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ABSTRACT

In the real-field application, the operation conditions for seawater reverse osmosis (SWRO)
processes such as pressure, temperature, recovery rate, and feed concentration vary, which
changes the permeate flow rate with no fouling. In order to detect fouling from the fluctuat-
ing permeate flow rates due to various operation conditions, they should be normalized.
However, the normalization method using ASTM D4516 method still produces the fluctua-
tion in the normalized permeate flow due to poor selections of osmotic pressure and tem-
perature correction factor (TCF) equations, which do not reflect the characteristics of feed
water and reverse osmosis membrane in the field very well. This work introduces the cor-
rected normalized permeate flux (NPF) using the fitted osmotic pressure and TCF equations
to minimize the fluctuation during a non-fouling situation and suggests a statistical
approach to detect fouling by comparing the mean values of two groups with different
variances. The laboratory-scale SWRO experiments with randomly changing operation
conditions verify that the corrected NPF and the statistics-based fouling detection method
works very well to find the early stage of fouling by humic acid. In addition, the fitted TCF
equation affects the performance of the fouling detection method more than the fitted
osmotic pressure equation.
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1. Introduction

The water shortage is one of the biggest issues in
the modern era. As the population increases to more
than 7 billion, water demand has been increasing
accordingly. Thus, seawater is considered as an impor-
tant water source to meet the increasing water
demand [1,2]. Recently, reverse osmosis (RO) process
has become one of the most popular desalination tech-
nologies [3], and seawater reverse osmosis (SWRO)
process dominates current desalination markets due to
its lower cost compared to other desalination pro-
cesses such as thermal distillation [4–6].

RO is a pressure-driven membrane process where
solutes are separated from a solution by a semi-per-
meable membrane under a hydraulic pressure greater
than the osmotic pressure of the solutes. It operates at
ambient temperature without phase change, which
makes it a relatively simple and versatile separation
process [7]. One of the most challenging issues operat-
ing the RO processes is membrane fouling [8–16].

RO membrane fouling can be defined as a decline
in performance due to foulants accumulation on the
membrane surface [3], which is the result of the inter-
facial interactions between foulants and membrane
surface (or fouling layer covered on the membrane
surface) [11,12,15]. The fouling induces massive pre-
treatment, high operating pressures, and frequent
chemical cleanings (which possibly damage mem-
branes) to increase water cost [3,16]. Potential causes
of the fouling include inorganic fouling (scaling),
organic fouling, colloidal fouling, and biofouling [8].
The RO fouling mechanism is often complicated due
to the interplay between the salt concentration polar-
ization layer and the fouling layer on the membrane
surface, which is called cake-enhanced osmotic pres-
sure or cake-enhanced concentration polarization
effect [10,14]. The fouling is influenced by operating
conditions, solution chemistry, temperature, mem-
brane properties, and module geometry, while biofilm
formation is additionally governed by the biofouling
potential of feed water [3,13].

Effective fouling control requires a good diagnosis
of RO plant performance [8]. Fouling can be quanti-
fied by monitoring the RO membrane permeability
(product flow rate per unit pressure). However, the
RO membrane permeability is affected by not only
fouling but also the feed–brine osmotic pressure and
the feed water viscosity, which are influenced by feed
concentration, temperature, and the recovery rate.
During the operation of the RO processes, pressure,
temperature, recovery rate, and feed concentration can
vary. For example, a feed temperature drop of 4˚C
normally causes a permeate flux decline of ~10%

without any fouling effect. In order to distinguish the
fouling effect from a normal phenomenon (i.e. non-
fouling state), the measured permeate flow should be
normalized such as ASTM D4516 method [17].
Normalization (or standardization) can be defined as a
comparison of the actual performance to a given refer-
ence performance while the influences of operating
parameters are considered.

However, the normalization using ASTM D4516
method is still not enough to detect the membrane
fouling due to variance in the normalized data [18,19].
Field experiences for the past decades reported that it
was extremely difficult to detect the early stage of the
RO fouling by monitoring a long-term normalized
data [18]. The main reasons why the normalization
failed to detect the fouling easily could be the
arbitrary selection of the empirical equations for the
feed–brine osmotic pressure and temperature correc-
tion factor (TCF), which should be considered as the
site-specific parameters. The hypothesis in this work is
that the early fouling detection can be possible by
selecting proper osmotic pressure and TCF equations,
followed by a statistical approach to compare the
mean values of two groups with different variances
[20]. The objective of this work is to develop a statis-
tics-based fouling detection method using corrected
normalized permeate flux (NPF) calculated from the
fitted osmotic pressure and TCF equations reflecting
the characteristics of feed water and RO membrane.
Laboratory-scale SWRO fouling tests with varying
operation conditions will verify the developed fouling
detection method.

2. Methods

2.1. Calculation and correction of NPF

Normalization is a comparison of the actual perfor-
mance to a given reference performance while the
influences of operating parameters (e.g. pressure, tem-
perature, recovery rate, and feed concentration) are
taken into account [17]. It involves referring the plant
operation back to a standard condition, which can be
defined as the operation condition when the RO plant
shows the reference performance [19]. The reference
performance may be the designed performance or the
measured initial performance. Normalization with ref-
erence to the designed system performance is useful
to verify that the plant gives the specified perfor-
mance, while normalization with reference to initial
system performance is useful to show up any perfor-
mance change between day one and the actual date
[19]. Among several normalized (or standardized)
parameters, this work focuses on normalized permeate
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flow, which is the permeate flow at a standard
condition calculated using Eq. (1) suggested by ASTM
D4516 [21]:

Qps ¼
Pps � DPfbs

2 � Pps � pfbs þ pps
� �

TCFsð Þ
Ppa � DPfba

2 � Ppa � pfba þ ppa
� �

TCFað Þ Qpa

� �
(1)

where Qpa = permeate flow at actual conditions,
Qps = permeate flow at standard conditions (normal-
ized permeate flow), Pfa = feed pressure at actual con-
ditions (kPa), Pfs = permeate pressure at standard
conditions (kPa), Ppa = permeate pressure at actual
conditions (kPa), Pps = permeate pressure at standard
conditions (kPa), DPfba=2 = one half device pressure
drop at actual conditions (kPa), DPfbs=2 = one half
device pressure drop at standard conditions (kPa),
πfba = feed–brine osmotic pressure at actual conditions
(kPa), πfbs = feed–brine osmotic pressure at standard
conditions (kPa), πpa = permeate osmotic pressure at
actual conditions (kPa), πps = permeate osmotic pres-
sure at standard conditions (kPa), TCFa = temperature
correction factor at actual conditions, and TCFs = tem-
perature correction factor at standard conditions.

Eq. (1) can be applied to RO plants of a single or a
multi-element system using hollow-fiber or spiral
wound RO elements. Since laboratory-scale fouling
data will be analyzed in this work, the characteristics of
feed and brine are almost the same. Thus, the NPF with
more simplified formula than Eq. (1) is introduced:

NPF ¼ Js ¼ TCFs Pfs � pfsð Þ
TCFa Pfa � pfað Þ Jað Þ (2)

where Ja = permeate flux (LMH) at actual conditions,
Js = permeate flux (LMH) at standard conditions (i.e.
NPF), πfa = feed osmotic pressure at actual conditions
(kPa), and πfs = feed osmotic pressure at standard
conditions (kPa).

TCF is generally affected by the RO membrane
and it is ideal to obtain TCF from the membrane man-
ufactures. If unavailable, TCF can be calculated using
a membrane-independent equation (TCF1) [21]:

TCF1 ¼ 1:03 T�25ð Þ (3)

where T is temperature (˚C). If the effect of membrane
is considered, TCF can be calculated using a mem-
brane-dependent equation (TCF2) [17]:

TCF2 ¼ exp a� 1

298
� 1

T þ 273

� �� 	
(4)

where a is the temperature coefficient for water
transport of the RO membrane [13], which can be pro-
vided by the membrane manufacturer.

For the osmotic pressure, various empirical equa-
tions are available in literatures [17,21,22] such as:

p1 ¼ 0:2654Cf T þ 273ð Þ=ð1000� Cf=1000Þ (5)

p2 ¼ Cf T þ 320ð Þ
491000

for Cf \ 20000 mg/l (6a)

p2 ¼ 0:0117Cf � 34

14:23
� T þ 320

345
for Cf [ 20000 mg/l

(6b)

p3 ¼ 0:00076Cf (7)

where π1, π2, and π3 are the empirical osmotic pressure
equations, and Cf is feed concentration (mg/l).

NPF is calculated using Eq. (2) with a selected
osmotic pressure equation from various candidates
such as Eqs. (5)–(7) and a selected TCF equation from
Eqs. (3) and (4). Fig. 1 shows the osmotic pressure (π)
as a function of feed concentration (Cf) calculated from
Eqs. (5)–(7) at 25˚C. The differences among the calcu-
lated osmotic pressures are several bars, which is not
negligible. In general, the osmotic pressure is affected
by the ions composition and concentrations, which are
quite site-specific. This is the reason why different
osmotic pressure equations show the different calcula-
tion results as shown in Fig. 1.

As the osmotic pressure and TCF are quite
site-specific, it is important to select proper equations
reflecting the characteristics of feed water and RO
membrane used in the field for the better
normalization performance. The better normalized

Fig. 1. The calculated osmotic pressure from various
empirical equations.

24576 M. Kim et al. / Desalination and Water Treatment 57 (2016) 24574–24582



performance means that the NPF data group has a
lower variance (or standard deviation) during an oper-
ation period without fouling. Although the candidates
for the empirical osmotic pressure equation and the
temperature coefficient for water transport of the RO
membrane (a in Eq. (4)) are provided, it could be bet-
ter to introduce fitting equations for the feed osmotic
pressure and TCF reflecting the feed water and
membrane characteristics in the field. Thus, a simple
formula for osmotic pressure with four unknown
parameters (α, β, γ, and δ) is introduced:

p4 ¼ aCf þ bð Þ cT þ dð Þ (8)

The fitting procedure to find the unknown parameters
(e.g. α, β, γ, and δ in Eq. (8); and a in Eq. (4)) of the
osmotic pressure and TCF formula is a simple opti-
mization approach by minimizing the variance (or
standard deviation) of the NPF data group during the
non-fouling period. The optimization approach is car-
ried out with Microsoft excel solver. The calculated
NPF with the fitted osmotic pressure and TCF
equation is called corrected NPF in this work.

2.2. Statistics-based fouling detection method

The objective of the RO data normalization is liter-
ally to normalize the fouling parameter such as NPF.
An ideal case of the normalization results in a con-
stant value during a non-fouling period. Unfortu-
nately, as discussed earlier, a normalized parameter
fluctuates with a variance even in the non-fouling per-
iod. Fig. 2 shows an example of a fluctuated normal-
ized parameter, NPF. Due to the fluctuation, it is
impossible to figure out the time when fouling starts
by monitoring separate NPF values. Instead, a group
monitoring may make it possible to find the early state

of fouling. Our hypothesis here is that a group of con-
secutive NPF data in a fouling-occurred period should
have a statistically different mean value from a group
in a non-fouling period. Thus, the two groups are
defined to perform the fouling detection (Fig. 2): (1)
Group A which contains the consecutive NPF data
from the start of operation to the present time and (2)
Group B with the recent NPF data including the pre-
sent datum. Group A and Group B represent a non-
fouling period and an unknown period (to be checked
if fouling occurs or not), respectively. If the mean of
Group B is statistically smaller than that of Group A,
Group B falls in a fouling-occurred period because
NPF declines.

The mean values of the two groups with different
population sizes and variances are then compared
using the one tailed t-test [20,23]. Fouling detection
index (FDI) is defined from the result of the t-test as
shown in Eq. (9) to check whether fouling starts or
not.

FDI ¼ lB � lAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A
nA

þ r2B
nB

q þ tdf ;p (9)

where μ, σ, n, and t are mean, standard deviation,
population size, and t statistic, respectively; and A, B,
df, and p represent Group A, Group B, degree of
freedom, and significance level of the t-test, respec-
tively. The degree of freedom (df) for this t-test can be
calculated by:

df ¼
r2A
nA

þ r2B
nB

� �2

ðr2A=nAÞ2
nA � 1

þ ðr2B=nBÞ2
nB � 1

(10)

The fouling detection time is defined as the time when
FDI becomes negative for the first time. In order to
avoid the false detection of fouling, the appropriate
significance level (p) should be determined first. It is
defined as the maximum value while FDI remains
positive during a non-fouling period.

2.3. Laboratory-scale RO fouling test

In order to verify the early fouling detection
method using the corrected NRF discussed in Sections
2.1 and 2.2, laboratory-scale RO fouling tests were
carried out by the laboratory-scale RO experimental
procedure described elsewhere [24,25]. SWRO
membrane was provided by Toray Chemical, Korea,Fig. 2. The concept of the statistic-based fouling detection

method.
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Inc. A scientific grade marine salt mix (Coralife,
Franklin, Wisconsin, USA) was used to simulate
seawater. The humic acid (Waco Pure Chemical
Industries, Japan) was used as a foulant.

The two types of fouling tests were carried out: (1)
the constant-control test and (2) the random-control
test. In the constant-control test, the operation condi-
tions such as salt concentration, temperature, and pres-
sure are controlled at constant values (32,000 mg/l,
24˚C, and 50 bars) from the start of the test while the
random-control test is performed with randomly varied
operation conditions (29,000–33,000 mg/l, 14–30˚C, and
45–50 bars). The feed salt concentration was controlled
by adding the salt mix or the pure water, and the feed
water temperature was controlled by a recirculating
chiller. During the fouling tests, water flux was mea-
sured by weighing the permeate using a balance. Feed
water conductivity and temperatures were measured
by MI-180 (Martini Instrument, USA).

3. Results and discussion

3.1. Effect of fouling on flux decline

Fig. 3 shows the fouling test results from the con-
stant-control test and the random-control test. For both
fouling tests, 10 mg/l of humic acid (HA) was spiked
to see the effect of fouling on flux decline. In the con-
stant-control test where the operation conditions main-
tain constant values, the flux also shows very little
fluctuation (21.8–22.0 LMH) until HA is spiked
(Fig. 3(a)). As soon as HA is added into the feed tank,
the flux suddenly drops by 7% and the fouling
starting time can be easily identified.

In the random-control test where temperature,
pressure, and feed total dissolved solids (TDS) concen-
tration vary randomly as shown in Fig. 3(c), it is
almost impossible to figure out the fouling starting
time due to the flux fluctuation. The flux varies from
15.2 to 41.0 LMH with standard deviation of 5.8 LMH
before adding HA of 10 mg/l at the operation time of
495 min, and there is no evident change in flux after
HA is added. Generally, RO membrane flux increases
at higher pressures, lower feed TDS concentrations,
and higher temperatures when there is no fouling. As
the changes in pressure and TDS are not quite large
compared to temperature (Fig. 3(c)), the flux fluctua-
tion patterns are similar to the temperature fluctuation
pattern when Fig. 3(b) and (c) are compared. In order
to detect fouling in the random-control test with var-
ied operation conditions, the normalization should be
carried out to distinguish the fouling situation from
the normal state.

3.2. NPF and FDI

Fig. 4 presents NPF and FDI calculated from raw
flux data in the random-control fouling test discussed
in Section 3.1. The NPF data are produced as a result
of normalization using ASTM D4516 method (Eq. (2))
with the osmotic pressure equation, π1 (Eq. (5)), and
the TCF equation, TCF1 (Eq. (3)). Compared to the
raw flux data, NPF data are clearly less fluctuated
thanks to the normalization (NPF varies from 18.1 to
27.7 LMH with standard deviation of 2.3 LMH). How-
ever, it is still difficult to identify the fouling starting
time (495 min) using NPF data tracking from Fig. 4(a).

In order to distinguish the fouling state from a nor-
mal state, FDI values are calculated using Eq. (9). The
FDI data with various significance level of the t-test (p
value) are shown in Fig. 4(b). FDI increases as p value
decreases because the t statistic (tdf,p) increases at
lower p values. As discussed in Section 2.2, the appro-
priate p value is determined to be the maximum while
FDI remains positive during a non-fouling period (i.e.
p = 1.0 × 10−14 in Fig. 4(b)). With the appropriate p
value, there are no FDI values smaller than zero over
entire operation times in Fig. 4(b). Since the negative
FDI value means the fouling detection, the NPF using
π1 and TCF1 fails to detect fouling. The main reason to
fail is the fluctuation of NPF. Because of the fluctua-
tion in NPF, the effect of the HA injection is covered
and thus fouling cannot be discovered. Thus, better
selections of the osmotic pressure and TCF equations
to make less fluctuated NPF should be necessary to
detect fouling with the normalized parameter, NPF,
which is called the corrected NPF.

3.3. Corrected NPF for fouling detection

In order to distinguish a fouling state from a nor-
mal state, the variance in NPF in a normal state (a
non-fouling period) should be minimized. It is possi-
ble to minimize the fluctuation of NPF by selecting
proper osmotic pressure and TCF equations. Fig. 5
shows the effect of the osmotic pressure equations, π1
(Eq. (5)), π2 (Eq. (6)), π3 (Eq. (7)), and π4, on the calcu-
lated NPF and FDI in the random-control fouling test
discussed in Section 3.1. π4 is a fitted osmotic pressure
equation with basic form in Eq. (8) such as:

p4 ¼ 0:000737Cf (11)

where parameters in Eq. (8) (e.g. a ¼ 7:19, b ¼ 0, c ¼ 0,
and d ¼ 0:000103) are obtained from the fitting
approach to minimize the variance in NPF during a
non-fouling period. As shown in Fig. 5(b), the selec-
tion of different osmotic pressure equations does not
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change the NPF data dramatically, and Fig. 5(c) shows
that the FDI values are larger than zero over entire
operation periods, which means the fouling detection
method using NPF data with various osmotic pressure
equations fails to detect fouling in the random-control
test. As a result, it is found that the selection of

osmotic pressure equation does not enhance the
fouling detection performance.

Although it is hard to find out which osmotic pres-
sure equations is the best to minimize the variance in
NPF during a non-fouling period from Fig. 5(b), the
variances (or standard deviations) can be compared to

Fig. 3. Effect of fouling on flux decline in (a) constant-control test and (b) random-control test with (c) varying operation
conditions such as temperature, pressure, and feed TDS concentration.
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select the best osmotic pressure equation. The stan-
dard deviations of NPF data with π1, π2, π3, and π4 are
2.32, 2.21, 1.98, and 1.97 LMH, respectively. Consider-
ing π1, π2, and π3 are existing equations, we found that
the fitted osmotic pressure equation, π4, is not very
useful because the standard deviation of NPF with π4
is very similar to that with π3, one of the existing
equations. Thus, π3 can be the best osmotic pressure
equation among the tested ones, and it is selected as
the fixed osmotic pressure equation for the further
analysis discussed below.

Fig. 6 shows the effect of various TCF equations,
TCF1 (Eq. (3)), TCF2, and TCF3, on the calculated NPF
and FDI in the random-control fouling test. The basic
form for both TCF2 and TCF3 is Eq. (4). The tempera-
ture coefficients for water transport for RO membrane
(a) for TCF2 and TCF3 are 2,124 (provided by the
membrane supplier), and 4,165 (the fitted parameter
to minimize the variance in NPF during a non-fouling
period), respectively.

The patterns of NPF with TCF1 and TCF2 are simi-
lar while the trend of NPF with TCF3 is distinguished
(Fig. 6(a) and (b)). The standard deviations of NPF
with TCF1, TCF2, and TCF3 during the non-fouling
period are 1.98, 2.42, and 1.29 LMH, respectively,

which means that the fitted TCF equation, TCF3,
shows the best performance in normalization. In
Fig. 6(c), FDI data calculated from TCF3 show the first
negative value at the operation time of 540 min, which
means that the fouling is detected at the time, 45 min
after the injection of humic acid (495 min). This result
indicates that the correction of TCF equation fitted for
the better normalization makes it possible to succeed
to detect fouling early with the statistics-based fouling
detection method.

Fig. 7 shows the effect of the simultaneously fitted
osmotic pressure and TCF equations (p5 and TCF4) on
NPF and FDI compared to that of the fitted TCF

Fig. 4. (a) NPF with π1 and TCF1 and (b) FDI in the
random-control fouling test.

Fig. 5. Effect of (a) various osmotic pressure equations on
(b) NPF and (c) FDI.
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equation only (p3 and TCF3). Both p5 and TCF4 are
obtained by the fitting approach to minimize the vari-
ance in NPF during the non-fouling period such as:

p5 ¼ 0:000782Cf (12a)

TCF4 ¼ exp 3830� 1

298
� 1

T þ 273

� �� 	
(12b)

As shown in Fig. 7, the simultaneous fitting procedure
does not affect the performance of normalization and
fouling detection at all. This result concludes that the

fitted TCF equation affects the performance of the
normalization and the fouling detection method more
than the fitted osmotic pressure equation.

4. Conclusions

Normalization is an important technique to prop-
erly operate SWRO processes because it can distin-
guish a fouling state from a normal state. However,
the poor selection of the osmotic pressure and TCF
equations which do not reflect the characteristics of
feed water and RO membrane makes it difficult to
detect fouling in the real-field application. Thus, this
work introduced the corrected NPF and developed the
statistics-based fouling detection method using it. The
corrected NPF was calculated using the osmotic pres-
sure and/or TCF equations fitted to minimize the vari-
ance in NPF during a non-fouling period (a normal
state). The NPF data without using the fitted TCF
equations failed to detect fouling in the laboratory-
scale fouling test with randomly changing operation
conditions. Thus, the fitted TCF equation affects the
performance of the fouling detection method more
than the fitted osmotic pressure equation. In the ran-
dom-control fouling test, the corrected NPF with the

Fig. 6. Effect of (a) various TCF equations on (b) NPF and
(c) FDI.

Fig. 7. (a) Corrected NPF and (b) FDI with the fitted
osmotic pressure and TCF equations.
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fitted TCF equation succeeded to detect fouling in
45 min after the addition of humic acid, which leads a
conclusion that the statistics-based fouling detection
method using the site-specific NPF will be useful to
operate the SWRO processes with varied operation
conditions.
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