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1. Introduction

Desalination plants have been in operation for years 
at many coastal sites not only for producing drinking 
water but also for treating waste water generated from 
oil production fi elds [1]. In the technology of desalination 
by sea water reverse osmosis (SWRO), salt is removed 
by applying very high pressure up to 80 bars to force 
sea water against a semi-permeable membrane. Energy 
needed in such a process can consume as high as 70% 

Theory of isobaric pressure exchanger for desalination

Chiang C. Meia,*, Ying-Hung Liub, Adrian W-K. Lawc

aDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 02139
Tel. +1 617 253 2994; Fax: +1 617 253 6300; email: ccmei@mit.edu
bDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 02139
cSchool of Civil and Environmental Engineering, Nanyang Technological University, Singapore

Received 12 May 2011; Accepted 11 August 2011

A B S T R AC T

A theory is developed to predict the time of sustained operation of a rotary pressure exchanger 
used for energy recovery in seawater reverse osmosis system. Based on past experiments for 
oscillating pipe fl ows, it is found that the existing plug fl ow velocity in the ducts is not high 
enough to induce turbulence in the wall boundary layer. Modeling the time series of the fl ow 
velocity in the inviscid core as a periodic series of rectangular pulses, the structure of the 
laminar momentum boundary layer is fi rst derived. The mass boundary layer induced by the 
oscillating velocity is then solved in order to obtain the slow diffusion of the averaged brine 
concentration along the duct. With the result the effective longitudinal diffusivity (dispersivity)
is found explicitly for arbitrary Schmidt number. The dispersivity is found to be small due to 
the small viscosity and mass diffusivity in the very thin boundary layers, however it is still 
augmented to hundreds times of the molecular diffusivity. For a range of duct and rotor dimen-
sions and rotor frequencies, the time needed for the mixing zone to spread to the ends of the 
duct is predicted for large Schmidt number appropriate for salt in water. After transient mixing 
is over, a certain amount of salt leaks steadily into the fresh seawater reentering the membrane. 
However the leakage is shown to be small due to the small dispersivity.

Keywords:  Pressure exchanger; SWRO system; Energy recovery; Boundary-layer theory; 
Convective diffusion; Taylor dispersion

of the total cost [2]. As a result several types of energy 
recovery devices (ERD) have been designed to reclaim 
the high pressure remaining in the brine reject. Among 
these the isobaric pressure exchanger (PX) seems to be 
the most effi cient [3,4]. The central part of the design is a 
rotor with several ducts of small radius distributed along 
a circle of large radius, as shown in Fig. 1. At any instant 
the right half of a duct is fi lled with brine reject and the 
left half with fresh seawater. During one half of the rota-
tion cycle, several ducts are open to the inlet A and the 
outlet B. A fi xed volume of brine reject enters the right 
end and instantly passes the high pressure to the fresh 
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sea water. The same volume of seawater is pushed out 
of B, and joins the fl ow in the outgoing pipe towards the 
membrane. This is followed by a short period of block-
age during which there is no fl ow in the duct. In the next 
half cycle after passing a blocked sector, the same duct 
is open to the feeder pipe at the left end and to the brine 
outfall at low pressure at the right end. Fresh sea water 
enters C and discharges the brine reject at D. After pass-
ing another blocked sector the same duct is open at the 
inlet A again to receive new brine reject for the second 
cycle, etc.

Because there are many ducts in the same rotor, the 
brine reject and the seawater fl ow steadily through the sys-
tem but at opposite ends of each duct, recycling the high 
pressure continuously.

At the moment of switch-on there is a pulsating 
interface near the middle of the duct separating the fresh 
sea water from the brine reject. Diffusion will change the 
interface into a broad zone of mixing. In existing sys-
tems the typical rotor dimensions are: duct length =1 m, 
rotor radius = 0.2 m and duct radius = 0.01 m [3]. The 
rotor speed lies between 500 to 2000 rpm. An array of 
40 rotor units can be installed at a plant. Such units are 
attractive not only for on-land installations but also on 
desalination vessels for serving offshore sites.

An isobaric pressure exchanger should be designed 
to avoid as much as possible adding more salt to the 
fl ow reentering the membrane from the high-pressure 
outlet B of the system. While the design can be guided 
by laboratory tests, mathematical models can be useful 
as economical alternatives. Based on the assumption of 
full turbulence in the ducts, a numerical analysis based 
on k-ε model has been reported by [5]. This assumption 
is however at variance with laboratory studies for oscil-
latory fl ows in pipes of comparable radius. Motivated 
by other reasons, Hino and Ohmi et al. have shown for 
a pipe fl ow under a sinusoidal pressure gradient that 
transition to turbulence takes place when the Reynolds 
number Reδ =  δ/ν can be higher than 760, where  is 

the characteristic velocity, ν the fl uid kinematic viscosity 
and δ ν ω2 /ν  is the Stokes boundary layer thickness 
and ω the oscillation frequency [6,7]. By numerical simu-
lation the critical Reynolds number is found by Ahn & 
Ibrahim to be

Re .
/

δ δ
= ⎛

⎝
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⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
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⎞⎞⎞⎞336 75

1 7/ao  (1)

which shows a weak dependence on the ratio a0/δ, 
where a0 is the pipe radius [8]. Motivated by fl ows in 
blood vessels, Akahaven et al. have carried out extensive 
laboratory and numerical studies in simple-harmonic 
pipe fl ows, and concluded that transition to turbulence 
occurs roughly when Reδ= 500−550 [9,10]. Similar exper-
iments by Eckman & Grotberg also found that transition 
to turbulence in a tube of diameter 1.25 inches occurs 
during the decelerating phase when 500< Reδ <854 for 
9< a0/ /ω/  <33 [11].

In the duct of a pressure exchanger, the plug fl ow is 
not simple harmonic but a periodic series of intermit-
tent pulses of alternating signs. Let T0 be the duration 
of blockage per half rotation and T=2π/ω the rotation 
period. Their ratio depends on the inlet design. If only 
one duct is blocked during each half cycle, the ratio can 
be estimated by T0/T = O(a0/πr0) where r0 is the radial 
distance from the duct center to the rotor axis. Using 
a generous estimate of the duct velocity 5 m/s, we get 

~δ 700. Hence duct fl ow is likely laminar under 
many operating conditions. A theory of convective dif-
fusion in laminar oscillatory fl ow is called for.

Following the pioneering work of G.I. Taylor [12] on 
convective diffusion (i.e., dispersion) in steady channel 
fl ows, theories for sinusoidal laminar pipe fl ows have 
been advanced in [12−15]. In this article we extend their 
theories to intermittent fl ows in a duct with a view to 
predict the longitudinal dispersivity, i.e., the effective 
diffusivity, of the averaged concentration. The dura-
tion of transient diffusion for the mixing zone to spread 
across the full length of the duct will be fi rst predicted 
for a range of duct and rotor dimensions, and rotor 
speed. To assess the effi ciency of the pressure exchanger, 
the amount of salt transfer during the fi nal steady state 
will also be calculated. Details of transient evolution of 
the averaged concentration as well as its quasi-periodic 
fl uctuation will be examined.

2. Velocity in the duct

Because the drum is forced to rotate like a hydraulic
turbine by high-pressure infl ow through specially 
shaped inlets, detailed prediction of the velocity near 
the duct ends is a complex task of numerical simulation 

Fig. 1. SWRO system and isobaric pressure exchanger. From [3].
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 depending on the inlet/outlet geometry. It is only known 
that the oscillating fl ow velocity is roughly proportional 
to the rotation frequency so that the fl uid plug is kept 
away from the ends of the duct [3]. Because the duct 
radius is typically much smaller than the duct length, 
we shall ignore the end effects and assume the velocity 
to be uniform along the entire length, and its maximum 
amplitude is known. For generality T0/T is assumed to 
range from moderate to very small values. Although the 
radial profi le of the longitudinal velocity u r t’( ’, ’)  can be 
found exactly in terms of Bessel functions by extending 
Womersley from simple-harmonic to multi-harmonic 
fl ows, it is suffi cient for present purposes to employ 
the boundary layer approximation because of the small 
viscosity [16].

Using primes to denote physical variables, we let the 
velocity profi le be the sum of the inviscid core velocity 
W t’( ’)  (plug-fl ow velocity) and the correction in the vis-
cous boundary-layer V' = (r',t')

′ ′ ′( ) ′ ′( ) ′ ′ ′( )u r′ ( t W′ ) = t V′ ) + r t′, ,) ( ) (t W) t V) + r  (2)

2.1. Inviscid core

The plug-fl ow velocity W'(t') is a periodic series of 
intermittent pulses of alternating signs. Let all dimen-
sionless variables be without primes. Defi ning the 
dimensionless time by t = ωt', we expand the series of 
pulses as an odd Fourier series in –π < t < π,
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The crudest model of the plug-fl ow velocity is a 
series of rectangular pulses
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where 2c/π = 2T0/T is the fraction of blockage time in a 
half-period. It is easy to fi nd
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which converges slowly. Because it takes fi nite time 
for a circular duct to be fully open to the inlet fl ow, a 
slightly more realistic model is a series of rectangles 
with rounded corners
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More accurate computation of W(t) accounting the 
duct/rotor geometry is possible but it will only affect 
the details of Wn and not the essential physics. In this 
article the rounded rectangles will be used with the spe-
cial choice1 of c = 2b for simplicity. The lengthy expres-
sion of Wn is given in Appendix A. A sample time series 
of W(t) is shown in Fig. 2.

2.2. Boundary layer correction

The boundary-layer correction is governed by

∂ ′
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=
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subjected to the boundary conditions:

′ ′ ′
∂ ′
∂ ′

= ′V W′ = − a′
V
r

, ;r a′ = ,0 0 0′ =r,and  (9)

Fig. 2. Model of velocity pulses in the inviscid core as 
smoothened rectangles with c = 2b = 0.15.

1It has been found that the numerical results computed from the two models are quite close.
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With the normalization:

′ ′ ′( ) ( ) ′ = ′u W′ V u′ ) = ( W V t
t

r a′ = ru, ,W , ,W , ,t
ω 0  (10)

Eq. (8) becomes
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The typical values of the scales are  = 1 m/s, ω = 100 
rad/s, a0 = 1.5 cm, ν = 10–2 cm2/s, hence the inverse of the 
Stokes-Womersley number defi ned by

ε υ
ω

= 1
1
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 ,  (12)

is very small. The boundary conditions are
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with the boundary conditions:
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Similar to the simple harmonic case treated by 
Watson [15], we introduce the boundary layer coordi-
nate (see Fig. 3),
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The leading-order solution is

V Wn nV WV W izn( ) − −e  (19)

which diminishes to zero exponentially outside the 
boundary layer (zn >> 1).

In summary the dimensionless velocity everywhere is
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to the leading order. The amplitudes of n and u depend 
on two parameters, c and ε.

3. Effective equation for salt diffusion

We consider diffusion in a duct of fi nite length 
–L/2 < x' < L/2, and begin with the exact equation for 
salt concentration C':
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Let

′ ′ ′ ′( ) + ′ ′ ′ ′( )C C′ = x t′ C x′ ( r t′0 1( )) +x t C ,( x(1) +t C ,  (23)

where

′ ′ ′( ) ′xC′ ( Ct′ ) ≡0 ,  (24)

is the time and area average defi ned by

f
a

f r t
a

= ′ ′( ) ′∫ ∫r f r t r f
a

′rff ′( )2
22 0∫∫0∫∫ f f( )
2

2π
π

ω
π

π ω
t )) ,

/
df r t′ ′t )∫r f)) =r) ,

/

  
 (25)

Fig. 3. Geometry in dimensionless coordinates. (a) The duct. 
(b) The boundary layer magnifi ed.
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 Thus

′ =C1 0  (26)

and C'(x', r', t') is the deviation from the average. We 
expect that

′ ′
∂

∂ ′
∂

∂ ′
C′

x r′ ∂1 0C ′C0C ,  (27)

and that the time scale of C'0 is much longer than 
O(2π/ω).

Substituting Eq. (23) in Eq. (22) and taking the area 
and time average, we get
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since u' = 0. The difference of Eq. (22) and Eq. (28) is
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Because of Eq. (27), we have, at the leading order
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From this result we infer that
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Using for estimates  = 1 m/s, ω =100 rad/s, l=1 m, 
it is evident that /ωL << 1, hence C'1 << C'0, as expected.

Now assume
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then B' is governed by
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with the boundary conditions
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Once B' is solved, the solution can be substituted in 
Eq. (28) to get the effective diffusion equation for the 
area- and period-averaged concentration:
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namely,
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where

′ = − ′ ′ u B′  (37)

is the dispersion coeffi cient (or dispersivity).
Let us introduce the additional dimensionless vari-

ables
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where Cs is the concentration of the seawater. The scale 
of B' is inferred from Eq. (31) and Eq. (32). In normalized 
variables, B is governed by
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is the Schmidt number. B must also satisfy the boundary 
conditions
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Finally the dimensional and dimensionless disper-
sion coeffi cients are related by
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4. Boundary layer solution for B

In view of Eq. (20) and Eq. (21), we assume

B B
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Then Bm is governed by
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and the boundary conditions:
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Note that B0 = 0 since U0 = 0.
Using the boundary-layer coordinate zm defi ned for 

the velocity profi le, the leading-order approximation of 
Eq. (44) is governed by
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and

∂
∂

= ∞B
z

m

m
m0 0=zm, ,m 0zm  (47)

Let Bm be the sum of homogeneous and inhomoge-
neous parts

B B Bm mBI
m
H+BmBI  (48)

It is easy to fi nd by boundary layer approximation
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The solution here is a straightforward extension of 
of Watson for the simple harmonic case [15]. Note that 
both Um and Bm are essentially constant across the duct 
except in the velocity and mass boundary layers. For 
salt in water, D = 1.62 × 10–9 m2/s, and ν = 10–6 m2/s, 
hence the Schmidt number Sc= 617.28 is very large. The 
concentration boundary layer is much thinner than the 
velocity boundary layer. Eq. (51) can be well approxi-
mated simply by
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5. The dimensionless dispersion coeffi cient

The dimensionless dispersion coeffi cient is
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where asterisks denote the complex conjugates.
Let us derive the dispersivity for arbitrary Sc. Trans-

forming to boundary-layer coordinates z nn ( )r /( )ε
and taking the area average, we get after some algebra,
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 which is positive. This positiveness can be proven from 
Eq. (44) and Eq. (45) without resorting to their explicit 
solution. Finally

 = ( ) ( )=

∞

∑ε 4
2 +

2

1 n
W
n

S

) ( +) (
nWW c

) () ( +) (n

 (56)

The small factor O(ε) arises from the small thickness 
of the boundary layer, where dispersion is produced by 
shear. In general  depends on ε, c and Sc. For salt in 
water Sc= 617.28 >> 1.  can be approximated by the 
simple formula

 =
=

∞

∑ε
S n

W
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nWW

n

4
2

2

1

 (57)

This limiting result, which can also be derived 
quickly by using the approximate formula Eq. (52), will 
now be employed to predict the performance of the iso-
baric pressure exchanger.

6. Dispersivity and the performance of the pressure 
exchanger

The following values of duct and rotor radii are typi-
cal in existing designs : 0.015 < a0 < 0.05 m and 0.20 m < r0 
< 0.60 m [3]. In order to have suffi ciently high fl ow rate 
only a few of the many ducts should be blocked, hence 
the blockage parameter c is likely a small number. Fig. 4 
shows the variation of the dimensionless dispersivity /ε 
for different blockage parameters and Schmidt numbers. 
Expectedly /ε decreases with decreasing mass diffusiv-
ity, hence with increasing Sc. It is interesting that for salt 
and water Sc = 617.28, /ε changes very little with the 
blockage parameter.

Since the rotor is driven as a turbine by the high pres-
sure infl ow, the plug fl ow velocity  is nearly propor-
tional to the frequency ω so that the maximum amplitude 

of the interface displacement is nearly a constant equal 
to a few duct radii [3]. To have some quantitative idea 
of the dispersivity in physical dimensions, we consider 
only salt and water mixture and take a typical pres-
sure exchanger with duct radius a0 = 0.015 m, and rotor 
radius r0 = 0.20 m. Let the rotating frequency be ω = 150 
rad/s and plug fl ow speed be  = 3 m, implying that 
the order of magnitude of the interface displacement is 

X = 

ω  cm. The physical dispersivity is calculated to be

5.72 × 10–7m2/s. Compared with the molecular diffu-
sivity of salt in water D = 1.62 × 10–9 m2/s, the physical 
dispersivity ’ is greater by a factor of O(300). Note that 
the boundary layer thickness is δ = 1.15 × 10–4 m and the 
Reynolds number is Reδ = 346.4, well below the thresh-
old of turbulence.

6.1. Duration of transient dispersion

Now for a duct of length L, the time scale for a sharp 
concentration discontinuity to spread from the middle 
to the ends is roughly,

T
D

L
LTT =

( )L

+ ′
≈

′4

2 2LL
 ′ 4

 (58)

Beyond this time diffusive transfer of salt will take 
place steadily from the brine reject into the feeder pipe. 
As an example, let the length be L=1 m, the time for con-
tinuous operation is roughly TL = 121 h or 5 d. Multiply-
ing the duct length by N increases TL by N2 times. Longer 
ducts are clearly better for delaying the steady transfer.

Note that from our theory,

′ = = = ≡
u u 

a
X

o oa

2ε
ω ε ω ω εao υ ε ω

, ,≡X
 

 (59)

and /ε depends only on c for fi xed Sc. Increasing the 
rotor frequency by a factor N will increase ’ by a factor 
of N . The operating time TL is reduced by a factor of 
1 N . On the other hand ’ is inversely proportional to 
the duct radius a0, hence can be made smaller by using a 
larger duct. This likely calls for a larger rotor in order to 
have a fi xed number of ducts per rotor. The interface dis-
placement X should be kept as small as O(a0) in order to 
keep the mixing zone close to the middle for a long time. 
Sample predictions on the effects of rotor frequency and 
duct radius are shown in Tables 1 and 2 respectively.

6.2. Steady leakage

Beyond the stage of transient mixing, a steady gradi-
ent of the salt concentration is reached so that there is 

Fig. 4. The ratio /ε for different blockage ratios c and 
Schmidt numbers. (a): Overview for 1 < Sc < 617.28, (b): Enlarged 
view for 100 < Sc < 617.28. For salt in water Sc= 617.28.
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a constant leakage of salt into the feeder pipe of fresh 
seawater due to dispersion,

F
C C

L
Ab sC

dispFF = ′  (60)

where Cb is the salt concentration in the reject from the 
membrane, Cs the salt concentration in the fresh seawa-
ter, and A = π a0

2 is the cross-sectional area of the duct. 
Ignoring the thin boundary layer, salt fl ux in the brine 
reject from the membrane is

F AC W tb
u

reFF je dtW ( )∫ ∫W t ACbW t C
udt ACbt AC
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′t′ (( ) ′
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π ω π
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The fraction of leakage is

F
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1
0∫∫π
π  (62)

Using Eq. (5), we have the crude estimate

1 2
1

0π
π

π
tW t

c( ) = = ( )∫0
d O  (63)

In practice, Cs/Cb = 0.6 , = O(1) m/s, L= O(1) m, 
and ’= O(10–7) m2/s is small, the fraction of leakage is 
of the order
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⎝
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confi rming the high effi ciency claimed by the designers [3].

7. Transient evolution of salt concentration in a duct

For detailed checking of the present theory by labo-
ratory experiments, it is useful to know the slow spread-
ing of the mixing zone from the initial discontinuity in 
the middle of the duct. Let us defi ne the dimensionless 
time τ by

τ = + ′ ′ ≈ ′D
L

t
t
TLTT


2LL 4

 (65)

So that the dimensionless averaged salt concentra-
tion C0 satisfi es
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Consider the initial conditions
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and the boundary conditions

′ ( ) ′ ( ) =C′ −( C)0 0( )−( 1 0/ / ,2 τ′ (C) = 0) C) = 1 / ,2  (68)

where ΔC is the percentage concentration difference 
between the brine reject and the fresh seawater. Clearly 
the fi nal steady state at τ ∼ ∞ is given by
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The transient state C'(x, τ) defi ned by
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satisfi es Eq. (66), the initial condition
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 (71)

Table 1
Effect of rotor frequency ε for fi xed X = 0.02 m, L = 1 m, a0 = 0.015 m and r0 = 0.2 m

(m/s) ω (rad/s) δ (m) Reδ ’ (m2/s) TL(h)

1.0 50 2.00 × 10–4 200.0 3.30 × 10–7 209.4

2.0 150 1.15 × 10–4 346.4 5.72 × 10–7 121.2

3.0 200 8.94 × 10–5 447.2 7.37 × 10–7 93.9

Table 2
Effect of duct radius a0 for fi xed c = 2a0/r0 = 0.15, L=1 m,  = 3 
m/s and ω = 150 rad/s. δ =1.15 × 10−4 m and Reδ = 346.4

a0 (m) ’ (m2/s) TL (h)    

0.015 5.72 × 10–7 121.2

0.03 2.58 × 10–7 272.3

0.05 1.16 × 10–7 592.9
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 and the boundary conditions

′ ( ) ′ ( ) =C C′ −( ) = t0 0( ) C−( ) = 1 0/ / ,2  (72)

By expanding C'0(x, 0) as a Fourier series it is easy to 
solve for C'0 and get fi nally
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This series converges quickly for τ > 0.
A sample space/time evolution of C'0/Cs is plotted 

in Fig. 5 in physical variables for the typical sea-water 
concentration of C0 = 40,750 mg/l and brine reject con-
centration of 73,110 mg/l. After about 200 h, steady 
leakage of salt enters the feeder pipe and returns to the 
membrane section.

In dimensionless form, the concentration fl uctuation 
from the mean can be obtained from

C x t B
C
x1

0,( ) ∂
∂

 (74)

(cf. Eq. (32)). The dimensionless concentration fl uctuation is
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For salt in water, the Schmidt number is so large 
that the mass boundary layer is extremely thin and Bm is 
essentially constant across the duct, as seen in Eq. (52). 
Thus,
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mWW
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∞
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Recall that C0(x, t) varies in time slowly through τ. 
In Fig. 6 we show some sample results of transient fl uc-
tuations for two oscillation periods around four dimen-
sionless times at τ =0.005, 0.01, 0.03 and τ = 0.05. For the 
pressure exchanger with L=1 m, a0 = 0.015 m, r0 = 0.2 m, 
ω = 150 rad/s and  = 1.5 m/s, we have /ωL = 0.01. 
The corresponding physical times are t' = 9.6, 19.2, 57.7 
and 96.1 h respectively. After such a long time the mean 
gradient ∂ ∂x∂/ ’0  approaches constant along the duct. 
The concentration fl uctuation eventually becomes only 
periodic in time.

8. Conclusions

In this article we have provided a theoretical confi r-
mation of the effi cacy of the isobaric pressure exchanger. 
The theory predicts the spreading by convective dif-
fusion of salt along each duct inside the pressure 
exchanger. The effective equation for the slow disper-
sion along the duct is derived and an explicit formula 
for the dispersivity (effective diffusivity) is found. The 
analytical result is used to predict the time scale for the 
transient mixing to spread across the entire duct length. 
Moreover, it is shown that even after the transient state 
is passed, the steady transfer of salt from brine reject 
to the fresh seawater reentering the membrane is small. 

Fig. 5. Evolution of the averaged concentration C0 in physical 
variables x’ (m) and t’ (h)), in a duct of L=1 m, a0= 0.015 m, 
r0 = 0.2 m. The rotor frequency is ω = 150 rad/s and the maxi-
mum plug fl ow velocity is  =1.5 m/s. ’ = 1.43 × 10–7 m2/s. 
The blockage time fraction is assumed to be c = 0.15.

Fig. 6. Evolution of concentration fl uctuation in C C Cs1’/  in 
dimensionless variables at (a) τ =0.005 (t' = 9.6 h); (b) τ =0.01 
(t' = 19.2 h); (c) τ =0.03 (t' = 57.7 h); (d) τ =0.05 (t' = 96.1 h). For 
a rotor with L = 1 m, a0 = 0.015 m, r0 = 0.2 m, ω = 150~rad/s 
and  = 1.5 m/s. The blockage time fraction is assumed to 
be c = 0.15.
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We only give the explicit results for c = 2b,
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Symbols

F’ — quantity F in physical dimensions.
F —  normalized quantity F without dimen-

sions.
a0 — duct radius.
B —  concentration normalized for unit 

∂ ∂x∂0/ .
Bm — m-th harmonic amplitude of B.
C — brine concentration.
Cm —  concentration perturbation at order m.
C — time-averaged brine concentration.
〈C〉 —  cross-sectional average of duct con-

centration.
ΔC —  concentration difference between 

brine reject and fresh seawater.
D —  molecular diffusivity of brine in 

water.

Hence the high effi ciency of the isobaric pressure 
exchanger is theoretically confi rmed. Detailed labora-
tory measurements are not yet available in the literature 
and would be very worthwhile. For guiding the design 
it is worth further investigation to predict accurately the 
magnitude of the pressure transmitted to the feeder pipe. 
For this purpose the detailed fl uid mechanics in the inlet, 
the outlet and the feeder pipe may have to be taken into 
account. Other design concerns such as leakage and loud 
noise would require more elaborate effort in computa-
tional modeling.
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Appendix

Fourier expansion of the rectangular pulses with 
rounded corners

In the positive half period, let
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 — dispersion coeffi cient (Eq. (42)).
δ ν ω2 /ν  —  dimensional boundary layer thick-

ness.
ε —  Stokes-Wormersley number (Eq. (12)).
ν — molecular viscosity.
L — duct length.
ω — rotation frequency.
r — radial distance from duct center line.
Reδ — Reynolds number (Eq. (1)).
Sc — Schmidt number.
t — time.
Tc —  time for concentration interface to 

diffuse from center to ends of duct.
u(r, t) — longitudinal fl ow velocity.
 — characteristic scale of velocity.
V(r, t) —  velocity correction in the boundary 

layer.
Vn — amplitude of the n-th harmonic of V.
W(t) — fl ow velocity in the inviscid core.
Wm — m-th harmonic amplitude of W.
X —  displacement amplitude of concen-

tration interface.
zn —  boundary layer coordinate for the 

n-th harmonic (Eq. (17)).
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