

Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: a review

Parizad Shojaee Nasirabadi, Ehsan Saljoughi*, Seyed Mahmoud Mousavi

Faculty of Engineering, Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, Tel./Fax: +98 51 38806840; email: parizad.shojaee@stu-mail.um.ac.ir (P. Shojaee Nasirabadi), Tel./Fax: +98 51 38805115; emails: saljoughi@um.ac.ir (E. Saljoughi), mmousavi@um.ac.ir (S.M. Mousavi)

Received 31 July 2015; Accepted 5 January 2016

ABSTRACT

The presence of pharmaceuticals, hormones, endocrine disruptors, and their metabolites in aquatic environments has recently attracted particular attention due to their potential risks and adverse health effects. Membrane processes as widely used technologies in wastewater treatment have played a significance role in elimination of pharmaceuticals, hormones, endocrine disruptors, and their metabolites from wastewaters. In the current research, membrane processes which are used for the removal of these pollutants have been classified into three main categories, namely membrane filtration processes (UF, NF, and RO), membrane bioreactors (MBRs) (aerobic submerged and external systems), and membrane contactors (liquid-liquid extraction, supported liquid membranes, forward osmosis, and membrane distillation). Filtration processes have been applied for the removal of a large number of the contaminants; however, NF has been the most used one and the results were significant in most of the cases. Performance of MBRs has been also investigated for extensive number of contaminants. These systems have also showed great performance in many of the studies. Nevertheless, there are only a few researches on the removal of these pollutants by membrane contactors; thus, they have the potential for growth. Membrane processes have also been used in combination with other processes.

Keywords: Membrane filtration; Membrane bioreactor; Membrane contactor; Pharmaceutical pollutant; Wastewater

1. Introduction

In recent years, occurrence of pharmaceutical compounds in surface waters and wastewaters has caused environmental concern. Several papers have investigated the presence of the mentioned pollutants especially in wastewaters [1,2]. However, no legal requirements have been set for discharge of these persistent and biologically active substances into aquatic

environments [2]. The presence of pharmaceuticals in water is attributed to personal hygiene products, pharmaceutical industry waste, hospital waste, and therapeutic drugs [3]. Concentrations of individual compounds and their derivatives are relatively low in drinking water and its sources (ng/L to μ g/L) [4]. Despite low concentration, it has been a matter of public concern that these pollutants could be unintentionally ingested via drinking water. This is because most of these substances are pharmacologically and

^{*}Corresponding author.

^{1944-3994/1944-3986 © 2016} Balaban Desalination Publications. All rights reserved.

physiologically active, and therefore may affect homeostatic mechanisms in the human body at very low concentrations [5].

Among different wastewater treatment processes, the development of membrane-based processes is significant, since they offer three clear advantages over conventional techniques [6]:

- (1) Separation is achieved without the requirement of a phase change; therefore, it is more energetically efficient than distillation.
- (2) Unlike adsorptive separation processes, little or no accumulation takes place in the membrane process, as a result of which, it operates continuously under steady-state condition without necessitating regeneration cycles.
- (3) Little or no chemical addition is required, unlike conventional clarification which generally relies on the addition of chemical coagulants and flocculants.

Although membrane processes are a relatively new type of separation technology, several membrane processes, particularly pressure-driven membrane processes including RO, NF, UF, and MF have already been applied in an industrial scale [7]. RO systems were the first type of membrane systems used in advanced wastewater treatment [8]. Generally, UF, NF, and RO processes have high efficiencies for the removal of conventional micro-pollutants and natural organic matter from aqueous solutions and groundwaters, even generating permeates during industrial wastewater treatments that can frequently be reused. Particularly, these technologies have been widely tested in recent studies for the elimination of pharmaceuticals with high efficiency. The main advantages of these pressure-driven membrane processes are the quality of the purified permeate, the moderate operating temperatures and the low energy requirements, the absence of chemicals, and the possibility to be combined with other separation processes [9].

Membrane bioreactors (MBRs) have also attracted serious attention for the treatment of municipal wastewater [10]. MBR technology, combining the biological degradation process using activated sludge with membrane filtration, serves several advantages over CAS systems. MBRs are more useful for disinfection purposes. They have smaller footprints and produce less sludge as well. Therefore, these systems result in better effluent qualities have longer sludge retention times (SRT) independent of hydraulic retention times and allow for the rapid start-up of biological processes [11,12]. MBRs have been used to remove pharmaceuticals from wastewater in several studies [2].

Membrane contactors have been studied since the mid-1980s for a wide range of applications, such as extraction of metal ions from industrial waste and hydrometallurgical process streams and recovery of sulfur aroma compounds from food industry wastewaters. Several different operations can be performed with these devices, e.g. liquid–liquid extraction, osmotic evaporation, and membrane distillation [13]. In recent studies, the removal of several pharmaceutical pollutants by membrane contactor processes such as liquid–liquid extraction and forward osmosis has been studied [14,15].

Regarding the significance of public concern on occurrence of pharmaceutical pollutants in aquatic environments and the position of membrane processes in wastewater treatment, a review is presented in the current research on application of membrane processes in the removal of these pollutants from wastewater.

1.1. Review framework

The survey drew data from papers published in international journals, regarding the membrane processes used for the removal of pharmaceuticals, hormones, endocrine disruptors, and their metabolites from wastewaters. In this study, the membrane processes used for the removal of these contaminants have been classified into three main groups, i.e. pressure-driven membrane processes (membrane filtrations), MBRs, and membrane contactors. Since the first two groups are relatively large, the data have been presented through tables. After each table, valuable highlights have been derived. The membrane processes which do not come into any of these major groups have been discussed in another section which comes after the main groups. Thereafter, papers which have discussed membrane processes in combination with other treatment processes have been summarized in a table.

2. Pressure-driven membrane processes

Pressure-driven membrane processes are similar to classical filtration with much finer mesh or much smaller pores to enable the separation of tiny particles, even molecules. In these processes, the separation of a mixture is achieved by the rejection of at least one component by the membrane and passage of the other components through the membrane [7].

The membrane filtration processes primarily used in wastewater treatment are classified as MF, UF, NF, and RO [8]. Table 1 compares some of the characteristics of these four processes.

The most important part of a membrane separation process is the membrane itself [18,19]. In filtration processes, membrane effectiveness depends on fouling, flux, and selectivity. In fact, a major concern for membranes applications is fouling phenomenon, i.e. reversible and irreversible blocking of pores bv colloidal/particulate matter and in case of drinking water by macromolecules of natural organic matters [20]. Fouling limits the membrane performance, reduces the working life of the membrane, and increases the cleaning costs [21]. Generally, increasing the hydrophilicity of the membrane surfaces and pore walls can remarkably reduce or suppress the membrane fouling [22,23]. Flux is the volume of water that passes through a membrane per unit of time and per unit of surface area of the membrane; it is measured in either liter per square meter per hour or gallon per day per square feet and is affected by water temperature [8]. Flux depends on the membrane, application, and operating conditions and is usually a function of time too. In pressure-driven membrane processes, pressure-normalized flux of a membrane at a certain temperature (often 20°C) is also used. The selectivity of a membrane is generally expressed by the retention or rejection of specific substances [7].

High separation efficiency, low energy requirement, and simplicity of the operation with modern compact modules are advantages of the membrane filtration processes. Moreover, there is no need for any chemical substances to be added. It is also easy to increase the process capacity (modular system). In these systems, the separation occurs in the continuous mode and is carried out in mild environment conditions. Furthermore, membrane processes can get joined with other unit processes (hybrid processes) easily [24–27].

There are five principal configurations used in membrane processes: flat sheet, hollow fibers, tubular, spiral-wound cylinders, and rotating flat plates [8]. Each type has dark and bright sides. Hollow fibers are

Table 1

Comparison of four membrane processes [7,16,17]

generally the cheapest on a per square meter basis; however it is harder to make very thin selective membrane layers in hollow fiber form than in flat sheet form. Furthermore, hollow fiber modules require more pretreatment of the feed than is usually required by capillary or spiral-wound modules [28].

Membrane filtration processes are widely used either separately or as a combination of membranes in series in wastewater reclamation/reuse and drinking water treatment to remove pharmaceuticals and endocrine disruptors. Several studies investigating the rejections of these pollutants have been published. Table 2 is an overview of these works.

According to Table 2, the following results can be obtained:

- Applications of several commercial membranes have been investigated; besides, laboratorial prepared polymeric membranes were also evaluated.
- (2) Commercial membranes have been used in most of the studies.
- (3) MF has not been employed. In fact, UF, NF, and RO have been the filtration processes which were used.
- (4) NF has been the most used filtration process.
- (5) Flat sheet has been the most common configuration.
- (6) In most of the cases, RO could successfully reject more than 80% of each of the pollutants regardless of the membrane material.
- (7) There have been cases in which UF could do no elimination; however, in some cases, removal efficiencies of more than 80% have been observed for UF process.
- (8) In nanofiltration processes, the removal efficiencies have lied within a wide range.
- (9) Generally, NF performance has been notable.
- (10) NF90 seems to have carried out the best performance among nanofiltration membranes. In most of the studies, the removal efficiency obtained by NF90 has been in the range of 96–100% which indicates the great performance of this commercial membrane.

Membrane	RO	NF	UF	MF
	Asymmetric	Asymmetric	Asymmetric	Asymmetric/symmetric
Thickness (µm)	150	150	150–250	10–150
Pore size	<1 nm	0.5–10 nm	1–100 nm	0.1–5 μm
Operating pressure (bar)	10–100	5–20	1–5	0.1–2
Flux range (L m ⁻² h ⁻¹ bar ⁻¹)	0.05–1.4	1.4–12	10–50	>50

Table 2 An overview of filtration processes used for the removal of pharmaceuticals, hormones, endocrine disruptors, and their metabolites

	Removed pharmaceuticals, hormones, endocrine							Removal	
Therapeutic class	disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	efficiency range	Refs.
Analgesics/anti-inflammatories	Acetaminophen		500 μg/L synthetic	NF		SR2 SP3	Flat sheet	30-65% 11-58%	[29]
		– Aromatic polyamide	5–18 μg/L surface water	N N N	1 nm	NF-90	Flat sheet	77%	6 [9]
		Thin film composite with sulfonated polyethersulfone	2–<150 ng/L surface water	UF UF	ши с.1	GM GM	Flat sheet	4%	[31]
		coated with an undariant porymittee Thin film composite with aromaticpolyamide coated with an ultrathin polymide		NF		ESNA	Flat sheet	26%	[31]
	Aminopyrine	Thin film composite membranes with a cross-linked	18 ng/L effluent from a WWTP 2-100 μg/L surface water	UF NF	1 1	- Trisep TS-80	1 1	5% 99%	[32] [33]
		aromatic polyamide top layer		Ľ.	I	Desal HL	- - -	97% 2027	[33]
	Codeine	r olyethersuirone Made of thin film polyamide	5794 ng/ L etfluent from a WW1F	ΡĘ	1 1	HL	Flat sheet Flat sheet	79% 94%	<u>34</u>
	Diclofenac	Polyethersulfone Thin film composite with sulfonated polyethersulfone	0.025–0.1 μg/Linfluent of a DWTP 2–<150 ng/L-surface water	NF UF	I	FM NP010 GM	Flat sheet Flat sheet	10-93% 9%	[35] [31]
		coated with an ultrathin polyimide Thin film composite with aromatic polyamide coated with		NF		ESNA	Flat sheet	38%	[31]
		an ananin Polymure	38 ng/L Effluent from a WWTP	UF	I	I	I	2.6%	[32]
		- Thin film composite membranes with a cross-linked	zo ng/ L saune ground water 2–5 μg/L surface water	NF	1 1	- Trisep TS-80	1 1	2.8%< 100%	[32] [33]
		Polyethersulfone	942 ng/L effluent from a WWTP	UF	I	PT	Flat sheet	71%	[34]
		Made of thin film polyamide -	115, 156 ng/L effluent from a	ł ł		HL UTC-60	Flat sheet Flat sheet	92% 56–98%	[34] [36]
	Fenoprofen	- Aromatic polvamide	WWTP 5-18 ug/L surface water	RO NF	- 1 nm	LF10 NF-90	Flat sheet Flat sheet	90% 94%	[36] [30]
	-	Thin film commosite membranes with a cross-linked	2–100 no/T surface water	NF	1.3 nm _	NF-200 Trisen TS-80	Flat sheet _	90% 96%	[30]
		aromatic polyamide top layer	z-100 hg/ r suitace water	INT	I	no-ci daerri	I	0/ 0/	8
	Hydrocodone Ibuprofen	- Aromatic polyamide	105 ng/L Effluent from a WWTP 5-18 μg/L surface water	H NF	1 nm 1.3 nm	- NF-90 NF-200	- Flat sheet Flat sheet	14.3% 96% 89%	[32] [30]
		Thin film composite with aromatic polyamide coated with an ultrathin polyinide	2−<150 ng/L surface water	NF		ESNA	Flat sheet	45%	[31]
			39 ng/L Effluent from a WWTP	UF S	I	I	I	7.7%	[32]
		- Thin film composite membranes with a cross-linked	2.39, 302 ng/L 5aine ground water 2–30 μg/L surface water	2 E	1 1	- Trisep TS-80	1 1	100% <	[33]
		aromatic polyamide top layer	381 na/l affliant from a WWTD	L NF	1 1	Desal HL PT	– Filat chaot	99% 69%	33]
		Made of thin film polyamide		NF		HL	Flat sheet	88%	[34]
		Polyethersulfone Cellulose acetate	$0.025-0.1 \ \mu g/L$ influent of a DWTP 26.44 m σ/L synthetic	H H	1 1	FM NP010 -	Flat sheet Flat sheet	10-92% 54.3-59.1%	[35] [37]
		Cellulose acetate membranes with 3 wt% charged surface		E H	I	I	Flat sheet	48.2-48.4%	[37]
		modifying macromolecule additive synthesized by reactive diisocyanate and dihydroxy naphthalene disulfonate							
		Cellulose acetate membranes with a tailor made hydrophilic surface modifying macromolecule additive amuniactured incorporating poly(ethylene glycol) as end		NF	I	I	Flat sheet	45.5-47.1%	[37]
		groups Cellubs acetate membrane developed by incorporating charged surface modifying macromolecules	140–4706 ng/L-influent of a WTP	NF	I	I	Flat sheet	27-80.4%	[38]
	Indomethacin		500 μg/L synthetic	NF NF	I	NF-270 SR2	- Flat sheet	75.3–90.5% 82–95%	[38] [29]
		1		NF		SR3	Flat sheet	95-100%	[29]
								(Conti	(pənu

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

(Continued)	
e 2	
Tabl	

	Removed pharmaceuticals, hormones, endocrine disruptors, and their			Filtration	Effective	Commercial		Removal efficiency	
Therapeutic class	metabolites	Membrane material	Initial concentration-source	type	pore size	code	Configuration	range	Kets.
	Ketoprofen	Aromatic polyamide	5–18 μg/L surface water	NF	1 nm 1 3 nm	NF-90 NF-200	Flat sheet	94% 01%	[30]
		Thin film composite membranes with a cross-linked	2-50 μg/L surface water	NF	-	Trisep TS-80	-	100%	88
		aromatic polyamide top layer Polvethersulfone	608 ng/L effluent from a WWTP	LF F	1 1	Desal HL PT	- Flat sheet	98-99% 58%	33 34
		Made of thin film polyamide		LF I	I	HL	Flat sheet	87%	34
		1 1	232, 267 ng/L effluent from a WWTP	RO RO	1 1	UTC-60 LF10	Flat sheet Flat sheet	55–96% 97–100%	[36] [36]
	Mefenamic acid	I	34, 42 ng/L effluent from a WWTP	L.	I	UTC-60	Flat sheet	55-94%	36
	Nanroxen	- Aromatic nolvamide	5–18 no /L surface water	NF NF	- 1 nm	LF10 NF-90	Flat sheet Flat sheet	87-100% 94%	[36] [30]
				ΗĽ	1.3 nm	NF-200	Flat sheet	80%	30
		Thin film composite with aromatic polyamide coated with an ultrathin polyimide	2-<150 ng/L surface water	NF		ESNA	Flat sheet	6%	[31]
			24 ng/L Effluent from a WWTP	UF	I	1	I	12.5%	[32]
		- Polvethersulfone	91, 118 ng/L Saline ground water 384 ng/L effluent from a WWTP	CF L	1 1	- PT	- Flat sheet	78.8%< 47%	32
		Made of thin film polyamide		E NE	I	Н	Flat sheet	80% 18.80%	34
		Made or thin him composite, with a cross-inked aromatic polyamide top layer	1.13 mg/ L synmeuc	CF.	I	CP	riat sneet	10-00%	٧
	Dhomacotin	Made of cellulose acetate	5-18 to /1 strategic to a state	NF		CK NF-90	Flat sheet	74–84% 71%	[6]
	TIGHACCHI	An Ontaria Portyaninge	O-TO hg/ r satirate water	RF	1.3 nm	NF-200	Flat sheet	40%	8 8
		Made of thin film composite, with a cross-linked aromatic	0.896 mg/L synthetic	UF	I	GK	Flat sheet	6-14%	6
		Made of cellulose acetate		NF	I	CK	Flat sheet	3-5%	[6]
	Phenazone (antipyrine)	Aromatic polyamide	5–18 μg/L surface water	NF NF	1 nm 1 3 nm	NF-90 NE-200	Flat sheet Flat sheet	92% 75%	30]
		Thin film composite membranes with a cross-linked	2–100 μg/L surface water	NF	-	Trisep TS-80	-	94%	33
		aromatic polyamide top layer Polvethersulfone	140 ng/L effluent from a WWTP	Ϋ́ς Ν		Desal HL PT	- Flat sheet	84% 54%	33 34
		Made of thin film polyamide		NF	I	HL	Flat sheet	82%	34]
Anthelmintics	Febantel	Polyamide	10 mg/L synthetic (using Milli-Q	NF	0.79 nm	NF90	Flat sheet	> %6.66-66	[39]
			water, model water, tap water, and real pharmaceutical wastewater)	INF	00.1 /2/.0 nm	INF2/U	riat sneet	> 0% 6.66-10	60
			a	NF	0.72, 1.56 nm	NF	Flat sheet	94-99.9% <	[39]
				NF	0.73, 1.56	HL	Flat sheet	92-99.9%<	[39]
				RO	nm 0.78 nm	LFC1	Flat sheet	>%6.66-86	39
				RO	0.88 nm	XLE	Flat sheet	>%6.66-66	[39]
Antibiotics	Amoxicillin	Made of polyethersulfone Mada of thin film commonity with a crossedimbed aroundie	1.83 mg/L synthetic	UF LIF	I	PT PT	Flat sheet	9% 13_40%	6
		Made of thin him composite, with a cross-miked aromanc polyamide top layer		5	I	25	riat sneet	%_0 1_	٧
		Made of cellulose acetate Made of thin film nolvamide		NF		CK	Flat sheet Flat sheet	86–98% 97%	60
			500 μg/L synthetic	E E		SR2	Flat sheet	62-64.9%	53
		- Modified polyethersulfone by addition of different	20, 400 mg/L synthetic	NF	I	SNO I	Flat sheet Flat sheet	15-99%	<u>v</u> 6
	Cephalexin	concentrations of hydrophilic surfactant -	500 μg/L synthetic	NF		SR2	Flat sheet	48.4-100%	[29]
	٩	1		NF		SR3	Flat sheet	21.2–98%	[29]
		Polyamide-imide A novel thin film composite membrane fabricated by	200 mg/L synthetic	E E	2.82 nm -	1 1	Hollow fiber Hollow fiber	<20% 77–95%	[4] [4]
		interfacial polymerization of hyperbranched polyethyleneimine and isophthaloyl chloride							
	Ciprofloxacin	Polyethersulfone Made of thin film polyamide	229 ng/L effluent from a WWTP	UF NF	1 1	PT HL	Flat sheet Flat sheet	65% Not	[34] [34]
		Polvamide		NF	mn 97 ()	NP90	Flat sheet	Determined 99_99 9% <	30
				NF		NF270	Flat sheet	79-99.9% <	[39]
								(Contin	(pən

Continued)	
<u> </u>	
-	
2	
2	
le 2	
le 2	
ble 2	
able 2	
able 2	

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	Removal efficiency range	Refs.
			10 mg/L synthetic (using Milli-Q	NF	0.72, 1.56 nm	NF	Flat sheet	91–99.9%<	[39]
			real pharmaceutical wastewater)	NF	0.73, 1.56	HL	Flat sheet	94-99.9%<	[39]
				RO	nm 0.78 nm	LFC1	Flat sheet	>%6.66-86	[39]
	Fnrofloxacin	1	10 mg/L synthetic	RO N	0.88 nm 0.67 nm	XLE HR95	Flat sheet -	98–99.9%< 98.8–100%	[39] [42]
			to the particular	ß	0.67 nm	XLE		97.2-100%	[42]
		I		RO	0.82 nm	TFC-S NITEO	I	100 99.1 100 <i>0</i> 7	[42]
				NF	1.02 nm	HL Desal	1 1	99.4–100%	[42]
	Erythromycin-H ₂ O	Thin film composite with sulfonated polyethersulfone	2–<150 ng/L surface water	UF		GM	Flat sheet	63%	[31]
		coated with an uttation polyimude Thin film composite with aromaticpolyamide coated with		NF		ESNA	Flat sheet	56%	[31]
		an ultrathin pôlyimide							
	I evamicole		289 ng/L Effluent from a WWTP 10 mg/L synthetic	PD P	- 0.67 nm	- HR95	1 1	15.2% 96.8%	[32]
		-	anomale a low or	RO	0.67 nm	XLE	I	99.4%	[42]
		I		NF NF	0.82 nm	NP90	I	99.9%	[42]
	Metronidazole	- Aromatic polyamide	5–18 μg/L surface water	NF	1 nm	NF-90	- Flat sheet	71%	[<u>3</u> 0]
				Ľ.	1.3 nm	NF-200	Flat sheet	45%	[30]
		Polyethersultone Made of thin film nolvamide	135 ng/L effluent from a WWIP	NF NF		PT HI	Flat sheet Flat sheet	73% 81%	34
	Ofloxacin	Polyethersulfone	285 ng/L effluent from a WWTP	GF E		PT	Flat sheet	Not	[34]
		Mada of thin film nolvamida		NF	1	Н	Elat choot	Determined 95%	[34]
	Oxytetracycline		10 mg/L synthetic	RO	0.67 nm	HR95PP		99.3–100%	5
		1 1		S Ca	0.67 nm 0.87 nm	XLE TEC_S	1 1	99.2–100% 100%	[42] [42]
				2 H	0.82 nm	NP90	1 1	99–100%	[42]
	- - -	1		NF S	1.02 nm	HL Desal	I	99.2-100%	[42]
	raziquantei	1 1	10 mg/ L-synneuc	N N N N	0.67 nm	XLE	1 1	99.6-100%	[42]
		1		RO	0.82 nm	TFC-S	I	100% ag 100%	[42]
		1 1		NF	0.62 nm 1.02 nm	NF90 HL Desal	1 1	98.4–100%	[42] [42]
	Sulfadiazine	1	10 mg/L-synthetic	RO	0.67 nm	HR95PP	I	99.4-100%	[42]
		1 1		ON CN	0.67 nm 0.82 nm	XLE TFC-S	1 1	99.4-100% 100%	[42] [42]
		1		NF	0.82 nm	NF90	I	99.4-100%	[42]
		1		NF	1.02 nm	HL Desal	I	85.6-90.3%	[42]
	Sulfaguanidme		10 mg/ L-synthetic	Q Q	0.67 nm 0.67 nm	НК95РР XI F	1 1	98.9-100% 99.3-100%	[42] [42]
		-		RO	0.82 nm	TFC-S	I	100%	[42]
		1		NF	0.82 nm 1 02 nm	NP90 HI Decel	1	99.1-100%	[42]
	Sulfamethazine	- Cellulose acetate	38.65 mø/L-svnthetic	NF NF		nt Desal -	- Flat sheet	34.9-07.5% 85.2-86.2%	[42]
		Cellulose acetate membranes with 3 wt% charged surface		NF	I	I	Flat sheet	84.1-87.5%	[37]
		modifying macromolecule additive synthesized by reactive diisocvanate and dihvdroxy naphthalene disulfonate							
		Collulose acetate membranes with a tailor made		NF	I	I	Flat sheet	77.3-78.6%	[37]
		hydrophilic surface modifying macromolecule additive manufactured incorporating poly(ethylene glycol) as end							
		groups Cellulose acetate membrane developed by incorporating	142, 8053 ng/L influent of a WTP	NF	I	I	Flat sheet	68.7-72.4%	[38]
		charged surface mounymy macromoremes		NF	1	NF-270	I	88.4-89%	[38]
		I	10 mg/L synthetic	RO	0.67 nm	HR95PP VI F	I	99.3–100%	[42]
		1		PA N	U.07 IIII	ALE	1	%001-1.66	[74]
								(Contin	(pəni

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

(pan	ncn
Contin	
<u>_</u>	1
2	
Ē	3

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	Removal efficiency range	Refs.
	Sulfamethoxazole	- - Aromatic polyamide	5–18 µg/L surface water	RO NF NF NF	0.82 nm 0.82 nm 1.02 nm 1 nm	TFC-S NF90 HL Desal NF-90 NF-200	- - Hat sheet Hat sheet	100% 99.4–100% 87.4–96.3% 95%	[42] [42] [30] [30]
		Thin film composite with sulfonated polyethersulfone coated with an ultrathin polyimide Thin film composite with anomaticpolyamide coated with	2-<150 ng/L surface water	L L		GM ESNA	Flat sheet Flat sheet	2% 32%	[31]
		an ultrathin polyimide Polyethersulfone Made of thin film polyamide	66 ng/L Effluent from a WWTP 363 ng/L effluent from a WWTP	NF UF	1 1 1	- PT	- Flat sheet Flat sheet	4.5% 87% 95%	[32] [34]
		Polyamide	10 mg/L synthetic (using Milli-Q water, model water, tap water, and real pharmaceutical wastewater)	NF NF	0.79 nm 0.72, 1.56 nm 0.72 1 56	NF90 NF270 NF	Flat sheet Flat sheet Flat sheet	96–99.9% < 15.4–87% 29.4–89.2%	[39]
				NF	nm 0.73, 1.56	Η	Flat sheet	24.7–91%	[39]
	Tetracycline		500 μg/L synthetic	RO RO	nm 0.78 nm 0.88 nm	LFC1 XLE SR2	Flat sheet Flat sheet Flat sheet	95–99.9% < 88–98.9% 74–97%	[39] [29]
	Trimethoprim	 - - In tilm composite with sulfonated polyethersulfone coated with an ultrathin polyimide - Thin film composite with aromaticpolyamide coated with 	2-<150 ng/L surface water	h ci k		SK3 GM ESNA	Flat sheet Flat sheet Flat sheet	63-100% 22% 56%	[31] [31]
		an ultrathin polyimide - Polyiothaeultone	138 ng/L Effluent from a WWTP 265, 278 ng/L Saline ground water 261 ng/L Saline ground a WWTP	UF RO LE		1 I Å	— Пағ сһееғ	18.1% 90.6% < 74%	[32] [32]
		Made of thin film polyamide 	10 mg/L synthetic	R N NF R N NF	– 0.67 nm 0.67 nm 0.82 nm	HL HR95PP XLE TFC-S	Flat sheet - -	86% 98.2–100% 98.6–100%	[34] [42] [42]
		_ _ Polyamide	10 mg/L synthetic (using Milli-Q	N N N	0.79 nm 0.79 nm	NF90 HL Desal NF90	- - Flat sheet	99.2–100% 88.8–100% 97.9–99.9%	[42] [39] [39]
			water, model water, tap water, and real pharmaceutical wastewater)	NF	0.72, 1.56	NF270	Flat sheet	< 32–86.9%	[39]
				NF	nm 0.72, 1.56 nm	NF	Flat sheet	64–94%	[39]
				NF	0.73, 1.56 nm	HL	Flat sheet	65.6-89%	[39]
				RO RO	0.78 nm 0.88 nm	LFC1 XLE	Flat sheet Flat sheet	96–99.3% 90–99.2%	[39]
Antidepressants	Fluoxetine	1 1	45 ng/L Effluent from a WWTP 263, 564 ng/L Saline ground water	UF RO	1 1	1 1	1 1	68.9% 90.5% <	[32] [32]
Antiepileptics	Carbamazepine	Aromatic polyamide	5–18 μg/L surface water	NF	1 nm	NF-90	Flat sheet	%06	[30]
		Thin film composite with sulfonated polyethersulfone coated with an ultrathin polyimide	2-<150 ng/L-surface water	UF	ши с.1	GM GM	Flat sheet Flat sheet	02% 2%	31]
		Thin film composite with aromaticpolyamide coated with an ultrathin polyimide		NF		ESNA	Flat sheet	47%	[31]
		- Thin film composite membranes with a cross-linked aromatic polyamide top layer	191 ng/L Effluent from a WWTP 2–25 µg/L surface water	NF NF	1 1 1	- Trisep TS-80 Desal HL	1 1 1	15.7% 96% 88%	[32] [33] [33]
		Polyethersulfone Made of thin film polyamide	169 ng/L effluent from a WWTP	NF	1.1	PT HL	Flat sheet Flat sheet	56% 81%	[34] [34]
								(Contin	(pən

_
led
tim
Con
\exists
2
e,
6
<u>'</u>

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	Removal efficiency range	Refs.
		 - Polyethersulfone Pollulose acetate Cellulose acetate Cellulose acetate membranes with 3 wt% charged surface modifying macromolecule additive synthesized by reactive 	116, 136 ng/L effluent from a WWTP 0.025-0.1 μg/L influent of a DWTP 26.25 mg/L synthetic	RO NF NF NF		UTC-60 LF10 FM NP010 -	Flat sheet Flat sheet Flat sheet Flat sheet Flat sheet	20–99% 85–100% 10–92% 60.1–60.2% 64–65.6%	[36] [35] [37] [37]
		actionsorgants and dityrycry naphratene disultonate Cellulose acetate membranes with a tailor made hydrophilic surface modifying macromolecule additive munufactured incorporating poly(ethylene glycol) as end		NF	I		Flat sheet	46.6–51.4%	[37]
		Groups Groups charged surface modifying macromolecules	75–8053 ng/L-influent of a WTP	NF	I	1	Flat sheet	15.9–34%	[38]
			2-1300 μg/L synthetic 0.8 mg/L synthetic	R NF R NF R	1 1 1 1	NF-270 NF270 BW SW	- Flat sheet Flat sheet Flat sheet	53.6-76.5% 44-95% 98-100% 98-100%	38 [43] [43] [38]
	Dilantin		130 ng/L Effluent from a WWTP 239, 259 ng/L Saline ground water	252			Flat sneet	24.6% >90%	[45] [32] [32]
	Primidone	Polyethersultone Thin film polyamide -	117 ng/L effluent from a WWTP 45, 55 ng/L effluent from a WWTP	NF NF	1 1 1 1	PT HL UTC-60 LF10	Flat sheet Flat sheet Flat sheet Flat sheet	25% 72% 86–99%	[34] [34] [36]
Antineoplastics	Cyclophosphamide	Thin film composite membranes with a cross-linked aromatic polyamide top layer	2–100 µg/L surface water	NF NF	1 1	Trisep TS-80 Desal HL	1 1	$\frac{100\%}{94\%}$	[33] [33]
Anxiolytic sedatives hypnotics and antipsychotics	Diazepam	Thin film composite with sulfonated polyethersulfone coated with an ultrathin polyimide Thin film composite with aromaticpolyamide coated with	2-≺150 ng/L surface water	UF NF		GM ESNA	Flat sheet Flat sheet	4% 50%	[31]
	Meprobamate	 an ultratinn polymide Thin film composite with aromaticpolyamide coated with an ultrathin polyimide 	58 ng/L Effluent from a WWTP 2-<150 ng/L surface water 561 ng/L Effluent from a WWTP	UF UF	1 1	ESNA	- Flat sheet -	84% 37% 5.7%	[32] [31] [32]
Bronchodilators and anti- asthma Druss	Caffeine	Aromatic polyamide	5–18 μg/L synthetic	NF	1 nm 1.3 nm	NF-90 NF-200	Flat sheet Flat sheet	91% 67%	[30]
		Thin film composite with sulfonated polyethersulfone coated with an ultrathin polyimide Thin film composite with aromaticpolyamide coated with an ultrathin polyimide	2-<150 ng/L-surface water	NF UF		GM ESNA	Flat sheet Flat sheet		[31]
	Clenbuterol Salbutamol Terbutaline	Thin film composite membranes with a cross-linked aromatic polyamide top layer Thin film composite membranes with a cross-linked aromatic polyamide top layer Thin film composite membranes with a cross-linked aromatic polyamide top layer	85 ng/L Effluent from a WWTP 196, 311 ng/L Saline ground water 2-2.5 µg/L surface water 2-3 µg/L surface water 2-40 µg/L surface water	UF N N N N N N N N N N N N N N N N N N N		- Trisep TS-80 Desal HL Trisep TS-80 Desal HL Trisep TS-80 Desal HL	1 1 1 1 1 1 1 1 1	7% 83.3% 90% 92% 94% 87–93%	[32] [33] [33] [33] [33] [33]
Cardiovascular drugs	Atenolol	Thin film composite membranes with a cross-linked aromatic polyamide top layer Devyethersultone Made of thin film nolvamide	2–50 μg/L surface water 1435 ng/L effluent from a WWTP	N NF NF NF	1 1 1 1	Trisep TS-80 Desal HL PT HI.	- - Flat sheet Flat sheet	91% 88–95% 11% 76%	[33] [34] [34]
	Bezafibrate Clofibric acid	Thin film composite membranes with a cross-linked aromatic polyamide top layer Polyethersultione Made of thin film polyamide	2–50 μg/L surface water 288 ng/L effluent from a WWTP 2–100 μg/L surface water		1 1 1 1 1	Trisep TS-80 Desal HL PT HL Trisep TS-80	- - Flat sheet - -	100% 99–100% 91% 100%	[33] [34] [33]
			2					(Contin	(pən)

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

60	1
1111	111
144	1771
Ĉ	
с С	1
0	μ
_	
2	
122	

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	Removal efficiency range	Refs.
		Thin film composite membranes with a cross-linked aromatic rolvanide ton laver		NF	I	Desal HL	I	%66	[33]
			32, 80 ng/L effluent from a WWTP	NF	I	UTC-60	Flat sheet	56-90%	[36]
	Fenofibric acid	- Polvethersulfone	180 ng/L effluent from a WWTP	22 E	1 1	PT PT	Flat sheet Flat sheet	78-100% 86%	36 34
		Made of thin film polyamide	ć	NF	I	HL	Flat sheet	88%	34
	Furosemide	Polyethersulfone	451 ng/L effluent from a WWTP	E E	I	PT	Flat sheet	70%	[34]
	Gemfibrozil	Aromatic polyamide	5–18 μg/L surface water	E L	1 nm	NF-90	Flat sheet	95%	5 8
		Thin film composite with aromaticpolyamide coated with	2-<150 ng/L surface water	ZF Z	1.3 nm	NF-200 ESNA	Flat sheet Flat sheet	90% 45%	[<u>3</u> 1]
		an ultrathin polyimide -	82 ng/L Effluent from a WWTP	UF	I	I	I	No	[32]
			230-234 n.c./1 Solino around unter	Ođ	I		I	Elimination so 1%~/	[33]
		Thin film composite membranes with a cross-linked	2-100 µg/L surface water	2 E		Trisep TS-80	1 1	100%	33
		aromatic polyamide top layer Polyethersulfone	1280 ng/L effluent from a WWTP	LIF NF	1 1	Desal HL PT	- Flat sheet	99–100% 59%	<u>8</u>
		Made of thin film polyamide	1280 ng/L effluent from a WWTP	E E	I	HL	Flat sheet	85%	34
	Hydrochlorothiazide	Polyethersultone Made of thin film polyamide	2358 ng/L effluent from a WW1P	PF F	1 1	HL	Flat sheet Flat sheet	44% 56%	34
	Metoprolol	Thin film composite membranes with a cross-linked	2-80 μg/L surface water	NF	I	Trisep TS-80	I	90% an ai	33]
		aromatic polyanue top tayer Made of thin film composite, with a cross-linked aromatic	1.34 mg/L-synthetic	CF CF	1 1	GK GK	- Flat sheet	7074 % 14-60%	6
		polyamuce top layer Made of cellulose acetate		NF	I	CK	Flat sheet	83-84%	[6]
	Pentoxifylline	Thin film composite with sulfonated polyethersulfone coated with an ultrathin polyimide	2-<150 ng/L surface water	UF		GM	Flat sheet	4%	[31]
		Thin film composite with aromaticpolyamide coated with		NF		ESNA	Flat sheet	38%	[31]
			49 ng/L Effluent from a WWTP	UF	I	1	I	10.2%	32
			169, 458 ng/L Saline ground water	ß	I		I	90.2%	32
		Thin film composite membraneswith a cross-linked aromatic volvamide ton laver	2-100 μg/L surface water 2-100 μσ/L surface water	H HN	1 1	Trisep TS-80 Desal HI	1 1	99% 95%	33
	Pindolol	Thin film composite membranes with a cross-linked	2-50 μg/L surface water	Ë	I	Trisep TS-80	I	93%	33
	Duccession	aromatic polyamide top layer	2–50 µg/L surface water	NF E	I	Desal HL pr	- Elat choot	74–82% 7200	33
	LIAVASIALUI	r orgentersturote Made of thin film polyamide		NF C	1 1	HL	Flat sheet	95%	5
	Propranolol	Thin film composite membranes with a cross-linked	2–100 μg/L surface water	L'	I	Trisep TS-80	I	87%	33
	Sotalol	aromatic polyamide top layer Thin film commosite membranes with a cross-linked	2-2 5 us /1 surface water	NF		Desal HL Trisen TS-80	1 1	75-88% 03%	5
		aromatic polyamide top layer		NF	I	Desal HL	I	80%	[33]
Contrast media	Diatrizoate	I	0.7, 4 mg/L synthetic	NF		NF90	Flat sheet	97–98%	[43]
		1	0.6, 1 mg/L synthetic	PF NF		NF270	Flat sheet	96–97%	<u></u>
		1 1	0.8 mg/L synthetic 0.8 mg/L synthetic	2 2 2 2		SW	Flat sheet Flat sheet	100%	5 43
		1	0.7 mg/L synthetic	RO		XLE	Flat sheet	%66-96	43
	Iopamidol	Polyethersulfone	2831 ng/L effluent from a WWTP	UF	I	ΡΤ	Flat sheet	Not Determined	[34]
		Thin film polyamide		NF	I	ΗL	Flat sheet	64%	[34]
	Iopromide	I hun him composite with sulfonated polyethersulfone coated with an ultrathin polyimide	2-<150 ng/L surface water	UF-		GM	Flat sheet	39%	31
		Thin film composite with aromaticpolyamide coated with an ultrathin nolvimide		NF		ESNA	Flat sheet	57%	[31]
			75 ng/L Effluent from a WWTP	UF	I	1	I	No Elimination	[32]
		- Polyethersulfone	125, 165 ng/L Saline ground water 2946 ng/L effluent from a WWTP	RO UF	1 1	- PT	- Flat sheet	84.4% Not	[32] [34]
		:	8					Determined	
		Thin film polyamide		NF	I	HL	Flat sheet	86%	34
								(Contin	(pən

Table 2 (Continued)									
Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Configuration	Removal efficiency range	Refs.
Corticosteroids	Dexamethasone	Polyamide	10 mg/L synthetic (using Milli-Q water, model water, tap water, and	NF	0.79 nm 0.72, 1.56	NF90 NF270	Flat sheet Flat sheet	99–99.4% 64–99.9%<	[39]
			real pharmaceutical wastewater)	NF	nm 0.72, 1.56	NF	Flat sheet	>%6.66-68	[39]
				NF	nm 0.73, 1.56	HL	Flat sheet	>%6.66–96	[39]
				RO RO	nm 0.78 nm 0.88 nm	LFC1 XLE	Flat sheet Flat sheet	97–99.2%< 96–99.9%<	[39]
Disinfectants and preservatives	Triclosan	Thin film composite with sulfonated polyethersulfone	2-<150 ng/L-surface water	UF		GM	Flat sheet	86%	[31]
		coated with an ultrathin polyimide Thin film composite with aromaticpolyamide coated with		NF		ESNA	Flat sheet	%06	[31]
		an ultrathin polymide 	32 ng/L Effluent from a WWTP 166, 246 ng/L Saline ground water	UF RO	1 1	1 1	1 1	87.5% 89.8%<	[32]
Endocrine disruptors	Bisphenol A	Aromatic polyamide	5-18 μg/L surface water	NF NF	1 nm 1.3 nm	NF-90 NF-200	Flat sheet Flat sheet	89% 57%	[30]
Gastrointestinal drugs	Ranitidine	Polyethersulfone Made of thin film polyamide	225 ng/L effluent from a WWTP	UF NF		PT HL	Flat sheet Flat sheet	28% 75%	[34] [34]
Hormones and their	Androstenedione	Thin film composite with sulfonated polyethersulfone	2-<150 ng/L surface water	UF		GM	Flat sheet	32%	[31]
modulators and estrogens		coated with an ultrathin polyimide Thin film composite with aromaticpolyamide coated with an ultrathin polyimide		NF		ESNA	Flat sheet	56%	[31]
			77 ng/L Effluent from a WWTP 247-284 ng/L Saline ground water	UF	1 1		1 1	71% 91%~	[32]
	17-ethinyl-estradiol	- Aromatic polyamide	5-18 μg/L surface water	NF N	1 nm	NF-90	Elat sheet	91% 91%	302
	17ß-estradiol	Aromatic polyamide	5–18 μg/L surface water	Y HZ HZ	1 nm 1 nm 1 2 nm	NF-200 NF-90	Flat sheet	96% 96%	000
	Estradiol	1	87 ng/L Effluent from a WWTP	7 F S	-		-	04.% 98.8%<	32
		- Thin film composite with sulfonated polyethersulfone	27, 125 ng/L Saline ground water 2-<150 ng/L surface water	C F	1	GM	- Flat sheet	80%< 2%	[32] [31]
		coated with an ultrathun polynmde Thin film composite with aromaticpolyamide coated with an ultrathin molynmide		NF		ESNA	Flat sheet	39%	[31]
	Estriol	Thin film composite with aromaticpolyamide coated with an ultrahin nolvinide	2-<150 ng/L-surface water	NF		ESNA	Flat sheet	32%	[31]
			108 ng/L Effluent from a WWTP 128 ng/L Saline ground water	UF RO		1 1	1 1	40.7% 80.5% <	[32] [32]
	Estrone	Aromatic polyamide	5-18 µg/L surface water	NF NF	1 nm 13 nm	NF-90 NF-200	Flat sheet Flat sheet	93% 81%	[30]
		Thin film composite with sulfonated polyethersulfone	2–<150 ng/L surface water	CF .		GM	Flat sheet	45%	[31]
		coared with an untariant polymide Thin film composite with aromaticpolyamide coated with an ultrathin polymide		NF		ESNA	Flat sheet	41%	[31]
	Ethinvlestradiol	- - Thin film composite with sulfonated polyethersulfone	98 ng/L Effluent from a WWTP 83, 167 ng/L Saline ground water 2-<150 ng/L surface water	UF RO UF	1 1	UM U	- - Flat sheet	90.8% 85% < 33%	[32] [31]
		coated with an ultrathin polyimide Thin film composite with aromaticpolyamide coated with	20	NF		ESNA	Flat sheet	59%	[31]
		an utrathin polyimide -	78 ng/L Effluent from a WWTP	UF	I	I	I	98.7%	[32]
	Progesterone	- Thin film composite with sulfonated polyethersulfone costed with an ultrathin nolvinide	51, 125 ng/L Saline ground water 2–<150 ng/L surface water	Q L	1	- GM	- Flat sheet	80% < 55%	[32] [31]
		course warn an annaran haifarana		NF		ESNA	Flat sheet	66%	[31]

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

24155

(Continued)

(Continued)	
Table 2	

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Membrane material	Initial concentration-source	Filtration type	Effective pore size	Commercial code	Remo efficie Configuration range	val ncy Refs	
		Thin film composite with aromaticpolyamide coated with an ultrathin polyimide							
		I	64 ng/L Effluent from a WWTP	UF	I	I	- 98.4%	< [32]	
		1	250, 285 ng/L-Saline groundwater	RO	I	I	- 91.2%	< [32]	
	Testosterone	Thin film composite with sulfonated polyethersulfone	2-<150 ng/L surface water	UF		GM	Flat sheet 31%	[31]	1
		coated with an ultrating polyminae Thin film composite with aromaticpolyamide coated with		NF		ESNA	Flat sheet 62%	[31]	. 01
		an uuraunn polymude -	81 ng/L-Effluent from a WWTP	UF	I	I	- 71.6%	[32]	iojiie
Organic solvents	Dioxane	Aromatic polyamide	5–18 μg/L surface water	NF	1 nm	NF-90	Flat sheet 46%	[30]	

Table 3 An overview of MBRs used for the removal of pharmaceuticals, hormones, endocrine disruptors, and their metabolites

Refs.	[46]	[49]	011	[) []	Trc]		[52]		[20]	1		[53]	[49]	[51]			[22]		[52]	[[53]	[54]	Ĩ	[55]	56		[57]		85	D C	[59]	[09]		[61]	[62]	[58]		[12]	[49]	
Removal details	100% (SRT: 1 d) 100% (SPT: 15 and 30 d)	89–90% (SRT: 8, 20, and	80 d)	>99.9%	efficiency: 99.6% (The	SRT was infinite.)	Average removal	efficiency: 99.8% (at	prolonged SKI)	efficiency: 99.9% (at	prolonged SRT)	>93%	10-00% (NAL: 8, 20, and 80 d)	Average removal	efficiency: 87.4% (The	SRT was infinite.)	Average removal	emctency: 00.0% (at prolonged SRT)	Average removal	efficiency: 62.6% (at	prolonged SRT)	86%	It could not be removed.	(SKT: 72 d)	14-98%	Average removal	efficiency: 27% (SKI: 88 d)	(<20%) <removal<60%< td=""><td>(SRT: 1, 5, 13 and approx.</td><td>Z6 d) Averace removal</td><td>efficiency: 58%</td><td>15-35% (SRT: 16-75 d)</td><td>51–90%<% (SRT increased</td><td>with time of operation</td><td>(286 d)) 21%</td><td>0-50% (SRT: 10-55 d)</td><td>Average removal</td><td>efficiency: 83%</td><td>25.8–81.1% (SRT: 15 and</td><td>81-90% (SRT: 8, 20, and</td><td>80 d)</td></removal<60%<>	(SRT: 1, 5, 13 and approx.	Z6 d) Averace removal	efficiency: 58%	15-35% (SRT: 16-75 d)	51–90%<% (SRT increased	with time of operation	(286 d)) 21%	0-50% (SRT: 10-55 d)	Average removal	efficiency: 83%	25.8–81.1% (SRT: 15 and	81-90% (SRT: 8, 20, and	80 d)
НКТ	- 13 h	6 h	Ţ	0 0			15 h		4 0 1	11 7 7		2.5, 5, 24 h	ЧО	I		- L	u ci		7.2 h			2.5, 5, 24 h	24 h		24 h	26 h		24 h		7 10 h	11 01 11	13 h	I		40	7. 12, 28.8, 96 h	7, 10 h		24 h	6 h	
Membrane configuration	Flat sheet Hollow flow	Flat sheet		Flat sheet Flat sheet	TTAL STICCL		Flat sheet		Hollow Show			Hollow fiber	riat sneet	Flat sheet			rlat sheet		Hollow fiber			Hollow fiber	Hollow fiber	11 II 61	Hollow tiber	Tubular		I		Elat choot	1.141 2116 61	1	Flat sheet		Hollow fher		Flat sheet		Flat sheet	Flat sheet	
Initial concentration-source	1000 mg/L 50 no /1 officiant of a STP	0.97 µg/L synthetic	1	100 µg/L model of a WW1F effluent	to hg/ h chinesh of a www.it		9.9 μg/L effluent of a WWTP		0 0 mm / minimum of a two of a D	V. PB/ F CHINCH OF A MM IT		247 ng/L effluent of a STP	0.91 µg/ L synureuc	2.8 μg/L effluent of a WWTP		CHARTER STATES IN THE STATES	1.32 µg/L ertiuent of a WW1P		1.32-9.9 µg/L effluent of a WWTP			663 ng/L effluent of a STP	10 mg/L model of a domestic sewage		100 µg/L synthetic	4526 ng/L model of a municipal wastewater		3190 ng/L effluent of a WWTP		2083 no /1 offiniant of a WW/TP		1000 ng/L effluent of a WWTP	10 μg/L synthetic		50 ma /I affling to f a MIMTD	3250, 4114, 3190 ng/L effluent of a WWTP	455 μg/L effluent of a WWTP		Pharmaceutical process wastewater	0.81 µg/L synthetic	
Reactor type	ELA MBR Submorged	Submerged		- Submorrood	oublinedged		Side-stream		Cido otroom			Side-stream	submergea	Submerged			Side-stream		Side-stream			Side-stream	Side-stream		Submerged	Side-stream		I		Suhmarad	nagrainanc	I	Side-stream		Submarrad	Side-stream	Submerged		Submerged	Submerged	
Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Acetaminophen											Codeine	Diciotenac																								2,4-Dichlorobenzoic acid		etodolac	Fenoprofen	
Therapeutic class	Analgesics, anti- inflammatorics and	antipyretics																																							

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

Therapeutic class	pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Reactor type	Initial concentration-source	Membrane configuration	НКТ	Removal details	Refs.
		Submerged	100 µg/L synthetic	Hollow fiber	24 h	22–99%	[55]
	Ibuprofen	Submerged	1.02 µg/L synthetic	Flat sheet	6 h	80% <removal<100% (srt:<br="">8 20 and 80 d)</removal<100%>	[49]
		Submerged	17.5 µg/L effluent of a WWTP	Flat sheet	I	Average removal	[51]
)	5			efficiency: 99.8% (The	
				-	-	SK1 Was infinite.)	
		Side-Stream	21.7 µg/L etruent of a ww1r	riat sneet	U CI	Average removal efficiency: 99.2% (at prolonged SRT)	[26]
		Side-stream	21.7 μg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal	[52]
						efficiency: 99.5% (at prolonged SRT)	
		Side-stream	158 ng/L effluent of a STP	Hollow fiber	2.5, 5, 24 h	>95%	[53]
		Submerged	10 mg/L model of a domestic sewage	Hollow fiber	24 h	98% (SRT: 72 d)	[54]
		Submerged	100 µg/L synthetic	Hollow fiber	24 h	34–100%	[55]
		Side-stream	2595 ng/L model of a municipal wastewater	Tubular	26 h	Average removal efficiency: 99% (SRT: 88	[56]
			$a_{111}a_{1111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{11111}a_{111111}a_{111111}a_{111111}a_{1111111}a_{1111111}a_{11111111}a_{1111111111$			u) 90011 -10007	50
		I	2440 ng/ le enneen of a wwith	I	11 47	00.%s.retitiovat.s.100.% (SRT: 1, 5, 13 and approx. 26 d)	[/6]
		Submerged	6725 µg/L effluent of a WWTP	Flat sheet	7, 10 h	Average removal	[58]
		I	1100 ng/L effluent of a WWTP	1	13 h	90–95% (SRT: 16–75 d)	[59]
		Side-stream	10 µg/L synthetic	Flat sheet		51–90%<% (SRT increased	[09]
			ò			with time of operation	
						((p 982)	
		Submerged	470 ng/L effluent of a WWTP 1480 2570 2448 mg/L offluent of a WWTPD	Hollow fiber	9 h 17 78 8 06 h	96% 07 00% (CDT: 10 55 4)	[61]
	التعطيه منابع مسحا فعال	Currented III	0.15/1		17, 20.0, 70 11	1000000000000000000000000000000000000	[07]
	пионенисли	nagranne	0.13 hg/L emuent of a wwir	LIAL STREET	I	Average removat efficiency: 46.6% (The SRT was infinite.)	10
		Side-stream	0.875 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal	[52]
						efficiency: 41.4% (At prolonged SRT)	
		Side-stream	0.875 us /L efflitent of a WWTP	Hollow fiber	7.2 h	Average removal	[22]
						efficiency: 39.7% (At prolonged SRT)	[
		Submerged	100 μg/L synthetic	Hollow fiber	24 h	36-90%	[55]
	Ketoprofen	Submerged	50 $\mu g/L$ effluent of a STP	Hollow fiber	9, 13 h	100% (SRT: 15 and 30 d)	[11]
		Submerged	1.07 µg/L synthetic	Flat sheet	6 h	60–91% (SRT: 8, 20, and	[49]
		Submerced	1 & ura/1 - offiniant of a WWWTD	Flat chaot	1	80 d) Average removal	51
		n-9				efficiency: 91.9% (The SRT was infinite.)	
		Side-stream	1.08 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal	[52]
						efficiency: 43.9% (At prolonged SRT)	
		Side-stream	1.08 µg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal	[52]
						efficiency: 44% (At prolonged SRT)	

Removed

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

(Continued)

Table 3 (Continued)

Refs.	[51]	[52]	[52]	[61] [11]	[49]	[51]	[52]	[52]	[53]	[54]	[55]	[56]		[59]	[09]	3	[61]	[49]	[51]	[52]		[52]	[55]	[56]
Removal details	[61] Average removal efficiency: 74.8% (The	SRT was infinite.) Average removal efficiency: 40.5% (At	prolonged SKL) Average removal efficiency: 35.5% (At	Protonged SN1) 76% 60–100% (SRT: 15 and 30	u) 18-26% (SRT: 8, 20, and 80.4)	Average removal efficiency: 99.3% (The SRT was infinite.)	Average removal efficiency: 90.7% (At prolonged SRT)	Average removal efficiency: 91.6% (At prolonged SRT)	->95%	84% (SRT: 72 d)	–2–75% (SRT: 72 d)	Average removal efficiency: 82% (SRT: 88	d)	73–82% (SRT: 16–75 d)	51–90%<% (SRT increased with time of operation	(286 d))	85% About 600 (CDT-100 A)	80 d) 80 d)	Average removal efficiency: 64.6% (The	Average removal efficiency: 64.5% (At	prolonged SRT)	Average removal efficiency: 60.7% (At	5-16%	Average removal efficiency: 89% (SRT: 88 d)
НКТ	94% -	15 h	7.2 h	9 h 9, 13 h	6 h	I	15 h	7.2 h	2.5, 5, 24 h	24 h	24 h	26 h		13 h	I		9 h 91 ć 151 л h	6 h	I	15 h		7.2 h	24 h	26 h
Membrane configuration	9 h Flat sheet	Flat sheet	Hollow fiber	Hollow fiber Hollow fiber	Flat sheet	Flat sheet	Flat sheet	Hollow fiber	Hollow fiber	Hollow fiber	Hollow fiber	Tubular		I	Flat sheet		Hollow tiber	Flat sheet	Flat sheet	Flat sheet		Hollow fiber	Hollow fiber	Tubular
lnitial concentration-source	Hollow fiber 25 ng/L effluent of a WWTP	1.07 µg/L effluent of a WWTP	1.07 μg/L effluent of a WWTP	70 ng/L effluent of a WWTP 50 µg/L effluent of a STP	0.8 μg/L synthetic	11.5 μg/L effluent of a WWTP	0.463 μg/L effluent of a WWTP	0.463 μg/L effluent of a WWTP	278 ng/L effluent of a STP	10 mg/L model of a domestic sewage	100 µg/L synthetic	3780 ng/L model of a municipal wastewater		1050 ng/L effluent of a WWTP	10 µg/L synthetic		140 ng/L ettluent of a WW1P	0.3-2 µg/L synthetic	62 ng/L effluent of a WWTP	0.065 µg/L effluent of a WWTP		0.065 µg/L effluent of a WWTP	100 µg/L synthetic	3400 ng/L model of a municipal wastewater
Reactor type	310 ng/L effluent of a WWTP Submerged	Side-stream	Side-stream	Submerged	Submerged	Submerged	Side-stream	Side-stream	Side-stream	Submerged	Submerged	Side-stream		1	Side-stream	-	Submerged	Submerged	Submerged	Side-stream		Side-stream	Submerged	Side-stream
Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Submerged Mefenamic acid			Naproxen														Phenacetine	Propyphenazone					Salicylic acid
Therapeutic class																								

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

Refs.	[53] [51]		7	[52]	[54] [60]	[56]	[53] [59]	[51]	[52]	[52]	[11] [54]	[59]	[00]	[62] [11]	[51]	[52]	[52]	[53] [54]	[59] [62]	[40]
Removal details	75% Average removal	efficiency: 67.3% (The SRT was infinite.) Avenue commut	efficiency: 43.0% (At prolonged SRT)	Average removal efficiency: 25.2% (At	Protonged SKU) 91% (SRT: 72 d) 71%-almost complete removal (SRT increased with time of operation	Average removal efficiency: 80% (SRT: 88	92% 70–92% (SRT: 16–75 d)	Average removal efficiency: 94.4% (The SRT was infinite.)	Average removal efficiency: 95.2% (At mrolonoed SRT)	Freeze removal Africiency: 91.3% (At	Prototiged 2017 5–85% (SRT: 15 and 30 d) 77%, (SRT: 77 d)	36–60% (SRT: 16–75 d)	71%-aimost complete removal (SRT increased with time of operation	34-100% (SRT: 10-55 d) 30-90% (SRT: 15 and 30	d) Average removal efficiency: 60.5% (The CDT infinite.)	Average removal efficiency: 80.8% (At molonoed SRT)	Average removal efficiency: 78.3% (At molonoed GRT)	52% (SRT: 72 d)	No removal was observed. 61% (SDT: 10-55 d)	01 /0 / TNT: TN 0/ 10
HRT	2.5, 5, 24 h -	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 01	7.2 h	24 h -	26 h	2.5, 5, 24 h 13 h	I	15 h	7.2 h	9, 13 h 24 h	13 h	I	12, 28.8, 96 h 9, 13 h	I	15 h	7.2 h	2.5, 5, 24 h 24 h	13 h 12 28 8 96 h	17, 20,07, 20 11
Membrane configuration	Hollow fiber Flat sheet	Elat choot	1 101 211221	Hollow fiber	Hollow fiber Flat sheet	Tubular	1 1	Flat sheet	Flat sheet	Hollow fiber	Hollow fiber Hollow fiber		Flat sneet	- Hollow fiber	Flat sheet	Flat sheet	Hollow fiber	Hollow fiber Hollow fiber	1	1
Initial concentration-source	259 ng/L effluent of a STP 150 ne/L effluent of a WWTP	0.00 UTUMT c jo two High I/ and C0 O		0.82 µg/L effluent of a WWTP	10 mg/L model of a domestic sewage 10 µg/L synthetic	392 ng/L model of a municipal wastewater	90 ng/L effluent of a STP 1000 ng/L effluent of a WWTP	450 ng/L effluent of a WWTP	10.5 µg/L effluent of a WWTP	10.5 µg/L effluent of a WWTP	50 µg/L effluent of a STP 10 mº/L model of a domestic sewace	300 ng/L effluent of a WWTP	10 µg/L synthetic	26, 64, 117 ng/L effluent of a WWTP 50 µg/L effluent of a STP	800 ng/L effluent of a WWTP	0.093 µg/L effluent of a WWTP	0.093 µg/L effluent of a WWTP	259 ng/L effluent of a STP 10 mg/L model of a domestic sewage	1350 ng/L effluent of a WWTP 145 no.17 offluent of a WWTP	140 IIS/ P ATTACTIC OF a MALLET
Reactor type	Side-stream Submerged	Cido ettero	7146-21164111	Side-stream	Submerged Side-stream	Side-stream	1 1	Submerged	Side-stream	Side-stream	Submerged Submerged	-	Side-stream	Side-stream Submerged	Submerged	Side-stream	Side-stream	Side-stream Submerged	- Sid <u>a-</u> etraam	oluc-outout
Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Clarithromycin Ervthromycin	`				Metronidazole	N4-acetyl- sulfamethoxazole	Ofloxacin			Roxithromycin			Sulfamethoxazole						
Therapeutic class	Antibiotics																			

Table 3 (Continued)

Removed

	pharmaceuticals, hormones, endocrine disruntors, and their						
Therapeutic class	metabolites	Reactor type	Initial concentration-source	Membrane configuration	HRT	Removal details	Refs.
	Trimethoprim	Submerged	50 $\mu g/L$ effluent of a STP	Hollow fiber	9, 13 h	60–100% (SRT: 15 and 30	[11]
		Side-stream	0.204 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 66.7% (At	[52]
		Side-stream	0.204 $\mu g/L$ effluent of a WWTP	Hollow fiber	7.2 h	prolonged SKT) Average removal efficiency: 47.5% (At	[52]
		Submerged Side-stream	10 mg/L model of a domestic sewage 10 mg/L synthetic	Hollow fiber Flat choot	24 h _	prototiged 3A1) 36% (SRT: 72 d) No removal occurred in	[54] [60]
		ые-эцеан	10 µg/L synthetic	Hat sheet	1	two removal occurred in first steps, but it was almost completely removed in last step (SRT increased with time of operation (286 d)).	[ne]
Antidepressants	Amitriptyline	Side-stream	1732 ng/L model of a municipal wastewater	Tubular	26 h	A verage removal efficiency: 97% (SRT: 88 ds)	[56]
	Fluoxetine	I	0.573 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 98% (At prolonged SRT)	[52]
		I	0.573 µg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal efficiency: 98% (At prolonged SRT)	[52]
		Side-stream	20 μg/L synthetic	Flat sheet	I	82–98% (SRT increased with time of operation (286 d))	[09]
	Paroxetine	Submerged	38 ng/L effluent of a WWTP	Flat sheet	I	Average removal efficiency: 89.7% (The SRT was infinite.)	[51]
Antidiabetics	Glibenclamide	Submerged	57 ng/L effluent of a WWTP	Flat sheet	I	A verage removal efficiency: 47.3% (The SRT was infinite.)	[51]
		Side-stream	9.89 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 95.6% (At prolonged SRT)	[52]
		Side-stream	9.89 µg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal efficiency: 82.2% (At prolonged SRT)	[52]
Antiepileptics	Carbamazepine	Submerged	1.13 μg/L synthetic	Hat sheet	6 h	4–8% (SRT: 8, 20, and 80 d)	[49]
		Submerged	240 ng/L effluent of a WWTP	Flat sheet	I	No elimination (The SRT was infinite.)	[51]
		Side-stream	0.156 $\mu g/L$ effluent of a WWTP	Flat sheet	15 h	No elimination (At prolonged SRT)	[52]
		Side-stream	0.156 $\mu g/L$ effluent of a WWTP	Hollow fiber	7.2 h	No elimination (At prolonged SRT)	[52]

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

24161

(Continued)

Therapeutic class	Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Reactor type	Initial concentration-source	Membrane configuration	HRT	Removal details	Refs.
		1	704 ng/L effluent of a WWTP	I	24 h	Removal<20% (SRT: 1, 5,	[57]
		Submerged	1287 µg/L effluent of a WWTP	Flat sheet	7, 10 h	15 and approx. 20 d) Average removal	[58]
		I	1000 ng/L effluent of a WWTP	1	13 h	efficiency: 13% 0–25% (SRT: 16–75 d)	[59]
		Side-stream	20 µg/L synthetic	Flat sheet	1	<20–90% (SRT increased	[09]
						with time of operation (286 d))	
	Primidone	Side-stream Submerged	1850, 1200, 704 ng/L effluent of a WWTP 0.5–2 μg/L municipal wastewater	- Flat sheet	12, 28.8, 96 h 81.6, 151.2 h	0–12% About 60% (SRT>100 d)	[62] [63]
Antihistamins	Loratadine	Side-stream	0.028 µg/L effluent of a WWTP	Flat sheet	15 h	No elimination	[52]
		Side-stream	0.028 µg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal efficiency: 33.5%	[52]
Anxiolytic sedatives	Diazepam	Submerged	20 mg/L model of a domestic sewage	Hollow fiber	24 h	26% (SRT: 72 d)	[54]
nypnoucs and antipsychotics		Side-Stream	20 hg/L synthetic	riat sneet	I	<20-90% (SKI Increased with time of operation (286 d))	[00]
Bronchodilators and anti- asthma Drugs	Caffeine	Submerged	0.87 µg/L synthetic	Flat sheet	6 ћ	82.7–88.5% (SRT: 8, 20, and 80 d)	[49]
Cardiovascular drugs	Atenolol	Submerged	1.5 $\mu g/L$ effluent of a WWTP	Flat sheet	I	Average removal	[51]
)		•	2			efficiency: 65.5% (The SRT was infinite.)	
		Side-stream	2 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 76.7% (At	[52]
						prolonged SRT)	
		Side-stream	2 µg∕L effluent of a WWTP	Hollow fiber	7.2 h	Average removal efficiency: 69.5% (At	[52]
					;	prolonged SRT)	
	Bezatibrate	Submerged	1.27 μg/L synthetic	Flat sheet	6 ћ	86–92% (5KT: 8, 20, and 80 d)	49
		Submerged	1.75 µg/L effluent of a WWTP	Flat sheet	I	Average removal	[51]
						SRT was infinite.)	
		Side-stream	14.9 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 90.3% (At	[52]
						prolonged SRT)	
		Side-stream	14.9 μg/L effluent of a WWTP	Hollow fiber	7.2 h	Average removal	[52]
						efficiency: 88.2% (At prolonged SRT)	
		I	6840 ng/L effluent of a WWTP	I	24 h	60% <removal<100% (srt:<="" td=""><td>[57]</td></removal<100%>	[57]
		Side-stream	1960, 2014, 6840 ng/L effluent of a WWTP	I	12, 28.8, 96 h	1, 3, 13 and approx. 26 d) 77–96% (SRT: 10–55 d)	[62]
	Clofibric acid	Submerged	0.79 µg/L synthetic	Flat sheet	6 h	4–34% (SRT: 8, 20, and 80 d)	[49]
		Submerged	110 ng/L effluent of a WWTP	Flat sheet	I	Average removal	[51]
						efficiency: 71.8% (The SRT was infinite.)	

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

Refs.	[55] [56]	[58]	[61]	[63] [49]	[51]		[52]	[52]	[55]	[56]	[51]		[52]	[52]	[51]	[20]	70	[52]		[49]	[51]			40	57	[[52]	inued)
Removal details	-2-40% Average removal efficiency: 82% (SRT: 88	u) Average removal efficiency: 54%	85%	About 60% (SKI>100 d) 31–88% (SRT: 8, 20, and	80 d) Average removal	efficiency: 89.6% (The SRT was infinite.)	Average removal efficiency: 42.2% (At molon.cod SRT)	Average removal efficiency: 32.5% (At	protonged SK1) -20-98%	Average removal efficiency: 97% (SRT: 88	u) Average removal efficiency: 66.3% (The	SRT was infinite.)	No elimination (At	No elimination (At	Average removal efficiency: 58.7% (The	SKI was infinite.)	efficiency: 44.2% (At	prolonged SRT) Average removal	efficiency: 29.5% (At	33–91% (SRT: 8, 20, and	80 d) Average removal	efficiency: 90.8% (The	SRT was infinite.)	efficiency: 86.1% (At	prolonged SRT) Average removal	efficiency: 83.1% (At	protoce and	(Cont
HRT	24 h 26 h	7, 10 h	9 h	81.6, 151.2 h 6 h	I		15 h	7.2 h	24 h	26 h	I		15 h	7.2 h	I	1	11 61	7.2 h		6 h	I		- - - -	H CI	7.2 h		15 h	
Membrane configuration	Hollow fiber Tubular	Flat sheet	Hollow fiber	Flat sheet Flat sheet	Flat sheet		Flat sheet	Hollow fiber	Hollow fiber	Tubular	Flat sheet		Flat sheet	Hollow fiber	Flat sheet	Ellat aboot	Liat Street	Hollow fiber		Flat sheet	Flat sheet			1.141 2116 117.1	Hollow fiber		Flat sheet	
lnitial concentration-source	100 µg/L synthetic 2475 ng/L model of a municipal wastewater	92 $\mu g/L$ effluent of a WWTP	35 ng/L effluent of a WWTP	0.5-2 μg/L municipal wastewater 0.83 μg/L synthetic	3.8 µg/L effluent of a WWTP		3.08 µg/L effluent of a WWTP	3.08 µg/L effluent of a WWTP	100 µg/L synthetic	2376 ng/L model of a municipal wastewater	6.4 µg/L effluent of a WWTP		$2.74 \ \mu g/L$ effluent of a WWTP	2.74 μ g/L effluent of a WWTP	350 ng/L effluent of a WWTP	$0.020 \dots 10^{-1} \longrightarrow 0.020 \dots 0.020$	0.007 pg/ L CILINEILL 01 & WW IF	0.039 µg/L effluent of a WWTP)	$1.04 \ \mu g/L$ synthetic	230 no/L efficient of a WWTP		CHARTER - 9- 1		0.886 us /I affluent of a WWATP		0.292 µg/L effluent of a WWTP	
Reactor type	Submerged Side-stream	Submerged	Submerged	Submerged Submerged	Submerged		Side-stream	Side-stream	Submerged	Side-stream	Submerged		Side-stream	Side-stream	Submerged	Cido otroom	one-su calli	Side-stream		Submerged	Suhmerced			ome-on call	Side-stream		Side-stream	
Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites				Gemfibrozil							Hydrochlorothiazide				Metoprolol					Pentoxifylline	Pravastatin						Propranolol	
Therapeutic class																												

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

	Removed pharmaceuticals, hormones, endocrine disruntors, and their						
Therapeutic class	metabolites	Reactor type	Initial concentration-source	Membrane configuration	HRT	Removal details	Refs.
Endocrine disruptors	Benzophenone	Submerged Side-stream	100 μg/L synthetic 3025 ng/L model of a municipal wastewater	Hollow fiber Tubular	24 h 26 h	61–80% Average removal	[55] [56]
						efficiency: 98% (SRT: 88 d)	
	Bisphenol A	Submerged	100 µg/L synthetic 2151 ng/L effluent of a WWTP	Hollow fiber -	24 h 24 h	54–99% 80% <removal<100% (srt:<="" td=""><td>[55] [57]</td></removal<100%>	[55] [57]
	Monthelener	Side-stream	2025, 2376, 2151 ng/L effluent of a WWTP 1021 2572 2120 and 1 offluent of a WWTP	I	12, 28.8, 96 h	1, 5, 13 and approx. 26 d) 93–99% (SRT: 10–55 d) 95–91% (SDT: 10–55 d)	[62]
	Nonylphenol monochovylate	Side-stream	7116, 7299, 4450 ng/L effluent of a WWTP	1 1	12, 28.8, 96 h	97-99% (SRT: 10-55 d)	[62]
	Nonylphenoxyaace Nonylphenoxyacetic acid	Side-stream Side-stream	866, 767, 835 ng/L effluent of a WWTP 724, 737, 429 ng/L effluent of a WWTP	1 1	12, 28.8, 96 h 12, 28.8, 96 h	85–94% (SRT: 10–55 d) No elimination (SRT: 10–	[62] [62]
			Nonylphenoxyethoxyacetic acid	Side-stream	362, 107, 471 ng/L effluent	(n cc	12, 28.8, 04 b
	No elimination (SRT: 10-	[62]			01 a WW11F		11 06
	octylphenol Octylphenol Octylphenol	Side-stream Side-stream	118, 436, 215 ng/L effluent of a WWTP 213, 552, 42 ng/L effluent of a WWTP	1 1	12, 28.8, 96 h 12, 28.8, 96 h	45-100% (SRT: 10-55 d) 91-100% (SRT: 10-55 d)	[62] [62]
Octylphenol diethoxylate	monoetnoxylate Side-stream	36, 55 ng/L effluent of a WWTP	1	12, 28.8, 96 h	58–100% (SRT: 10–55 d)	[62]	
Gastrointestinal drugs	Famotidine	Side-stream	0.08 $\mu g/L$ effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 64.6% (At	[52]
		Side-stream	$0.08\ \mu g/L$ effluent of a WWTP	Hollow fiber	7.2 h	protonged 5K1) Average removal efficiency: 47.4% (At prolonged SRT)	[52]
	Ranitidine	Submerged	300 ng/L effluent of a WWTP	Hat sheet	I	Average removal efficiency: 95.0% (The	[51]
		Side-stream	0.347 µg/L effluent of a WWTP	Flat sheet	15 h	Average removal efficiency: 44.2% (At	[52]
		Side-stream	$0.347 \mu g/L$ effluent of a WWTP	Hollow fiber	7.2 h	Average removal efficiency: 29.5% (At prolonged SRT)	[52]
Hormones, their modulators and	17-ethinyl-estradiol	Submerged	0.7 µg/L synthetic	Flat sheet	6 h	39–78% (SRT: 8, 20, and so 4)	[49]
estrogens		Submerged	100 µg/L synthetic	Hollow fiber	24 h 26 h	61–71% Aromeo marcol	[55] [66]
		ne-and	1040 lig/ l lilutei ul a lilutililiati wastewarei	Inuura	11.02	Average removal efficiency: 95% (SRT: 88 d)	
		I	3 ng/L effluent of a WWTP	I	24 h	20% <removal<100% (srt:<="" td=""><td>[57]</td></removal<100%>	[57]
		Submerged	83 ng/L model of a effluent of a WWTP	Flat sheet	9.6, 24, 48, 96 h	1, 5, 13 and approx. 20 μ) Average removal efficiency: 18.3–>99%	[64]

P. Shojaee Nasirabadi et al. / Desalination and Water Treatment 57 (2016) 24146–24175

	Removed pharmaceuticals, hormones, endocrine disruthors and their						
Therapeutic class	metabolites	Reactor type	Initial concentration-source	Membrane configuration	HRT	Removal details	Refs.
	17ß-estradiol	Submerged	0.93 µg/L synthetic	Flat sheet	6 h	98–100% (SRT: 8, 20, and	[49]
		Submerged	100 µg/L synthetic	Hollow fiber	24 h	99–100%	[55]
		Side-stream	1920 ng/L model of a municipal wastewater	Tubular	26 h	Average removal	[56]
						efficiency: 100% (SRT: 88 d)	
	17 ß-Estrodiol-17-acetate	Side-stream	1661 ng/L model of a municipal wastewater	Tubular	26 h	Average removal efficiency: 98%, (SRT: 88	[56]
						d)	
	Estriol	Side-stream	1720 ng/L model of a municipal wastewater	Tubular	26 h	Average removal	[56]
						efficiency: 96% (SRT: 88 d)	
	Estrone	Submerged	0.97 μg/L synthetic	Flat sheet	6 h	98–100% (SRT: 8, 20, and 80 d)	[49]
		Side-stream	1608 ng/L model of a municipal wastewater	Tubular	26 h	Average removal efficiency: 97% (SRT: 88	[56]
						d)	
	Bethametasone dipropionate	Submerged	99.45 µg/L wastewater of a pharmaceutical company	Hollow fiber	24 h	Average removal efficiency: 99.6% (SRT: 30 d)	[65]
	Bethametasone valerate	Submerged	99 µg/L wastewater of a pharmaceutical company	Hollow fiber	24 h	Average removal efficiency: 97.8% (SRT: 30 d)	[65]
	Levonogestrel	Submerged	109.05 $\mu g/L$ was tewater of a pharmaceutical company	Hollow fiber	24 h	Average removal efficiency: 98.7% (SRT: 30 d)	[65]
	Medroxyprogesterone acetate	Submerged	105.2 µg/L-wastewater of a pharmaceutical company	Hollow fiber	24 h	Average removal efficiency: 93.4% (SRT: 30 d)	[65]

(11) Many of the investigated membranes have been made of polyamide.

In several studies, size exclusion has been considered as an influential factor affecting the removal of pharmaceuticals [29,33,37,39].

3. Membrane bioreactors

MBRs have been increasingly used for wastewater treatment applications. MBRs combine biological and membrane treatment for effective removal of contaminants from wastewaters. They are similar to CASs with the exception that the biomass responsible for removing the contaminants is retained within the bioreactor component of the system using membranes rather than secondary clarifiers [44]. Conventional treatment of municipal wastewater usually proceeds through a three stage process: sedimentation of gross solids in the feed water followed by aerobic degradation of the organic matter and then a second sedimentation process to remove the biomass. An MBR can displace the physical separation process by filtering the biomass through a membrane. As a result, the product water quality is significantly higher than that generated by conventional treatment, since it eliminates the need for a further tertiary disinfection process [45]. In fact, MBR technology offers several advantages over CAS plants such as operation at high biomass concentrations, reduced excess sludge production, extremely low suspended solid concentrations in the treated effluent, drastically enhanced elimination of pathogens and viruses [10]. It is also worth to mention that MBR makes hydraulic retention time independent from sludge retention time [46].

The basic schematic diagram of MBR configuration is shown in Fig. 1. Fig. 1(a) displays an immersed or submerged membrane bioreactor module while a sidestream or external membrane module is illustrated in Fig. 1(b) [47].

External membrane systems usually operate at a constant pressure and variable permeate flux (i.e. permeate flux decreases as membrane fouls); on the other hand, submerged membranes typically operate at a constant flow and variable transmembrane pressure (i.e. transmembrane pressure increases as membrane fouls) [44].

For side-stream MBR systems, the feed wastewater is directly in contact with biomass. Wastewater and biomass are both pumped through the recirculation loop consisted of membranes. The concentrated sludge is recycled back to the reactor while the water effluent is discharged [48]. The idea of separating the membrane and bioreactor is to ease the membrane maintenance but it will increase the operational cost due to recirculation loop installation. The submerged system has less operational cost because there is no recirculation loop compared to the external system and a biological process occurs around the membrane in submerged MBR. Both submerged and external MBRs need to pump out the excess sludge to maintain sludge age. The mode of membrane transportation could be pressure driven or vacuum driven. Pressuredriven filtration is used in side-stream MBR and vacuum driven is used for submerged MBR [47].

MBRs hold a promise for the degradation of micro-pollutants, which could be ascribed especially to the high sludge concentration and relatively high sludge age at which they operate. This makes the presence of microorganisms that are capable of degrading the specific micro-pollutants more likely [10]. Regarding this fact, several papers have investigated the removal of pharmaceutical and personal care products (PPCPs), hormones, endocrine disruptors, and their metabolites. Table 1 is an overview of these papers which summarizes the removed pollutant, reactor type, membrane configuration, and the obtained removal efficiencies.

According to Table 3, the following results can be obtained:

- (1) Hollow fiber and flat sheet have been used frequently. Tubular have been used only in one study.
- (2) Both side-stream and submerged MBRs have been widely used.
- (3) Acetaminophen could successfully get removed by MBRs. In fact, five studies have proposed conditions in which more than 99% of this pollutant has been removed. This indicates the perfect performance of these systems in the removal of acetaminophen.
- (4) For diclofenac, there have been cases in which no elimination occurred; however, removal efficiencies of about 60% could be obtained at prolonged SRTs.
- (5) The removal of ibuprofen has been investigated by flat sheet, hollow fiber, and tubular configurations. As it can be seen in Table 2, the results have been significant.
- (6) The removal of only seven antibiotics has been studied by MBRs. However, Verlicchi et al. have detected thirty-six antibiotics in raw urban wastewater and effluent from an activated sludge system [2].
- (7) More than 99% of ofloxacin has been removed at prolonged SRTs, which has been the best efficiency among the antibiotics.

Fig. 1. The basic schematic diagram of MBR configuration: (a) submerged and (b) side-stream [47].

- (8) The removal of carbamazepine by MBRs has not been satisfactory. In most of the cases, the removal efficiency has been less than 30%.
- (9) MBRs have shown great performance in the removal of the studied hormones and estrogens.

The MBRs performances can be affected by membrane material, module configuration, membrane operating conditions (transmembrane pressure, backwash, etc.), biological operating conditions (temperature, SRT), and characteristics of activated sludge [66]. The SRT has been regarded as one of the most important parameters affecting the biodegradation of micro-pollutants such as pharmaceuticals [10].

The positive effect of increasing SRT appears for several compounds, in particular for hormones, ibuprofen, ketoprofen, naproxen, bezafibrate, gemfibrozil, fluoxetine, and antibiotics. On the other hand, increasing SRT beyond 30 d does not usually result in a consistent increment in the removal of most of the compounds [2]. Maeng et al. [49] reported that removal efficiencies of gemfibrozil, ketoprofen, clofibric acid, and 17-ethinylestradiol were increased when SRT was increased from 20 to 80 d. Moreover, MBR operated at a short SRT (8 d) was able to effectively remove hydrophilic-neutral pharmaceuticals (phenacetin, acetaminophen, pentoxifylline, and caffeine), hydrophilic-ionic pharmaceuticals (bezafibrate, ibuprofen, and fenoprofen), and estrogens (17ß-estradiol and estrone).

For etodolac, as the SRT increased from 15 to 30 d, the overall removal efficiencies improved [12]. Tambosi et al. [11] evaluated the treatment of wastewater containing three NSAIDs (acetaminophen, ketoprofen, and naproxen) and three antibiotics (roxithromycin, sulfamethoxazole, and trimethoprim) in two MBRs at SRTs of 15 and 30 d. For all these pharmaceuticals, higher removal efficiencies were obtained as the SRT increased [11]. In another study done by Clara et al. [57], the investigated micropollutants showed different behaviors during the wastewater treatment process. Elimination of some of the compounds was dependent on the solids retention time, whereas carbamazepine was not affected during the treatment. For diclofenac and 17-ethinylestradiole, contradictory results were obtained and beside the SRT other influences seem to be of importance. In another research carried out by Bernhard et al. [58], it was stated that for diclofenac, the removals were 8, 38, and 59% at an SRT of 20, 48, and 62 d, respectively. However, at an SRT of 322 d, the removal efficiency was 53%.

4. Membrane contactors

Membrane contactors are devices that bring two fluids into contact at the entrance of pores. Nowadays, they are most commonly used for producing ultrapure water, wastewater treatments, and water purification, as well as controlling the concentration of several nonvolatile solutes in aqueous solutions [67]. Unlike most membrane operations, in membrane contactors, the chemistry of the membrane is relatively unimportant, as it provides no selectivity for the separation process. In fact, the aim is to choose a membrane that causes no negative effects, i.e. that has no negative influence on mass transfer. Therefore, the success of membrane contactors greatly depends on minimizing the membrane resistance to mass transfer [68]. Considering these functionalities, membrane contactors can be used for many separation processes such as liquid-liquid extraction, supported liquid membranes (SLMs), forward osmosis, and membrane distillation.

4.1. Liquid-liquid extraction

In liquid–liquid extraction process, the membrane pores provide an interface between two immiscible fluids. This process involves the transfer of the

Table 4 An overview of membrane processes combined wi	ith other processes		
Removed pharmaceuticals, hormones, endocrine disruptors, and their metabolites	Process Description	Removal explanation	Refs.
Terbutaline, Salbutamol, Pindolol, Propranolol, Atenolol, Metoprolol, Sotalol, Clenbuterol, Phenazone, Aminopyrine, Carbamazepine, Cyclophosphamide, Pentoxifylline, Ibuprofen, Clofibric acid, Fenoprofen, Gemfibrozil, Ketoprofen, Diclofenac, Bezafibrate	A combination of an NF unit with subsequent granular activated carbon was used	The combination of NF/ granular activated carbon showed the extremely high removal efficiency of >98% for all the pollutants	[33]
Clofibric acid, diclofenac, ibuprofen, ketoprofen, mefenamic acid, naproxen	A combination of coagulation and sedimentation processes with an MBR was used	Clofibric acid and diclofenac were removed with an efficiency of 42% and 21%, respectively. The removal efficiency was >90% for the four others	[61]
Carbamazepine, flumequine, ibuprofen, ofloxacin, and sulfamethoxazole	A combination of nanofiltration (NF) and solar photo-Fenton was used	Using hydrogen peroxide, complete removal of the micropollutants occurred	[78]
Carbamazepine	A laboratory-scale system integrating a membrane bioreactor (MBR) and a TiO ₂ slurry photo reactor was used	It could be removed up to 95%	[62]
Ibuprofen	A hybrid photo catalysis–direct contact membrane distillation system was used	Regardless of the process mode, the permeate did not contain ibuprofen	[80]
Sulfamethoxazole, Erythromycin, Trimethoprim, Lincomycin, Ciprofloxacin, Levofloxacin,	Primary clarification, activated sludge biological treatment, membrane filtration, granular media	After activated sludge treatment and membrane filtration, the concentrations of caffeine,	[81]
Tetracycline, Carbamazepine, Primidone, Diclofenac, Triclosan, 17a-ethynylestradiol, Caffeine, Acetaminophen, Ibuprofen	filtration, granular activated carbon (GAC) adsorption, and ozonation were combined in a reclamation plant	acetaminophen, ibuprofen, tetracycline, and 17a- ethynylestradiol had decreased by more than 90%. Erythromycin and carbamazepine, being resistant to biological treatment, were eliminated by 74 and 88%, on average, by GAC. Ozonation oxidized most of the remaining compounds by >60%	
Bisphenol A, Estrone, 178-Estradiol, 17a- Estradiol, Estriol, 17a-Ethinylestradiol, Erythromycin, Trimethoprim, Diclofenac, Ketoprofen, Metoprolol, Sulpiride, Carbamazepine, Caffeine	A full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor was used	Relatively high removal efficiency (higher than 70%) was achieved for most of the targets. The analyses of concentration distribution along the process indicate that the anaerobic tank played a key role in removing most of the targets	[82]
Carbamazepine, clofibric acid, diclofenac, iohexol	Powdered activated carbon-UF hybrid system was used	All four pollutants could be removed with an efficiency of >99%	[83]
Salicylic acid, Ibuprofen, Bisphenol A, Diclofenac, Cholesterol, Sulfamethoxazole, Sulfamethazine, Trimethoprim, Erythromycin, Clarithromycin, Roxithromycin	MBR/RO pilot plant was used. The MBR included a bioreactor that was divided into three zones (anaerobic, anoxic and aerobic) A CAS- UF/RO sequence was used	Removal efficiencies of >99% for most of the pollutants, >95% for diclofenac, and >93% for sulfonamides was achieved	[84]
Sulfonamides, sulfadiazine, sulfathiazole, sulfapyridine, sulfamethazine, sulfamethoxazole, norfloxacin, ciprofloxacin,	MBR treatment in combination with membrane filtration and ozonation was used	The removal efficiency achieved by RO technique was practically 100%. Ozonation of RO	[85]

azithromycin, erythromycin, clarithromycin, rovithromycin, trimethonyin		concentrate also resulted in a complete removal of the target pollutants	
Nalidixic acid	An integrated membrane bioreactor-ozonation	The ozonation step placed in the MBR	[98]
	process was used	recirculation stream completely removed the nalidixic acid	
Codeine, Hydrocodone, Carbamazepine,	An integrated pilot scale MBR-RO system was	The combination of MBR and RO treatment	[87]
Diazepam, Lorazepam, Famoudune, Kanudune, Azithromycin, Clarithromycin, Erythromycin,	used	snowed excellent overall removal of target contaminants with removal rates above 99% for	
Sulfamethoxazole, Ofloxacin, Metronidazole, Atenolol, Metoprolol, Nadolol, Propranolol,		all of them	
Sotalol, Salbutamol, Clopidogrel			
dicloxacillin, ceftazidime	A hybrid ozonation-membrane filtration was used	Complete removal of both pollutants was achieved at a certain ozone dosing rate	[88]
Erythromycin, Sulfamethoxazole, Estriol, 17-	A membrane bioreactor followed by membrane	RO and NF membrane processes showed	[89]
ethynylestradiol, Estrone, 17ß-estradiol,	filtration processes such as RO and NF, as well	excellent removal rates (>95%). However, the	
Testosterone, Androstenedione, Iopromide,	as membrane filtration processes combined with	combination of membranes with UV irradiation	
Hydrocodone, Acetamınophen, 1rımethoprım, Pentoxifviline. Meprobamate. Dilantin.	UV irradiation was used	did not increase removal. It was also found that RO did not display higher removal percentages	
Naproxen, Ibuprofen, Diclofenac,		than NF	
Carbamazepine, Caffeine, Fluoxetine,			
Gemfibrozil			
Gemfibrozil, Ketoprofen, Carbamazepine, Diclofenac, Mefenamic acid, Acetaminophen,	Combination of UV with NF and RO was used	The highest and lowest removal efficiencies obtained by NF combination were 100 and 30%,	[06]
Sulfamethoxazole, Propyphenazone,		respectively. This amount was 100 and 45% for	
Hydrochlorothiazide, Metoprolol, Sotalol,		RO combination	
Glibenciamide,			[10]
Dictorenac	A laboratory pilot photocatalytic memorane reactor, employing a hybrid TiO ₂ /UV-A	the system actineved more than 90% dictorenact degradation in almost all cases	[14]
	catalysis ultrafiltration process was used		
Estrone, Estradiol, Estriol, Ethynylestradiol, Mestranol, Diethylstilbestrol	Combination of coagulation and nanofiltration was used	The system could remove all the six pollutants with efficiencies of more than 90%	[92]

Fig. 2. A scheme of a SLM [72].

micro-pollutants from one immiscible liquid to another. The micro-pollutants of interest are transferred from the aqueous solution to the organic acceptor liquid [15,69]. Membrane-based liquid-liquid removal is a possible alternative to remove pharmaceutical compounds from water. The ability to vary flow rates independently is a significant advantage of this process. Hollow fiber membrane modules are a novel technology for the removal of trace pharmaceuticals from drinking water due to their low manufacturing cost and simple handling [70]. The performance of polypropylene hollow fiber contactors has been investigated for the removal of diclofenac sodium, ibuprofen, and its metabolite 4-isobutylacetophenone (4-IBAP) from water through liquid-liquid extraction [70,71]. Williams et al. [70] used the Liqui-Cel microporous membrane module to extract ibuprofen and 4-IBAP from water into octanol. The effects of aqueous phase pH and fluids flow rates were investigated. The removal of ibuprofen was significantly affected by pH; pH 2 was optimum for its complete removal. However, the removal of the metabolite was not influenced by this factor and nearly 96% removal was achieved for both acidic and basic solutions. Furthermore, the effects of both water and octanol flow rates on mass transfer were important [70]. In another research done by Nasirabadi et al. [71], the removal of diclofenac sodium by liquid-liquid extraction process was studied using hollow fiber contactors. 1-Octanol was used as the extractant. Fractional factorial design was applied to investigate the effects of initial concentration of the contaminant, pH of the feed, and fluids flow rates on removal efficiency of diclofenac sodium. In this study, 1-octanol could remove more than 99% of diclofenac sodium from water by polypropylene hollow fiber contactors. According to the analysis of variance, the pH and initial concentration were the most influential factors.

4.2. Supported liquid membrane

In SLM or immobilized liquid membrane (ILM), the extracting phase is supported or immobilized in the pores of the membrane while the contaminated and stripping phases flow through the shell and tube sides, respectively. The solute in water is extracted into the organic phase immobilized in the pores; subsequently, the solute in the organic phase is stripped using a suitable stripping medium. The transfer of the species by diffusion from the bulk phase occurs simply due to difference in chemical potential [15]. In fact, an SLM is a three-phase liquid membrane system in which the membrane phase (liquid) is held by capillary forces in the pores of microporous polymeric or inorganic film. The immobilized liquid is a membrane phase and the microporous film serves as a support for the membrane. Usually, SLMs are based on hydrophobic organic solvent immobilized in a polymeric membrane separating two aqueous solutions. Fig. 2 shows a scheme of a SLM [72].

The removal of 4-IBAP by ILM was studied by Williams et al. [15]. Flat and hollow fiber membranes were used in batch and continuous operations, respectively. In case of batch operation, octanol and canola oil were impregnated in a flat membrane; both solvents showed about 70% removal of the pollutant at equilibrium. Thereafter, a hollow fiber membrane module with pores impregnated with canola oil was used for the removal of 4-IBAP in both semi-batch and continuous operations using 0.1 N NaOH as the stripping solution in a recirculatory mode. About 90% of the 4-IBAP was removed in first 15 min and the percent removal steadily dropped with time, indicating that the stripping solution was getting saturated.

4.3. Forward osmosis

Forward osmosis (FO) has gained significant research interest due to the wide range of potential applications in desalination and wastewater reuse. In FO, a concentrated draw solution (DS) is used to draw water through the membrane from a feed solution (FS). The concentration or osmotic pressure difference between the two solutions acts as the driving force for water permeation through the membrane. Therefore, the FO process does not need an applied hydraulic pressure as the traditional RO process does. The water permeating from the FS finally dilutes the concentrated DS, which exits the membrane module as a diluted DS. Depending on the final end use of the product water, the diluted DS may be required to undergo some post-treatment processes to separate draw solutes from the water, or in some cases, the diluted DS may be used directly.

During the FO process, the permeating water dilutes only to a certain extent until an osmotic equilibrium is reached between the DS and the FS. At this point, the osmotic pressure driving force disappears [73]. FO has many advantages over pressure-driven membrane processes such as lower fouling potential and simplicity [74].

Rejection of four pharmaceutical compounds, carbamazepine, diclofenac, ibuprofen, and naproxen, by FO membranes has been investigated by Jin et al. [74]. Two commercial FO membranes as well as two handcast ones were used. Commercial membranes were made of cellulose triacetate (CTA) supported by embedded polyester screen mesh. They were designated as CTA-HW and CTA-W. On the other hand, hand-cast membranes (TFC-1 and TFC-2) were composed of a cross-linked aromatic polyamide active layer on a polysulfone support layer.

For both TFC polyamide membranes, all compounds were efficiently removed with rejection ranging from 94 to 97%. For CTA-HW and CTA-W membranes, the rejection of pharmaceuticals followed the order of decline: carbamazepine (95–96%) \approx diclofenac (92–95%) > ibuprofen (82–83%) > naproxen (64–73%). Moreover, the effect of pH at different levels (3, 6, and 8) was studied for TFC-1 and CTA-HW membranes. Permeate water flux of the membranes was not affected by variation of feed water pH. Using TFC-1 membrane, all four pharmaceuticals were completely or almost completely rejected over the entire pH range tested. In fact, the pH effect on the pollutants rejection was not noticeable. This indicates the stability of TFC-1 membrane performance over pH 3-8. Therefore, the size exclusion mechanism may dominate over pH-dependent mechanisms (charge repulsion and adsorption) for all selected pharmaceuticals. For CTA-HW membrane, pH influenced remarkably the rejection of naproxen and ibuprofen. As pH decreased from 6 to 3, naproxen rejection increased from 73 to 89% and ibuprofen rejection increased from 82 to 93%. As pH increased from 6 to 8, naproxen rejection increased from 73 to 93% and ibuprofen rejection increased from 82 to 93%. In contrast, the rejection of carbamazepine and diclofenac was high over pH 3-8, and the pH effect on their rejection was not noticeable [74].

In another research done by Cartinella et al. [14], the removal of two natural steroid hormones, estrone and 17ß-estradiol, was investigated using cellulose triacetate semipermeable flat sheet FO membranes (CTA, Hydration Technologies Inc., Albany, OR). Hormone rejection was greater than 99% until 20% recovery was reached. From 20 to 45% recovery, the rejection decreased steadily to 95–96%; however, from 45% recovery to the end of the experiments (70% recovery), hormone rejection increased steadily to 96–97%. Less than 1.5% difference in estrone and estradiol rejection was observed throughout the experiments.

4.4. Membrane distillation

Membrane distillation (MD) is a process in which a microporous, hydrophobic membrane separates aqueous solutions at different temperatures and compositions. Vapor pressure difference is present due to the temperature difference existing across the membrane. Thus, vapor molecules will diffuse from the high vapor pressure side to the low vapor pressure side through the pores of the membrane. MD technique has been known for over forty years since its first discovery and is currently undergoing further development and research to improve the performance for longer usage timing and better efficiency [75]. Direct contact membrane distillation (DCMD) is one of the MD configurations in which both sides of the membrane are in contact with aqueous solutions, i.e. the feed and product water streams. In DCMD, water from the heated feed stream evaporates through the membrane into the cooler permeate stream (potable water) where it condenses and becomes part of the permeate stream. DCMD is well-suited for desalination applications in which water is the desired permeating/diffusing component [14]. Hydrophobic microporous polypropylene capillary membranes were used to investigate the removal of estrone and 17ßestradiol. Overall, the capillary membrane rejected both hormones at or above 99.5% throughout the duration of the experiments. No apparent difference between estrone and estradiol rejection was observed. Furthermore, hormone rejection was not affected by water recovery. The ability to provide greater than 99.5% hormone rejection makes DCMD an ideal wastewater treatment process [14].

5. Other processes

Yang and et al. [76] studied the removal of caffeine, acetaminophen, and sulfamethoxazole from aqueous solutions by simultaneous electrocoagulation and electrofiltration process using composite membranes. Under the optimal operating conditions, the greatest removal efficiencies for caffeine, sulfamethoxazole, and acetaminophen were 95.8, 94.9, and 79.8%, respectively.

The removal of two antibiotics of ofloxacin and lincomycin was studied using electro-oxidation process. A membrane-divided cell was used for this purpose. Ofloxacin was oxidized efficiently on all the anodes tested. However, lincomycin was hardly oxidized [77].

6. Membrane processes in hybrid systems

MBRs and membrane filtration processes have also been used in combination with each other or other processes. Table 4 is an overview of these studies.

In most of the cases, the benefits of the integration of the applied processes have been admitted and significant results have been reported [33,78–82,87,88].

7. Overview

Application of membrane processes for the removal of pharmaceuticals from different water resources and wastewaters has been investigated in many studies. Among different membrane processes, filtrations and MBRs have been extensively studied. On the other hand, membrane contactors have attracted less attention.

In filtration processes, commercial membranes have been mostly used and NF has been the most frequent filtration type. Although RO has removed the pharmaceuticals with an efficiency of more than 80% in most of the cases, NF has also shown significant performance. For UF, the results have been so different from case to case. It is worth to mention that many of the investigated membranes have been made of polyamide. MBRs have been used for elimination of many contaminants from different pharmaceutical classes; however, it seems that more research should be done in the case of antibiotics, as the removal of a few number of pharmaceuticals of this class have been investigated using these processes. MBRs have had noticeable performance in the removal of the selected hormones and estrogens. There is a high research potential on membrane contactors, as the removal of less than 10 pharmaceutical pollutants have been studied by these processes.

Membrane processes have also been used in combination of several water treatment methods for the removal of pharmaceutical pollutants, i.e. coagulation and sedimentation, solar photo-Fenton, photo catalysis, ozonation, UV irradiation, and adsorption on granular activated carbon. The results have been significant in most of the cases.

Abbreviations

CAS		conventional activated sludge
CTA	_	cellulose triacetate
DCMD	_	direct contact membrane distillation
DS	_	draw solution
ELA		external loop air
FO		forward osmosis
FS		feed solution
GAC		granular activated carbon
4-IBAP		4-isobutylacetophenone
ILM		immobilized liquid membrane
MBR		membrane bioreactor
MD	_	membrane distillation
NF		nanofiltration
RO		reverse osmosis
SLM		supported liquid membrane
SRT		sludge retention time
STP	_	sewage treatment plant
UF		ultrafiltration
WWTP		wastewater treatment plant
		*

References

- M. Magureanua, N.B. Mandache, V.I. Parvulescu, Degradation of pharmaceutical compounds in water by non-thermal plasma treatment, Water Res. 81 (2015) 124–136.
- [2] P. Verlicchi, M.A. Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review, Sci. Total. Environ. 429 (2012) 123–155.
- [3] J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere 93 (2013) 1268–1287.
- [4] L.J.C. Coppens, J.A.G.v. Gils, T.L.t. Laak, B.W. Raterman, A.P.v. Wezel, Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions, Water Res. 81 (2015) 356–365.
- [5] D. Simazaki, R. Kubota, T. Suzuki, M. Akiba, T. Nishimura, S. Kunikane, Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health, Water Res. 76 (2015) 187–200.
- [6] S. Judd, B. Jefferson, Membranes for Industrial Wastewater Recovery and Re-use, Elsevier, Oxford, UK, 2003.
- [7] Z.F. Cui, H.S. Muralidhara, Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing, Elsevier, Oxford, UK, 2010.
- [8] X. Wang, K. Zhang, Y. Yang, L. Wang, Z. Zhou, M. Zhu, B.S. Hsiao, B. Chu, Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route, J. Membr. Sci. 356 (2010) 110–116.
- [9] F.J. Benitez, J.L. Acero, F.J. Real, G. Roldán, E. Rodriguez, Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals

amoxicillin, naproxen, metoprolol and phenacetin from water, J. Chem. Technol. Biot. 86 (2011) 858–866.

- [10] J. Sipma, B. Osuna, N. Collado, H. Monclús, G. Ferrero, J. Comas, I. Rodriguez-Roda, Comparison of removal of pharmaceuticals in MBR and activated sludge systems, Desalination 250 (2010) 653–659.
- [11] J.L. Tambosi, R.F.d. Sena, M. Favier, W. Gebhardt, H.J. José, H.F. Schröder, R.d.F.P.M. Moreira, Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes, Desalination 261 (2010) 148–156.
- [12] Y. Kaya, G. Ersan, I. Vergili, Z.B. Gönder, G. Yilmaz, N. Dizge, C. Aydiner, The treatment of pharmaceutical wastewater using in a submerged membrane bioreactor under different sludge retention times, J. Membr. Sci. 442 (2013) 72–82.
- [13] S. Shirazian, S.N. Ashrafizadeh, Mass transfer simulation of caffeine extraction by subcritical CO_2 in a hollow-fiber membrane contactor, Solvent Extr. Ion Exch. 28 (2010) 267–286.
- [14] J.L. Cartinella, T.Y. Cath, M.T. Flynn, G.C. Miller, K.W. Hunter Jr., A.E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol. 40 (2006) 7381–7386.
- [15] N.S. Williams, H.G. Gomaa, M.B. Ray, Effect of solvent immobilization on membrane separation of ibuprofen metabolite: A green and organic solvent analysis, Sep. Purif. Technol. 115 (2013) 57–65.
- [16] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.
- [17] J. Wagner, Membrane Filtration Handbook Practical Tips and Hints, second ed., Osmonics, Minnetonka, US, 2001.
- [18] E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, J. Membr. Sci. 326 (2009) 627–634.
- [19] M. Sadrzadeh, E. Saljoughi, K. Shahidi, T. Mohammadi, Preparation and characterization of a composite PDMS membrane on CA support, Polym. Adv. Technol. 21 (2009) 568–577.
- [20] F. Mahmoudi, E. Saljoughi, S.M. Mousavi, Promotion of polysulfone membrane by thermal-mechanical stretching process, J. Polym. Res. 20 (2013) 1–10.
- [21] S.M.A. Razavi, S.M. Mousavi, S.A. Mortazavi, Dynamic prediction of milk ultra'ltration performance: A neural network approach, Chem. Eng. Sci. 58 (2003) 4185–4195.
- [22] M. Amirilargani, E. Saljoughi, T. Mohammadi, Improvement of permeation performance of polyethersulfone (PES) ultrafiltration membranes via addition of Tween-20, J. Appl. Polym. Sci. 115 (2010) 504–513.
- [23] E. Shekarian, E. Saljoughi, A. Naderi, Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: Preparation, morphology, and performance, J. Polym. Res. 20 (2013) 1–9.
- [24] E. Saljoughi, S.M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water, Sep. Purif. Technol. 90 (2012) 22–30.

- [25] E. Saljoughi, M. Amirilargani, T. Mohammadi, Asymmetric cellulose acetate dialysis membranes: Synthesis, characterization, and performance, J. Appl. Polym. Sci. 116 (2010) 2251–2259.
- [26] M. Pinelo, C. Ferrer, A.S. Meyer, G. Jonsson, Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes, Sep. Purif. Technol. 85 (2012) 54–60.
- [27] E. Saljoughi, M. Amirilargani, T. Mohammadi, Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes, Desalination 262 (2010) 72–78.
- [28] H. You, X. Li, Y. Yang, B. Wang, Z. Li, X. Wang, M. Zhu, B.S. Hsiao, High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates, Sep. Purif. Technol. 108 (2013) 143–151.
- [29] M.A. Zazouli, H. Susanto, S. Nasseri, M. Ulbricht, Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration, Water Res. 43 (2009) 3270–3280.
- [30] V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, G. Amy, Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse, J. Membr. Sci. 362 (2010) 334–345.
- [31] Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, J. Yoon, Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes, Desalination 202 (2007) 16–23.
- [32] S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination 202 (2007) 156–181.
- [33] A.R.D. Verliefde, S.G.J. Heijman, E.R. Cornelissen, G. Amy, B.V.d. Bruggen, J.C.v. Dijk, Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water, Water Res. 41 (2007) 3227– 3240
- [34] J.L. Acero, F.J. Benitez, A.I. Leal, F.J. Real, F. Teva, Membrane filtration technologies applied to municipal secondary effluents for potential reuse, J. Hazard. Mater. 177 (2010) 390–398.
- [35] I. Vergili, Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources, J. Environ. Manage. 127 (2013) 177–187.
- [36] K. Kimura, T. Iwase, S. Kita, Y. Watanabe, Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes, Water Res. 43 (2009) 3751–3758.
- [37] D. Rana, B. Scheier, R.M. Narbaitz, T. Matsuura, S. Tabe, S.Y. Jasim, K.C. Khulbe, Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water, J. Membr. Sci. 409–410 (2012) 346–354.
- [38] R.M. Narbaitz, D. Rana, H.T. Dang, J. Morrissette, T. Matsuura, S.Y. Jasim, S. Tabe, P. Yang, Pharmaceutical

and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing, Chem. Eng. J. 225 (2013) 848–856.

- [39] D. Dolar, A. Vuković, D. Ašperger, K. Košutić, Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes, J. Environ. Sci. 23 (2011) 1299–1307.
- [40] M. Omidvar, S.M. Mousavi, M. Soltanieh, A.A. Safekordi, Preparation and characterization of poly (ethersulfone) nanofiltration membranes for amoxicillin removal from contaminated water, J. Environ. Health Sci. Eng. 12 (2014) 1–9.
- [41] S.P. Sun, T.A. Hatton, S.Y. Chan, T.-S. Chung, Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water, J. Membr. Sci. 401–402 (2012) 152–162.
- [42] K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol. 53 (2007) 244–249.
- [43] S. Gur-Reznik, I. Koren-Menashe, L. Heller-Grossman, O. Rufel, C.G. Dosoretz, Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes, Desalination 277 (2011) 250–256.
- [44] P. Bérubé, Membrane Bioreactors: Theory and Applications to Wastewater Reuse, in Sustainability Science and Engineering, Elsevier, Amsterdam, Netherlands, 2010
- [45] S. Judd, The status of membrane bioreactor technology, Trends Biotechnol. 26 (2008) 109–116.
- [46] F.P. Shariati, M.R. Mehrnia, B.M. Salmasi, M. Heran, C. Wisniewski, M.H. Sarrafzadeh, Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen, Desalination 250 (2008) 798–800.
- [47] N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, A. Yuniarto, G. Olsson, Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater, Chem. Eng. J. 225 (2013) 109–119.
- [48] N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, G. Olsson, Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review, Desalination 305 (2012) 1–11.
- [49] S.K. Maeng, B.G. Choi, K.T. Lee, K.G. Song, Influences of solid retention time, nitrification and microbial activity on the attenuation of pharmaceuticals and estrogens in membrane bioreactors, Water Res. 47 (2013) 3155–3162.
- [50] B.D. Gusseme, L. Vanhaecke, W. Verstraete, N. Boon, Degradation of acetaminophen *byDelftia tsuruhatensis* and *Pseudomonas aeruginosa* in a membrane bioreactor, Water Res. 45 (2011) 1829–1837.
- [51] J. Radjenovic, M. Petrovic, D. Barceló, Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor, Anal. Bioanal. Chem. 387 (2007) 1365–1377.
- [52] J. Radjenovic, M. Petrovic, D. Barcelo, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res. 43 (2009) 831–841.
- [53] I. Forrez, M. Carballa, G. Fink, A. Wick, T. Hennebel, L. Vanhaecke, T. Ternes, N. Boon, W. Verstraete, Biogenic metals for the oxidative and reductive removal

of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor, Water Res. 45 (2011) 1763–1773.

- [54] R. Reif, S. Suárez, F. Omil, J.M. Lema, Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage, Desalination 221 (2008) 511–517.
- [55] T. Urase, C. Kagawa, T. Kikuta, Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors, Desalination 178 (2005) 107–113.
- [56] K.C. Wijekoon, F.I. Hai, J. Kang, W.E. Price, W. Guo, H.H. Ngo, L.D. Nghiem, The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment, Bioresour. Technol. 144 (2013) 247–254.
- [57] M. Clara, N. Kreuzinger, B. Strenn, O. Gans, H. Kroiss, The solids retention time—A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Res. 39 (2005) 97–106.
- [58] M. Bernhard, J. Muller, T.P. Knepper, Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment, Water Res. 40 (2006) 3419–3428.
- [59] A. Joss, E. Keller, A.C. Alder, A.G. "Bel, C.S. McArdell, T. Ternes, H. Siegrist, Removal of pharmaceuticals and fragrances in biological wastewater treatment, Water Res. 39 (2005) 3139–3152
- [60] D. Serrano, S. Suarez, J.M. Lema, F. Omil, Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor, Water Res. 45 (2011) 5323–5333.
- [61] K. Kimura, H. Hara, Y. Watanabe, Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination 178 (2005) 135–140.
- [62] M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res. 39 (2005) 4797–4807.
- [63] C. Abegglen, A. Joss, C.S. McArdell, G. Fink, M.P. Schlusener, T.A. Ternes, H. Siegrist, The fate of selected micropollutants in a single-house MBR, Water Res. 43 (2009) 2036–2046
- [64] B.D. Gusseme, B. Pycke, T. Hennebel, A. Marcoen, S.E. Vlaeminck, H. Noppe, N. Boon, W. Verstraete, Biological removal of 17a-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor, Water Res. 43 (2009) 2493–2503.
- [65] R. López-Fernández, L. Martínez, S. Villaverde, Membrane bioreactor for the treatment of pharmaceutical wastewater containing corticosteroids, Desalination 300 (2012) 2493–2503.
- [66] P. Grelier, S. Rosenberger, A. Tazi-Pain, Influence of sludge retention time on membrane bioreactor hydraulic performance, Desalination 192 (2006) 10–17.
- [67] A. Gugliuzza, A.B. Asile, Membrane Contactors: Fundamentals, Membrane Materials and Key Operations, Woodhead, Cambridge, UK, 2013
- [68] J.G. Crespo, I.M. Coelhoso, R.M.C. Viegas, Membrane Contactors: Membrane Separations, Academic Press, Curia, Portugal, 2000.

- [69] E. Drioli, A. Criscuoli, E. Curcio, Membrane Contactors: Fundumentals, Applications and Potentialities, in Membrane Science and Technology Series, Elsevier, Amsterdam, Netherlands, 2006.
- [70] N.S. Williams, M.B. Ray, H.G. Gomaa, Removal of ibuprofen and 4-isobutylacetophenone by non-dispersive solvent extraction using a hollow fibre membrane contactor, Sep. Purif. Technol. 88 (2012) 61–69.
- [71] P.S. Nasirabadi, Treatment of pharmaceutical wastewater by membrane contactor, in Department of Chemical Engineering, Ferdowsi University of Mashhad, 2013
- [72] P. Dzygiel, P.P. Wieczorek, Supported Liquid Membranes and Their Modifications: Definition, Classification, Theory, Stability, Application and Perspectives, Elsevier, Amsterdam, Netherlands, 2010
- [73] S. Phuntsho, S. Hong, M. Elimelech, H.K. Shon, Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance, J. Membr. Sci. 453 (2014) 240–252.
- [74] X. Jin, J. Shan, C. Wang, J. Wei, C.Y. Tang, Rejection of pharmaceuticals by forward osmosis membranes, J. Hazard. Mater. 227–228 (2012) 55–61.
- [75] J.A. Prince, D. Rana, G. Singh, T. Matsuura, T.J. Kai, T.S. Shanmugasundaram, Effect of hydrophobic surface modifying macromolecules on differently produced PVDF membranes for direct contact membrane distillation, Chem. Eng. J. 242 (2014) 387–396.
- [76] G.C.C. Yang, C.-H. Yen, The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions, J. Membr. Sci. 425–426 (2013) 121–130.
- [77] C.C. Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli, Electrochemical removal of antibiotics from wastewaters, Appl. Catal. 70 (2007) 479–487.
- [78] S. Miralles-Cuevas, A. Arqués, M.I. Maldonado, J.A. Sánchez-Pérez, S.M. Rodríguez, Combined nanofiltration and photo-Fenton treatment of water containing micropollutants, Chem. Eng. J. 224 (2013) 89–95.
- [79] G. Laera, M.N. Chong, B. Jin, A. Lopez, An integrated MBR–TiO₂ photocatalysis process for the removal of Carbamazepine from simulated pharmaceutical industrial effluent, Bioresour. Technol. 102 (2011) 7012–7015.
- [80] S. Mozia, A.W. Morawski, The performance of a hybrid photocatalysis–MD system for the treatment of tap water contaminated with ibuprofen, Catal. Today. 193 (2012) 213–220.
- [81] X. Yang, R.C. Flowers, H.S. Weinberg, P.C. Singer, Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant, Water Res. 45 (2011) 5218–5228.

- [82] W. Xue, C. Wu, K. Xiao, X. Huang, H. Zhou, H. Tsuno, H. Tanaka, Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/ anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation, Water Res. 44 (2010) 5999–6010.
- [83] F. Saravia, F.H. Frimmel, Role of NOM in the performance of adsorption-membrane hybrid systems applied for the removal of pharmaceuticals, Desalination 224 (2008) 168–171.
- [84] E. Sahar, I. David, Y. Gelman, H. Chikurel, A. Aharoni, R. Messalem, A. Brenner, The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater, Desalination 273 (2011) 142–147.
- [85] I. Senta, M. Matŏsić, H.K. Jakopović, S. Terzic, J. Ćurko, I. Mijatović, Removal of antimicrobials using advanced wastewater treatment, J. Hazard. Mater. 192 (2011) 319–328.
- [86] A. Pollice, G. Laera, D. Cassano, S. Diomede, A. Pinto, A. Lopez, G. Mascolo, Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system, J. Hazard. Mater. 203–204 (2012) 46–52.
- [87] D. Dolar, M. Gros, S. Rodriguez-Mozaz, J. Moreno, J. Comas, I. Rodriguez-Roda, D. Barceló, Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO, J. Hazard. Mater. 239–240 (2012) 64–69.
- [88] A.L. Alpatova, S.H. Davies, S.J. Masten, Hybrid ozonation-ceramic membrane filtration of surface waters: The effect of water characteristics on permeate flux and the removal of DBP precursors, dicloxacillin and ceftazidime, Sep. Purif. Technol. 107 (2013) 179–186.
- [89] S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Res. 41 (2007) 1013–1021.
- [90] J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res. 42 (2008) 3601–3610.
- [91] V.C. Sarasidis, K.V. Plakas, S.I. Patsios, A.J. Karabelas, Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters, Chem. Eng. J. 239 (2014) 299–311.
- [92] M. Bodzek, M. Dudziak, Removal of natural estrogens and synthetic compounds considered to be endocrine disrupting substances (EDs) by coagulation and nanofiltration, Pol. J. Environ. Stud. 15 (2006) 35–40.