mainly about the structure and 
algorithm of BP neural networks. Neural networks pre-
dicts and constructs unknown objects, so it can apply to 
multivariable, nonlinear and random factors in the elec-
trodialysis process, and get a higher precision. BP neu-
ral networks determines the optimal nodes numbers of 
hidden layer and a better structure of networks through 
iterative experiments. BP neural networks has ability of 
learning, feasibility and effectiveness, reduces subjec-
tive factors signifi cantly, uses exhaustion to determine 
the optimal conditions of the process, improves fi tting, 
and simplifi es calculation process.

The results were shown that BP neural networks 
simulated the trend of separation percent well in the 
networks model, approached changes of training sets, 
judged test samples accurately. In the range of permis-
sible errors, the correlation coeffi cient was above 0.9, 
MSE and MSRE were below 0.2. Owing to little prob-
ability event predictable values could not be in accord 
with actual results, but the general trend would not have 
too much deviation. Neural networks meets with practi-
cal applications and provides with an effective way to 




