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ABSTRACT

Removal rate of Fe2+ and Mn2+ using submerged membrane reactor for drinking water in
the presence of fulvic acid and iron hydroxide is studied using the data from the experi-
ments obtained from various concentrations of Fe2+, Mn2+, fulvic acid, and iron hydroxide.
The relationship between these contaminants and membrane fouling is investigated. In the
experiments, flux is kept as constant, and the pressure change with time is observed. To
model the relationship, a regression analysis using the support vector regression (SVR)
model is presented. Hyperparameter optimization for SVR is important, that is, wrong
selection may cause underfitting/overfitting phenomena. In order to find optimal values,
grid search method is performed with various parameters such as different kernel functions
(radial basis functions, polynomial, linear), cost parameter (C), and scale parameters γ and ε.
The results obtained by SVR show that proposed method is feasible.

Keywords: Submerged membrane; Fulvic acid; Iron hydroxide; Membrane fouling; Support
vector regression

1. Introduction

Iron, manganese, and fulvic acid are commonly
found together in natural water sources. Although
they are non-hazardous materials for human health,
they may cause bad taste and esthetic problems such
as the staining of clothes and the deterioration of
plumbing fixtures. In industry, ferrous iron and man-
ganese cause severe economic losses due to the discol-
oration of products; the specks in finished paper,
textile, food, and beverage products; and the reduction
in the capacity of pipelines. Natural organic matter

(NOM) includes high fractions of fulvic acid that can
affect many chemical and biological processes in
drinking water treatment plants. If iron and man-
ganese form complexes with NOM and present in
dissolved form, oxidation can be prevented. When
they form complex structures with NOMs, conven-
tional filtration methods are not enough to remove
these complexes. For the removal of iron and man-
ganese from drinking water, low-pressure hollow-fiber
membranes are widely used as a replacement for the
conventional filtration technologies.

Several statistical learning methods such as
multiple linear regression (MLR) and artificial neural
networks (ANN) are intensively used for different
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studies concerning various fields of environmental
engineering [1,2]. Recent developments in statistical
learning methods resulted in finding a novel theory
called support vector machines (SVMs) in the early
1990s as a non-linear solution for classification and
regression tasks [3,4]. The SVM method relies on the
statistical learning theory to find a prediction rule for
output values that works well for new, so far unseen
input values. ANN and SVM can be used for same
task; however, ANNs can suffer from multiple local
minima, while the solution to a SVM is global and
unique, which is a significant advantage of SVMs.
SVMs have other advantages that they have a simple
geometric interpretation and give a sparse solution.
Unlike ANNs, computational complexity of SVMs
does not depend on the dimensionality of the input
space. Optimization processes also differ between
these methods: ANNs use empirical risk minimization,
while SVMs use structural risk minimization.

For the investigation of membrane fouling, Gao
et al. established a SVM network structure [5]. The
results were compared to the results of artificial neural
network model. It was concluded that SVM regression
models are superior to the traditional ANN models,
because of the better generalization ability and classifi-
cation accuracy for sewage treatment using Membrane
Bioreactor. Bouamar and Ladjal presented a method
using SVM to determine classification of water quality
[6]. The proposed method was applied to control of
risks in the factories that produce and distribute
water.

Using SVM method, Aryafar et al. predicted the
heavy metals included in the acid mine drainage
(AMD) [7]. To assess the model accuracy, the results
of SVM with those of the general regression neural
network (GRNN) were compared. It has been found
that SVM makes the running time considerably faster
with a higher accuracy.

Gao et al. [8] applied structure optimized SVM
model to predict the membrane permeate flux during
dead-end microfiltration of activated sludge suspen-
sions from sequencing batch reactor (SBR) with differ-
ent experimental samples. Good agreement between
the experimental data and predicted values proved
that the SVM model has sufficient prediction accuracy.

SVMs achieve a global solution in the search for
optimal parameter values and there is no need for trial
and error procedures to determine the final machine
architecture, which is directly obtained through struc-
tural risk minimization principle. This method effec-
tively solves the over-fitting phenomena, assures good
generalization ability, and better accuracy. In this
study, SVM regression method (SVR) is proposed for
the mathematical modeling of the fouling effects of

Fe2+, Mn2+, fulvic acid, and iron hydroxide on
membrane for the various concentrations of Fe2+,
Mn2+, fulvic acid, and iron hydroxide. Parameter
selection for SVR is significantly important factor for
choosing an appropriate and high-performance data-
driven model, because wrong selection of these
parameters may cause under-fitting/over-fitting phe-
nomena. Cross-validation method is employed to
determine the optimum values of the model parame-
ters, namely kernel functions, cost parameter, e value.
All the SVM regression models constructed here have
performed well for given data.

2. Method and materials

2.1. Materials

One grams of Fe2+ and 1 g/L Mn2+ stock solutions
are prepared using FeSO4·7H2O and MnCl2·2H2O.
Fulvic acid is supplied by International Humic
Substances Society, University of Minnesota. Iron
hydroxide is prepared as 50 mg/L by aerating Fe2+

stock solution for 3 or 4 h at 8 × 10−3 eq/L alkalinity
with addition of NaHCO3 before the experiment. Zee
Weed-1 (ZW-1) module membranes are supplied by
GE Water and Process Technologies. The properties of
ZW-1 membrane are given in Table 1.

2.2. Experimental procedure

Synthetic solutions are fed into 10 cm × 20 cm ×
45 cm-sized Plexiglas reactor by a peristaltic pump.
During the experiment, air is fed from the bottom of the
reactor by using fine bubble diffusers. Backwash is
maintained through feedback of filtered water with a
backwash pump. Pressure changes are continuously
monitored by a pressure gauge. The experimental setup
is shown schematically in Fig. 1.

Experiments are conducted with synthetic solu-
tions. Every experiment lasted for three days. The con-
centrations of iron, manganese, and fulvic acid are
chosen as 1–5 mg/L, 1–2 mg/L, and 1–7 mg/L,
respectively. Iron hydroxide is used to increase iron
and manganese removal, and it is obtained from aera-
tion of solution containing Fe2+.

3. Support vector regression analysis

SVMs are formulated from the principles of statis-
tical learning theory that aims to minimize an upper
bound of generalization error based on the structural
risk minimization. SVM algorithms are used for classi-
fication and regression. In SVMs for regression (SVR),

xi; yi
� �� �l

i¼1
is considered as a training set where each
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xi � Rn represents the input space of the sample and
has a corresponding scalar measure output value
yi � R for i = 1 … l, as l denotes the size of the training
data. The aim of this method is to find a function that
predicts the corresponding response value, in best
possible way. The formulation of SVRs generally
results in a function estimation equation analogous to
the following form:

f xð Þ ¼ hw; xi þ b (1)

where w � Rn and b � R denote the n-dimensional
weight vector and the offset of the linear regression

function, respectively. The main goal is to find a func-
tion having at most ε deviation from the actual target
vectors for all given training data. The ε-insensitive
loss function is the most widely used cost function.
This function is in the form:

L y; fðxÞð Þ ¼ y� f xð Þj je¼
0; y� f xð Þj j � e
y� f xð Þj j � e; otherwise

�
(2)

where f is a real value function on the field x. Loss
function describes ε as the fitting precision and if the
difference between predicted value and the actual
value is less than ε, the loss is equal to 0. Considering
fitting error, solving regression function (i.e. Eq. (1))
can be expressed as a constrained optimization
problem:

minimize R wð Þ ¼ C
Xl

i¼1

ni þ n�i
� � þ 1

2
kwk2 (3)

subject to
f xið Þ � yi � n�i þ e
yi � f xið Þ� n�i þ e
ni; n

�
i � 0 ði ¼ 1; 2; . . .; lÞ

8<
:

where the constant C > 0 represents a regularization
parameter that allows tuning the trade-off between the

Table 1
The properties of ZW-1 membrane

Membrane type
Capillary,
hydrophilic

Surface area (m2) 0.047
Membrane material PVDF
Nominal membrane pore size (nm) 40
Capillary outer diameter (mm) 2
Module length (cm) 17.5
Module width (cm) 5.8
Module inner diameter volume

(ml)
10

Transmembrane pressure max. 62 kPa at 40˚C
Flux (L/m2 sa) 15–35

Fig. 1. UF membrane experimental setup.
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smoothness of the function f and the value of that
allowed error is larger than ε. The cost parameter is
the main tool for adjusting the complexity of the
model. Larger values result flexible models since the
effect of errors is amplified. However, when the cost
is small, the model will stiffen and become less likely
to overfit and more likely to underfit because the con-
tribution of the squared parameters is proportionally
large in the modified error function. ni, n

�
i are named

as slack variables and they account for samples which
do not lie in the ε-deviation tube. Using the slack vari-
ables allows some error to deal with noise in the
training data.

The optimization problem given in Eq. (3) can be
reformulated through a Lagrange function from the
objective function with Lagrange multipliers. The
Lagrange multipliers α and α* can be found by a dual
optimization leading to quadratic programming (QP)
solution:

minimize
1

2

Xl

i;j

ða�i � aiÞða�j � ajÞðxi � xjÞ þ e
Xl

i¼1

ða�i þ aiÞ

� e
Xl

i¼1

yiða�i � aiÞ

(4)

subject to

Pl
i¼1

ai � a�i
� � ¼ 0

0� a�i ; ai �C; i ¼ 1; 2; . . .; l

8<
:

The vector w can be written in terms of training data
points as:

w ¼
Xl

i¼1

ai � a�i
� �

xi (5)

By substituting Eq. (5) into Eq. (1), SVR function
f xð Þcan be rewritten as:

f xð Þ ¼
Xl

i¼1

ai � a�i
� �

xi � xið Þ þ b

¼
Xl

i¼1

ai � a�i
� �

k xi; xð Þ þ b (6)

In Eq. (6), the dot product can be replaced with func-
tion k xi; xð Þ, known as the kernel function. The basic
idea behind SVMs is mapping the input space into
feature space utilizing kernels. Thus, SVR models are
linear models obtained in a new feature space, which

is the result of this transformation. This procedure is
known as “kernel trick” and enables the SVM to work
with nonlinear mapping in the feature spaces having
very high dimensions. The flexibility of the SVR is
provided by the use of kernel functions since a linear
solution in the higher dimensional feature space corre-
sponds to a nonlinear solution in the original, lower
dimensional input space. Linear, polynomial, or Gaus-
sian radial basis function can be selected as the kernel
function K.

In Table 2, d stands for degree and σ is a constant
parameter of the kernel and can control the amplitude
of the radial basis function and the generalization abil-
ity of SVR. Similar with other multivariate statistical
models, the performances of SVM for regression
depend on the optimal selection of parameters. Also,
preprocessing of data (standardization, detection of
outliers, missing values, etc.) greatly affects the results.
The following is a summary of preprocessing and
parameter selection steps for this study.

3.1. Standardization

For a given vector, subtracting a measure of loca-
tion and dividing by a measure of scale is often
referred as standardization. The first step of data pro-
cessing is to standardize all sample values by subtract-
ing the mean from the observed value and dividing
the difference by the standard deviation of all samples
for a given variable. Standardizing either input or tar-
get variables tend to make the training process better
behaved by improving the numerical condition of the
optimization problem and ensuring that various
default values involved in initialization and termina-
tion are appropriate. In case of SVR, the raw data are
standardized to an interval by transformation. Many
elements used in the objective function of a learning
algorithm (such as the RBF kernel of SVMs or the L1
and L2 regularizers of linear models) assume that all
features are centered at zero and have variance in the
same order. If a feature has a variance that is orders
of magnitude larger than others, it might dominate
the objective function and make the estimator unable
to learn from other features correctly as expected.

Table 2
Kernel functions for SVMs

Kernel type Kernel function

Linear kernel K xi; xð Þ ¼ hx; xii
Polynomial kernel K xi; xð Þ ¼ hx; xii þ 1ð Þd
Radial basis function kernel K xi; xð Þ ¼ exp � x� xij j2=2r2

� �
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Since the predictors enter into the model as the sum
of cross products, differences in the predictor scales
can affect the model. Therefore, centering and scaling
the predictors prior to building a SVM model is
important. In this study, all the exploratory variables
and target values are transformed to the same
ground-uniform distributions on −1, +1.

3.2. Parameter selection

To avoid over-fitting, it is a common practice when
performing a supervised machine learning experiment
to hold out part of the available data as a test set. In
this study, for each model, a training data-set is used
to establish the SVR models, and the remaining data
are used to evaluate the performance of the models. In
the models, we developed, 3 of 5 of the data-set is
used to train the model and the remaining 2 of 5 is
used to test it.

Selecting which kernel function to be used in the
analysis depends on the problem. The radial basis
function has been shown to be very effective. How-
ever, when the regression line is truly linear, the linear
kernel function will be a better choice. Note that some
of the kernel functions have extra parameters. For
example, the polynomial degree in the polynomial
kernel must be specified. Similarly, the radial basis
function has a parameter (c) that controls the scale.
These parameters, along with the cost value, constitute
the tuning parameters for the model. Therefore, the
application of SVR involves the optimization of the
regularization cost parameter (C), type of kernel, and
the kernel-specific parameter c.

3.2.1. Cross-validation

Determining appropriate values of regularization
cost parameter (C), type of kernel, and the kernel-speci-
fic parameter γ are often achieved by trial and error. It
is important to conduct cross-validation tests by apply-
ing the tree built from one set of observations (train
data) to another completely independent set of observa-
tions (test data). This approach involves randomly
dividing the set of observations into k groups, or folds,
of approximately equal size. The first fold is treated as
a validation set, and the method is fit on the remaining
k – 1 folds. The mean squared error is then computed
on the observations in the held-out fold. This procedure
is repeated k times; each time, a different group of
observations is treated as a validation set. If most of the
splits in the development sample are driven by noise,
then the prediction on the validation sample would be
poor. Ten-fold cross-validation is used to examine the

best performing regression. The entire sample is ran-
domly divided into 10 mutually exclusive subsets of
roughly the same size. Each of the 10 subsets is
reserved as the validation sample and the model esti-
mated using the remaining 9 subsets.

3.2.2. Grid search

Grid search is simply an exhaustive searching
through a manually specified subset of the hyperpa-
rameter space of a learning algorithm. A grid search
algorithm must be guided by some performance met-
ric, typically measured by cross-validation on the
training set or evaluation on a held-out validation set
[9]. In this study, the following parameters are investi-
gated for optimal value selection: Radial basis func-
tion, polynomial and linear kernels for kernel
function; 10–1, 10–2, …, 10–5 for ε and γ values (hyper-
parameter γ = 1/2σ2); 1, 2, 3, and 4 for degree used in
polynomial kernels and 1, 10, 100, and 1,000 for cost
value (C). Grid search trains an SVR with each param-
eter and evaluates their performance on a held-out
validation set. Finally, the grid search algorithm out-
puts the settings that achieved the highest R2 score in
the validation procedure. As a consequence, the
regression result has optimal properties.

4. Results

Iron, manganese, fulvic acid, and iron hydroxide
concentrations for each run and the mean value of the
resulting pressure differences are given in Table 3.
Different concentrations and resulting pressure values
give information about the effects of the ingredients.
In view of this table, the following is the detailed
explanation of the relationship between iron, man-
ganese, iron hydroxide, and fulvic acid for clarification
of experimental results.

Iron, manganese, and fulvic acid are commonly
found together in natural water sources. Fouling is the
main problem while operating membrane systems. In
this study, fouling effects of Fe2+, Mn2+, fulvic acid,
and iron hydroxides and removal of Fe2+ and Mn2+

were investigated. Drinking water treatment plants
are generally operated at pH 8.5 in the aeration basin.
It is well known that the oxidation rate of Mn2+ is
quite slow under the pH 9.5. Thus, the fouling effect
of Mn2+ is expected to be quite high, but removal effi-
ciency is expected to be lower. Also, fulvic acid is
notably a foulant to membrane systems due to its abil-
ity to solute at every pH, and it effects the removal of
Fe2+ and Mn2+. Since these contaminants increase the
membrane fouling, adding iron hydroxide decreased
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the membrane fouling originated from Mn2+ and
fulvic acid.

In the experiments, Fe(OH)3 and MnO2 flocs are
occurred with the oxidation of Fe2+ and Mn2+. At pH
8.5, flocculation of Fe2+ is extremely rapid. Oxidation
of Fe2+ and Mn2+ is both catalyzed by Fe(OH)3, which
accelerates the oxidation process. In the beginning of
the reaction of Fe2+ and Mn2+ with fulvic acid, the oxi-
dation process is accelerated. However, with the
increase in fulvic acid concentration (7 mg/L), the oxi-
dation process slows down because of the complexa-
tion between Fe2+ and fulvic acid. On the other hand,
catalytic effect of Fe(OH)3 overrides that decrease fac-
tor. Comparing the removal efficiency of Mn2+

between (Fe2+, Mn2+, and FA) and (Fe2+, Mn2+, and Fe
(OH)3) combinations, higher removal efficiency is
observed in latter group which contains Fe(OH)3.

Experimental part of this study is focused on
removal of Fe2+ and Mn2+. Improvement of removal
efficiency is originated from iron hydroxide flocs.
After membrane filtration, Mn2+ removal efficiency is
significantly increased. In the working pH, iron
hydroxide has positive charge because of point of zero
charge. Thus, fulvic acid (negative charge) can be
blocked by iron hydroxide and flocculation. Thus,
both removal efficiency and membrane fouling
improve by contribution of iron hydroxide.

In the next step, a unified SVR approach is pre-
sented for analysis and prediction of the membrane
performance under various combinations of input
parameters. Cleaning up the data is the first step of
analysis process. First, by visually inspecting the data,
some of the experimental errors can easily be detected.
For example, we know that the pressure value should
not be below zero (Fig. 2); therefore, these data should
be cleaned before we apply the robust modern algo-
rithms for regression analysis. Another important con-
cept is outliers. Outliers in training or test subset may

cause higher prediction errors, therefore affect the
regression modeling results. Since the outliers are
physically located far away from the normal data, they
will be rarely predicted correctly. The outliers may be
detected if the regression process is implemented sev-
eral times with changed training and test sets and
record the predicted cases for every single run. In this
study, median absolute deviation (MAD) is used to
detect outliers. In statistics, MAD is a measure of sta-
tistical dispersion that represents a measure of the
variability of a univariate sample of quantitative data
[10].

The clean datasets along with their sample size
and contents are summarized in Table 4. The parame-
ters for the support vector regression (SVR) analysis
found by grid search method are given in Table 5.
The model performance criteria parameters for the test
sets that represent the quality of predictions are also
included in this table. The metrics that are applied to
the estimators are the coefficient of determination R2

and root-mean-square error RMSE.

R2 ¼ 1�
Pn�1

i¼0 yi � ŷið Þ2Pn�1
i¼0 yi � �yi

� �2 (7)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

i¼0 yi � ŷið Þ2
n

s
(8)

In Eqs. (7) and (8), yi stands for the measured value, �yi
is the mean of the measured values, ŷi denotes the
predicted value, and n is the number of samples.

The data are obtained from the experiments with
various concentrations of Fe2+, Mn2+, fulvic acid, and
iron hydroxide. The data are separated into two sub-
sets, namely train and test sets with a ratio of 0.6 and
0.4, respectively.

Table 3
Combination of iron, manganese, fulvic acid, and iron hydroxide for oxidation and membrane filtration experiments

Run Fe2+ (mg/L) Mn2+ (mg/L) Fulvic acid (mg/L) Ferric hydroxide (mg/L) Mean pressure (mbar)

1 1 – – – 39.76
2 5 – – – 38.50
3 – 1 – – 122.69
4 – 2 – – 133.11
5 5 1 – – 64.85
6 – – 1 – 50.14
7 5 1 1 – 66.25
8 5 1 1 50 49.39
9 – – 7 – 109.37
10 5 1 7 – 48.52
11 5 1 7 50 46.91
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In SVR, pressure is the dependent variable, whereas
the time is the independent variable. A detailed grid
search method with a 10-fold cross-validation is used to
derive the optimal SVR model parameters. It is
important to note that in this study, all the exploratory
variables and target values are transformed to the same
ground-uniform distributions on −1, +1. The model is
tuned over four cost values between 1 and 1,000, three
kernel functions radial basis function, polynomial and
linear kernel functions, five different values 10–1, 10–2,
…, 10–5 for ε and γ values. For the polynomial model,
we tuned over the polynomial degree, the cost, and
scale factor ε. The polynomial degree is changed from 1
to 4. Tuning the radial basis function kernel parameter
is easier than tuning the polynomial model, which has
three tuning parameters. In general, quadratic models

Table 4
Summary of the observation data

Data Size Contents

Dataset 1 573 Fe2+ 1 mg
Dataset 2 596 Fe2+ 5 mg/L
Dataset 3 593 Mn2+ 1 mg/L
Dataset 4 593 Mn2+ 2 mg/L
Dataset 5 579 Fe2+ 5 mg/L; Mn2+ 1 mg/L
Dataset 6 596 Fulvic Acid 1 mg/L
Dataset 7 592 Fe2+ 5 mg/L; Mn2+ 1 mg/L; Fulvic Acid 1 mg/L
Dataset 8 595 Fe2+ 5 mg/L; Mn2+ 1 mg/L; Fulvic Acid 1 mg/L; FeOx 50 mg/L
Dataset 9 586 Fulvic Acid 7 mg/L
Dataset 10 573 Fe2+ 5 mg/L; Mn2+ 1 mg/L; Fulvic Acid 7 mg/L
Dataset 11 530 Fe2+ 5 mg/L; Mn2+ 1 mg/L; Fulvic Acid 7 mg/L; FeOx 50 mg/L

Fig. 2. Detecting experimental errors.

Table 5
Parameters and performance metrics for SVR

Data Kernel C e c R2 RMSE

Dataset 1 rbf 1,000 0.1 0.1 0.8502 6.4193
Dataset 2 rbf 1,000 0.01 0.1 0.8891 6.6864
Dataset 3 rbf 100 0.1 0.1 0.8987 12.0301
Dataset 4 rbf 1,000 0.01 0.1 0.9335 11.4695
Dataset 5 rbf 1,000 0.1 0.1 0.5302 7.3795
Dataset 6 rbf 1,000 0.01 0.1 0.5859 4.9690
Dataset 7 rbf 1,000 0.1 0.1 0.8339 4.9530
Dataset 8 rbf 10 0.1 0.1 0.7935 4.5126
Dataset 9 rbf 1,000 0.01 0.1 0.9475 7.4144
Dataset 10 rbf 10 0.1 0.1 0.4299 4.6841
Dataset 11 rbf 100 0.1 0.1 0.8760 3.2522
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tend to have smaller error rates than the linear models,
and the models associated with larger scale factors have
better performance [11].

Among the linear, polynomial, and RBF kernel
functions, the latter is finally selected to be used SVR
models as it yielded the highest R2 and corresponding
parameter is estimated to be γ = 0.1 for all datasets.
After the SVR parameters are found, the data scaled
back to original range. We give the corresponding
model performance criteria parameters (R2 and RMSE)

for each analysis, obtained from test sets. Here, R2 is
the value corresponds to grid search best model,
which is calculated with the standardized test set; and
RMSE is the other performance criteria obtained from
the predicted and the real values of the test set in
original data scale. To sum up; kernel, cost, scale
parameters ε and γ are calculated using the standard-
ized train sets, and RMSE is determined from the
predicted values and the real values from test set in
original scale. For most of the datasets, when the cost

Fig. 3. Effect of 1 mg/L Fe2+ on membrane fouling.

Fig. 4. Effect of 5 mg/L Fe2+ on membrane fouling.
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values are small, the model underfits the data, but, as
the error starts to increase when the cost approaches
1,000, overfitting begins (Table 5).

For the first dataset, the optimal model is created
with radial basis function and the cost value associ-
ated with the largest R2 is 1,000. The value of epsilon
determines the level of accuracy of the approximated
function. It relies entirely on the target values in the
training set. If epsilon is larger than the range of the
target values, we cannot expect a good result. If epsi-
lon is zero, we should expect overfitting. After the
grid search method is performed largest score is

obtained with ε = 0.1, which reflects the data in best
possible way. The red line in Fig. 3 represents an
SVR model with a radial basis kernel function with
these parameters. This line better describes the over-
all structure of the data. As a comparison, both the
optimal radial basis and the polynomial SVM models
use a similar number of support vectors, 291 and
280, respectively (of 343 training samples).

For the second dataset, a similar uptrend is seen
with previous set for pressure change with time
(Fig. 4). Also, for both experiments, the pressure stops
increasing at around 60 mbar, which proves that

Fig. 6. Effect of 2 mg/L Mn2+ on membrane fouling.

Fig. 5. Effect of 1 mg/L Mn2+ on membrane fouling.
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increasing concentration of Fe2+ does not affect the
pressure change, as so membrane fouling. Fouling
slightly decreases to the end because of the catalytic
effect of iron hydroxide on oxidation when the Fe2+

concentration is 5 mg/L.
As seen from Fig. 4, the cost value associated with

the largest R2 is 1,000 in second dataset. Generally,
choosing ε to a certain accuracy only guarantee that
accuracy on the training set. In order to achieve better

accuracy overall, we need to choose a slightly smaller ε.
Keeping that in mind, we selected other parameters as
ε = 0.01 and γ = 0.1, according to largest R2. The optimal
model is created with radial basis function, which is the
same as the model created for the first dataset. Third,
fourth, eighth, and ninth datasets have similar trends
for pressure change with time (Figs. 5–8). Figs. 5 and 6
show the effect of Mn2+ on membrane fouling. Since
higher pressure differences are observed, it is

Fig. 8. Effect of 7 mg/L fulvic acid on membrane fouling
.

Fig. 7. Effects of 5 mg/L Fe2+, 1 mg/L Mn2+ 1 mg/L fulvic acid, and 50 mg/L FeOx on membrane fouling.
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concluded that the Mn2+ is notably contaminant
compared to Fe2+. However, it is also observed that
membrane fouling is decreased in the presence of
5 mg/L Fe2+ (Fig. 9). This is originated from the auto-
catalytic effect of oxidized Fe2+ and its adsorption
capacity. Figs. 10 and 8 show single effects of 1 mg/L
fulvic acid (FA) and 7 mg/L FA, respectively, and it is
clear from that the increment of FA have adverse effect
on membrane fouling. However, from Figs. 11 and 12,
in which FA is present together with Fe2+ and Mn2+, it
is observed that the membrane fouling decreases with
the increase in FA concentration. It can be evaluated at

the second membrane formation effect, which is formed
by complexation of fulvic acid and Fe2+ and possibly
Mn2+. This second membrane cake avoids fouling of
membrane pores and decreases the pressure changes.
The similar effect can also be observed from iron
hydroxide as shown in Figs. 7 and 13.

Although the SVR model clearly catches overall
trend as seen from Figs. 9 and 10, the corresponding
metrics R2 = 0.5302 for dataset 5 and R2 = 0.5859 for
dataset 6 shows the model’s weak performance. The
reason for the performance decline is the noisy data.
Several sources on SVM suggested that the optimal ε

Fig. 9. Effects of 5 mg/L Fe2+ and 1 mg/L Mn2+ on membrane fouling.

Fig. 10. Effect of 1 mg/L fulvic acid on membrane fouling.
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values are proportional to noise variance [12,13]. How-
ever, the effect of the sample size should also be con-
sidered. In the fifth dataset, we have C = 1,000 and
ε = 0.01 as the best model parameters. To see the effect
of cost value, we fixed epsilon to 0.01 and changed
cost to lower values. This procedure is repeated for
the sixth dataset and it is observed that with optimal
choice of ε, the value of regularization parameter C
has negligible effect on the generalization perfor-
mance. But one should remember that the cost value
should be larger than a certain level as it is observed

that the error increases when the parameter is selected
far from the optimal value. For datasets 6, 7, 10, and
11, the pressure values increase linearly with time at
the first couple of hours. In order to achieve better
regression model performance on given data, we sepa-
rated the linear part, which approximately corre-
sponds to the first 20 values for each dataset, and
trained the SVR model with the 3 of 5 of the remain-
ing nonlinear data. In the meantime, for the linear
part, linear regression method is applied and
corresponding regression coefficients are obtained.

Fig. 11. Effects of 5 mg/L Fe2+, 1 mg/L Mn2+, 1 mg/L fulvic acid on membrane fouling.

Fig. 12. Effects of 5 mg/L Fe2+, 1 mg/L Mn2+, 7 mg/L fulvic acid on membrane fouling.
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This procedure increased the overall performance of
the SVR by ≈10 compared to given metrics in Table 5,
since the linear part does not reflect the nonlinear
structure of the remaining data.

5. Conclusion

In this study, the fouling effects of Fe2+ and Mn2+

on membrane in a submerged membrane system for
various concentrations of Fe2+, Mn2+, fulvic acid, and
iron hydroxide are modeled using SVM regression.
Since the complex microphenomena occur during
membrane filtration, the modeling of the procedure is
difficult and the conventional theoretical models have
only been able to predict the filtration procedure
under limited conditions and mostly with various
assumptions. SVR approach provided relatively robust
model less prone to overfitting due to minimized error
and regularization terms. A unified SVR approach is
presented for analysis and prediction of the membrane
performance under various combinations of input
parameters. The input parameters were Fe2+, Mn2+,
fulvic acid, and iron hydroxide, and the observed out-
put parameter is the membrane pressure change. The
contribution of iron hydroxide and fulvic acid on
reduction of membrane fouling is observed clearly.
These contaminants have significant effect on mem-
brane fouling and removal of Fe2+ and Mn2+. The iron
hydroxide increases removal efficiency of Fe2+ and
Mn2+ via adsorption/surface oxidation. Also, the size
of resulting iron hydroxide flocks exceeds membrane
pore sizes which in turn increases membrane effluent
efficiency.

In the modeling process, first, the effect of data
preprocessing on the model performance is studied in
detail. In order to select optimal SVR parameters, grid
search with 10-fold cross-validation is performed with
different parameters such as different kernel functions,
regularization parameter, and scale parameters using
the training sets. Based on the results using different
SVR parameters, various model selection methods are
discussed. The results showed that the nonlinear
behavior of the membrane fouling during submerged
membrane filtration can be predicted by SVR method
with high accuracy. It is therefore not necessary to
carry out entire full-scale tests to collect and verify fil-
tration data. The SVR method can be used with a
range of sparse data points, which in turn helps opti-
mizing the filtration monitoring procedure through
reduction of the time and costs required.
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