

www.deswater.com

doi: 10.1080/19443994.2016.1168578

57 (2016) 26548–26551 November

Cross-flow microsand filtration for membrane pre-treatment

Alain Silverwood, Marco Bosisio, Francis Bordeleau*

Neptune Benson Inc., 3584 boul. Poirier, Montreal, Canada, H4R 2J5, email: fbordeleau@neptunebenson.com (F. Bordeleau) Received 16 December 2015; Accepted 13 March 2016

ABSTRACT

VORTISAND microsand filters were introduced in the mid-1980s as a means to remove very fine particles (less than 2 microns) in cooling tower circuits. Computational fluid dynamics, lab-scale, and full-scale studies were used to determine the optimal design parameters of the *VORTISAND* filters. Filtration rates of 50–60 m³/m² h (20–25 gpm/sq. ft.) are typical. About 90% removal of particles greater than 2 microns and SDI reduction of 42–68% are demonstrated.

Keywords: Cross-flow; Microsand; Filtration; Membrane; Pretreatment

1. Introduction

The primary objective of pretreatment to any membrane system is to make the feed water compatible with the membrane. Inadequate membrane pretreatment results in high-chemical cleaning costs, increased downtime, permanent loss of performance, and reduced membrane life [1].

VORTISAND microsand filters (Fig. 1) were introduced in the mid-1980s in the HVAC market as a means to remove very fine particles (less than 2 microns) in cooling tower circuits. More than 2,500 systems were installed worldwide.

In 2013, as *VORTISAND* was introduced in new markets and applications (wastewater reuse, RO pretreatment, process water), extensive R&D efforts began to understand the cross-flow effect (Fig. 2), to improve the performance and to increase the filtration capacity. In the *VORTISAND* filter, the filtrate flow is always equal to the feed flow (no retentate).

The results of this work are summarized herein.

2. Material and methods

Computational fluid dynamics (CFD), lab-scale, and full-scale studies were used to determine the optimal design parameters of the *VORTISAND* filters.

Laser particle counts (LPC) were used to measure the efficiency of the *VORTISAND* filters (Fig. 3).

3. Results

CFD modeling of the VORTISAND filter shows:

- (1) The cross-flow effect occurs across the entire media surface.
- (2) The media remains undisturbed (the surface stays flat).

*Corresponding author.

Presented at the IDA 2015 World Congress (Desaltech 2015) 29 August-4 September, 2015 San Diego, CA, USA

1944-3994/1944-3986 © 2016 Balaban Desalination Publications. All rights reserved.

Fig. 1. (a) Filtration mode and (b) backwash mode.

- (3) There is no migration of fine media (top layer) into the coarse media (bottom layers).
- (4) Backwash flow is evenly distributed.

LPC (Fig. 3) show:

(1) About 90% removal of particles greater than 2 microns that are far better than multimedia filters (MMF).

Lab-scale and full-scale studies show:

- (1) Filtration rates of 50–60 $m^3/m^2\,h$ (20–25 gpm/ sq. ft.) are typical.
- (2) Coagulation is not required to aggregate very fine particles.
- (3) SDI reduction of 42–68% is demonstrated.

Fig. 2. Type of filtration.

Interim										Spectrex					Laser Particle			ie (Counter 800-822-3				
# um	%	Count	0	11	30		6		9	0	1	20	1	50	1	80	2	10	+ ²⁴	40	2	70	
<	-38.34-				÷				÷		÷												
$=_{2}^{1}=_{2}^{1}=$	-10.70-			+		1	,	1	1			•	4	- 6	*	•		•			•		
3-3-	-5.01-	38	-		-		1	3	3		8		ŝ		ŝ	- 6	2	÷		3		i.	
-4-4-5-5-5	-3.33- -1.36-			i.		2	2003	12	5	1	2		8	10	2	10	2	•			12		
6-6-	-0.72-	5		-		30 22			- 80 - 20	3			2	1			10				-		
	-0.89- -0.39-	6 3		10	8	2	1120	2	2.9	52	26	82.2	\sim	25	32		11	23	020	82	27	12	
	-0.21-	ĭ	-7	8) •	21 14	2 x		3 	23 20	1	- 33 - 10	585 540	1	10	а ж	20 10	27	*		े. अ	- 20		
-10-10-10-11	-0.29-	21			5	2			13	2	2			43	4	12	24	e.				4	
-12-12	-0.11-	0	-	23	87	а	1421	14	1	14	2	1.20		18	4	<u>_</u>	1			4	20	2	
	-0.07-	0	-!	5. 51	10 61	а Ж	2973) (1933)	2	83 83	3	8			50	3	1	12			3	10		
-15-15-	-0.14-		4	ж С	34 53		•	98 10	10		- 20	100		- 43	8		- 12	1	5365 2020	*	- 40	34 22	
												OUTIET					Total						
INLET	INLET TOTAL					Counto					OUTLET										Counto		
0.			Counts				0.					counts						Counts					
Size	ze /cc			percent				54	Size					/cc						percent			
< 1 587,293.48				38.34%				< 1					86.06						10.50%				
1-5 872,9		2,989.01		56.99%			1	1-5				377.62						46.05%					
5-15	5-15 65,803.19				4.30%				5-15				45.14						5.50%				
15-30	15-30 5,1			0.33			3%			15-30			162.40						19.80%				
30-50	30-50 731.			0.05%			•	30-50				148.78						18.14%					
50-100 0.00					0.00%				50-100				0.00							0.00%			
TOTAL	TOTAL 1,531,934								Т	TOTAL				820 99.95% Reduction									

Fig. 3. Particle counts.

(4) Cost is very competitive compared to other pretreatment processes (micro and ultrafiltration (MF/UF).

currently exists in water filtration, providing the efficiency of microfiltration at the cost of MMF.

4. Conclusions

VORTISAND cross-flow microsand filtration provides an efficient and cost-effective way to protect membranes and fills the technological gap that

Reference

 B. Mohaved, Proper Pretreatment for Brackish Water Reverse Osmosis Systems, in Pretreatment Solutions, American Membrane Technology Association, Stuart, FL, 2013.