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ABSTRACT

In this study, we investigate the spatial distribution of sulfate concentration in groundwater
of tehsil Jampur, Pakistan using geostatistical techniques. Sulfate concentration in drinking
water causes chronic diseases like stomach disorder, diarrhea, laxative effects, and food
poisoning in human beings, particularly in infants. First, 30 water samples were collected
with their spatial coordinates to evaluate the spatial variation and distribution of sulfate
concentration in groundwater of tehsil Jampur. Then, we evaluated the assumptions of
normality and autocorrelation in the spatial data and used Matern covariance model to
assess the correlation structure of response variable (random field). Furthermore, we
applied ordinary least square and weighted least square to estimate the variogram
parameters. Two interpolation methods, Ordinary Kriging and Bayesian Kriging were used
to predict the unmonitored locations within the studied domain. Performance of the
interpolation methods was assessed through leave-one-out cross validation. The predictive
maps showing results of both the methods are expected to be helpful to the administrative
policy-makers in providing safe drinking water.
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1. Introduction

Pure water is the basic need of human beings and
other species to survive in this world. However, con-
taminated water causes serious health issues. Pakistan
is among the countries where majority of the people
do not have access to pure drinking water. Pakistan
ranks at number 80 among 122 nations regarding
drinking water quality [1] where about 65% of the
population has access to pure drinking water, while
remaining 35% has insufficient water supply and

consequently, they are drinking contaminated water
[2–6]. As a result, there is an increased morbidity and
mortality rate because of drinking unsafe and polluted
water [7]. This growing shortage of fresh water is due
to improper disposal of waste materials, food residue,
industrial waste in water bodies, and improper use of
agrochemicals in agriculture [6,7].

Sulfate is a physiochemical parameter that natu-
rally occurs in drinking water [8]. Water moves
through the formation of soil and rocks that contain
particular sulfate minerals and some of the minerals
dissolve in the groundwater. When sulfate concentra-
tion in drinking water exceeds 250 mg/l, a medicinal
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taste makes the water unpleasant [8–10]. Mixture of
sulfate in drinking water has raised many health
issues, especially diarrhea and dehydration in infants
and adults [11,12]. Also, people suffer from the laxa-
tive effects when they change drinking water from
low sulfate concentration to high sulfate concentration.
Therefore, many studies have been conducted to see
the effects of sulfate on humans, see [10–15]. Water
containing sulfate concentration from 250 to 500 mg/l
is free from severe health risks [16–18].

Geostatistics offer multiple techniques to measure
and predict the pollutant concentration of groundwa-
ter and its chemistry in space. A number of researches
have been done in past using Geostatistical
approaches for modeling and interpolation of water
contamination parameters, see [16,17,19–21] and
[22,23]. Geostatistics is based on the presence of spa-
tial autocorrelation and requires the normal distribu-
tion of response variable. Pilz and Spöck [24]
suggested to use the Box–Cox transformed Gaussian
response variable when the normality assumption is
violated. Hussain et al. [16] remarked that Kriging
accounts for the variability of spatial response vari-
able; therefore, better than classical methods. They
suggested to evaluate the performance of Kriging
through the Kriging variance which depends upon
spatial variation of response variable. Talaee [20] used
Ordinary Kriging (OK) and Indicator Kriging to exam-
ine the spatial variability in groundwater of Ardabil
Plain in the northwest of Iran. He analyzed 11 water
parameters including sulfate concentration and created
predictive maps using the results of OK. Bayesian
Kriging (BK), introduced by Omre and Halvorsen [25],
is an efficient technique for interpolation of random
field at unobserved locations. It takes into account the
prior information while estimating the variogram
parameters and considers the variogram parameters
as a random variable [24–26]. Mubarak et al. [17] stud-
ied the spatial distribution of sulfate concentration in
drinking water of three divisions of Punjab, Pakistan
using OK, BK, and Universal kriging. They finally
used spherical variogram model estimated by maxi-
mum likelihood estimation method and concluded
that BK has least prediction error as compared to
other Kriging methods. Roy and Hossain [26] adopted
Bayesian geostatistical model to predict the arsenic
concentration at different levels of well depth in Ban-
gladesh with the help of spatial predictive maps. They
used Matern correlation function and concluded that
this function is positive semi-definite and decreases
when distances increase. Cressie [27] suggested to use
weighted least square (WLS) for the estimation of vari-
ogram parameters because WLS takes into account the
correlation between variogram estimators at different

lags and automatically gives more weight to initial
lags and less weight to those having smaller number
of pairs. Finley and Banerjee [28] reported that correla-
tion parameters are often weakly identifiable; there-
fore, selection of proper priors is necessary in BK to
run efficient Monte Carlo Markov Chain (MCMC).
Roy and Hossain [26] reported that the priors of
inverse gamma distribution are suitable for partial sill
(σ2) and nugget effect (τ2), while priors of uniform
distribution are good choice for range or decay
parameter (ϕ).

The objective of this study is to predict the spatial
distribution of sulfate concentration in groundwater of
tehsil Jampur, Pakistan. For this purpose, we exam-
ined the assumption of normality and spatial autocor-
relation of response variable [24,29]. The null
hypothesis of no spatial dependence between
observed locations was tested through nugget to sill
ratio [30]. We estimated the parameters of variogram
model by OLS and WLS [27]. Two interpolation meth-
ods, OK and BK, have been applied with Matern vari-
ogram model to predict the ungauged locations and
prediction results have been displayed using contour
plots. Finally, both OK and BK methods have been
cross validated using leave one out cross validation
[31] and technique with better performance is
suggested for further prediction.

2. Material and methods

2.1. Study area and data description

The study area, tehsil Jampur is located in south-
ern Punjab, Pakistan, at east latitude 29.38˚ and north
longitude 70.35˚. Jampur is tehsil headquarter situated
in the north of district Rajanpur and about 45 km
away from Dera Ghazi Khan. It lies 15 km away from
the west bank of Indus River and occupies an area of
approximately 10 km2 with population about 120,000.
Jampur has a desert climate with hot summer while
mild winter [23]. Furthermore, average maximum tem-
perature of Jampur varies between 26.0 and 44.0˚C.
Except July–August (average approximate precipita-
tion is 55 mm), the weather is generally dry through-
out the year. It has much spatial variability in
groundwater and it was found that majority of its
population was drinking contaminated water [32].
Therefore, a survey was conducted to evaluate the
quality of groundwater. Keeping in view the guideli-
nes of World Health Organization (WHO), 30 samples
of groundwater were collected from different locations
(see Fig. 1). For a thorough and objective analysis, 9
samples were taken from injector pump, 15 from hand
pump, 2 from water supply, and 4 from tube well. For
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each sample, groundwater was processed and ana-
lyzed for the sulfate concentration (mg/l). Spatial
coordinates of each location were observed using
handheld GPS receiver and were recorded in GCS sys-
tem. Sulfate concentration (mg/l) was observed using
sulfate Portable Photometer Hi 96751 HANNA Instru-
ment USA. The methodology of Gilcreas [33] was
implemented to observe the sulfate level in sampled
locations for modeling and prediction purpose.

2.2. Geostatistical analysis

2.2.1. Variogram model

Variogram is a tool used to quantify the spatial
variability and correlation structure in response

variable. It reflects our understanding about the geome-
try and continuity of response variable and determines
that how data values are related with distances [27,34].
Mathematically, semi variogram is described as:

cðhÞ ¼ 1

2 NðhÞj j
XN hð Þ

i¼1

Yi � Yj

� �
(1)

where NðhÞj j shows the total number of Euclidean dis-
tances separated by lag (h) and Yi, Yj are data values
at spatial locations i, j, respectively. Variogram is
mainly used to determine the spatial variation in ran-
dom field (response variable). Therefore, selection of
suitable variogram model plays significant role in spa-
tial prediction [21]. Roy and Hossain [26] suggested to
use the Matern variogram model because it decreases

Fig. 1. Location map showing the spatial distribution of monitored places of tehsil Jampur, Pakistan.
Source: [32].

M. Ahmad et al. / Desalination and Water Treatment 57 (2016) 28195–28204 28197



when distances increase and according to Finley and
Banerjee [28], it takes the mathematical form:

c hð Þ ¼ s2 þ r2 1� 1þ /hð Þe�/h
� �

; h[ 0
0; h� 0

�
(2)

where τ2 is the nugget effect, σ2 is sill, and ϕ is the
range of the Matern model. The lag distance is defined
as the distance between pairs at which the variogram
is calculated, while the distance beyond which spatial
autocorrelation is practically zero is the range (ϕ). The
nugget effect (τ2) represents the micro scale variation
or measurement error [26].

2.3. Theory of Kriging

Efficient interpolation method helps in reducing
prediction error [16,17,21]. Kriging is the best linear
unbiased prediction method [35]. The predicted value
at unmonitored location using Kriging method is a lin-
ear combination of observed locations. Therefore, to
determine the coefficient of the linear combination,
auto covariance plays a significant role [29]. In OK,
mean is assumed constant in the local neighborhood
of each estimation point i.e. m lað Þ ¼ m lð Þ, for each
adjacent data value, lað Þ is used in estimating Y lð Þ.
Kriging estimator takes the form:

Y� lð Þ ¼ m lð Þ þ
Xn lð Þ

a¼1

ka lð Þ Y lað Þ �m lð Þ½ � (3)

Y� lð Þ ¼
Xn lð Þ

a¼1

ka lð Þ Y lað Þ þ 1�
Xn lð Þ

a¼1

ka lð Þ
" #

mðlÞ (4)

where ka is representing the weights associated with
Kriging estimator given in Eq. (3). Further, unknown
mean is shifted in such a way that kriging weights
sum to unity. Consequently, estimator of OK becomes:

Y�
OK lð Þ ¼

Xn lð Þ

a¼1

kOKa lð Þ Y lað Þ with
Xn lð Þ

a¼1

kOKa lð Þ ¼ 1 (5)

According to the constraint of unit sum of weights,
error variance is minimized by arranging the system
that reduces the error variance plus an additional term
involving a Lagrange’s parameter, lOK lð Þ:

L ¼ r2e lð Þ þ 2lOK lð Þ 1�
Xn lð Þ

a¼1

ka lð Þ
" #

(6)

The reduction in error variance with respect to
Lagrange’s parameter lOK lð Þ effects the constraint in
such a way that it becomes:

1

2

@L

@l
¼ 1�

Xn lð Þ

a¼1

ka lð Þ ¼ 0 (7)

Thus, from Eq. (7), it is clear that unbiasedness prop-
erty of Kriging estimator hold as:

Xn lð Þ

a¼1

ka lð Þ ¼ 1

Afterward, the error variance (r2OK lð Þ) is deduced
from Kriging equations as given below in Eq. (8):

r2OK lð Þ ¼ c 0ð Þ �
Xn lð Þ

a¼1

kOKa lð Þ C la � lð Þ � lOKðlÞ (8)

Here the covariance function c(0) utilizes the vector-
valued of parameter α where α = c(σ2 = sill, ϕ = range,
τ2 = nugget).

BK introduced by Omre and Halvorsen [25] is con-
sidered as the best prediction technique [34] because it
takes into account the parameters uncertainty for esti-
mating the variogram parameters. To normalize the
non-normal response variable, Box–Cox transforma-
tion [36] is used as:

Ytransformed ¼ Yk�1
k : k 6¼ 0

log Yð Þ : k ¼ 0

�
(9)

where k is the transformation parameter known as
lambda. Box–Cox transformation is implemented on a
response variable having only positive values [36]. For
detailed analysis of both OK and BK, we used geoR
package [31] of R statistical software [37]. To carry out
spatial prediction using OK, the krige.control function
is implemented which is further used in krige.conv
function. Initially, as input parameters, the data and
spatial coordinates were defined by geodata argument
and specified the locations where prediction was
required.

2.4. Assessing the presence of anisotropy

Spatial autocorrelation in terms of spatial aniso-
tropy or isotropy is a basic feature in spatial modeling
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for natural phenomenon [35]. A correlation structure
is isotropic when the pattern of the spatial correlation
changes due to change in the direction of orientation
of pairs of locations. Kriging methods are based on
isotropic models [34]. Therefore, the correction for any
anisotropy is necessary before using Kriging
approaches. Usually the presence of spatial anisotropy
is assessed by directional variogram maps and aniso-
tropy ratio [29]. We found using function coords.aniso
that the structure of spatial autocorrelation of response
variable was approximately independent from direc-
tion. Therefore, omnidirectional variogram (Fig. 5) was
used to capture autocorrelation.

2.5. Criteria for performance evaluation

To compare the quality of prediction obtained
from fitted OK and BK techniques, we used four per-
formance evaluation measures: root mean square error
(RMSE), mean absolute error (MAE), relative bias
(rBIAS), and relative mean squared prediction error
(rMSEP) [38]. Mathematically these are expressed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

i¼1

ðŶi � YiÞ2
vuut (10)

MAE ¼ 1

k

Xk
i¼1

Ŷi � Yi

��� ��� (11)

rBIAS ¼ 1

kY

Xk

i¼1

ðŶi � YiÞ2 (12)

rMSEP ¼
Xk

i¼1

ðŶi � YiÞ2=
Xk

i¼1

ðYp � YiÞ2 (13)

Ŷi shows the predicted values at index i and Y is
quantity of arithmetic mean while Yp is the arithmetic
mean of predicted values. We used leave-one-out
cross validation where one data location is removed
from data-set and it is predicted from the remaining
data [31].

3. Results and discussion

3.1. Exploratory data analysis

The measured sulfate concentration at sampled
locations was analyzed by R statistical software [37].
Since, most of the geostatistical techniques depend
upon the normality assumption of response variable
[29]; therefore, at first step, the normality and spatial

autocorrelation assumptions of spatial data are evalu-
ated. Sulfate concentration in our data-set ranged from
45 to 3,700 mg/l. The level of observed sulfate concen-
tration in groundwater is shown in Fig. 2.

The mean, median, mode, and standard deviation
(SD) of sulfate concentration were 731.4, 401, 3,700,
and 855.68 mg/l, respectively, which showed that
the distribution of sulfate concentration is positively
skewed. To test the normality of response variable,
Anderson–Darling Normality test, (A2 = 2.22,
p-value < 0.005), confirmed the departure from nor-
mality. Further, the histogram in Fig. 3 also indicated
that response variable is far from normality and is
positively skewed with approximately 80% of the sam-
ples in the lower tail while only six samples exceed
the limit of 1,000 mg/l. To normalize the skewed data,
Box–Cox transformation [36] implemented by Eq. (9),
gave transformed parameter, k ¼ 0:065, used to
transform the skewed response variable. Box–Cox
transformed variable takes the form:

Transformed variable ¼ ½fOriginal variableg0:065�
� 1=ð0:065Þ (14)

After implementing the Box–Cox transformation,
Anderson–Darling normality test was again used to
evaluate the normality of transformed variable
which took the value of statistic, A2 = 0.393 with
p-value = 0.3558, that confirmed normality. Thus, the
response variable becomes Box–Cox transformed
Gaussian response variable [24].

The next step consists of examining the spatial
autocorrelation among the observations of response
variable. For this purpose, variogram envelope (Fig. 4)
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Fig. 2. Plot of observed sulfate concentration at 30 sampled
locations corresponding to spatial coordinates.
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that contains an envelope which is based on the per-
mutations calculated from data values across the sam-
pled locations. Variogram envelope is designed under
the null hypothesis: H0 = No spatial autocorrelation. It
showed that the increasing trend in the experimental
variogram is statistically significant because all points
are lying within limits; therefore, data follow the basic
assumption of spatial autocorrelation [29]. Further,
Geostatistics is also based on an assumption that the
attributes in the earth are spatially continuous up to
certain lag distance [29,34] which is evaluated by per-
spective plot [31] shown in Fig. 4 (right panel).

3.2. Parameter estimation of experimental variogram

An important step in geostatistical prediction is the
selection of suitable correlation structure to model the
variogram and its parameters estimation [16]. There-
fore, three correlation structures like exponential,
spherical, and Matern are fitted over the experimental
variogram model (Fig. 5). Their estimated parameters
using eyefit command of geoR package [31] are
r2 ¼ 3:12; / ¼ 0:26; s2 ¼ 2:21
� �

for exponential,
(σ2 = 3.34, ϕ = 0.24, τ2 = 2.08) for spherical, and
(σ2 = 3.12, ϕ = 0.27, τ2 = 2.08) for Matern variogram
model with smoothness parameter, γ = 0.27. Among
three variogram models, Matern variogram model
gave least value of RMSE. Therefore, the estimated

parameters of Matern variogram model are used in
Kriging. The lag value for experimental variogram
was 46.8 meters calculated by Eq. (1) (Matheron Esti-
mator) [30]. Parameters of selected Matern variogram
model have been estimated by OLS and WLS. In final
prediction, the parameters estimated by WLS
were used as it produced less RMSE (Table 1). The
parameters estimated using WLS showed that the
ratio of τ2/σ2 was approximately 62%, representing
that the spatial autocorrelation of sulfate concentration
was moderately dependent. It also showed that the
sulfate concentration differ at a scale smaller than the
lowest lag distance [39].

3.3. Kriging estimation and prediction maps

The estimated values of covariance parameters,
partial sill (σ2), and range (ϕ), were defined as a 2 ele-
ment vector (3.12, 0.27) in cov.par argument. Moreover,
the type of adopted correlation function, Matern, was
mentioned in cov.model argument. The results of pre-
diction mean and prediction SD were shown (see
Figs. 5 and 6 (left panel)) using image function. In BK,
model specifications were same as described in OK
[17]. Moreover, for BK, prior distributions were con-
sidered for each uncertain parameter of the models
because Finley and Banerjee [28] reported that for an
efficient MCMC behavior, reasonable priors for

Fig. 3. Exploratory data analysis (EDA) of observed sulfate concentration (mg/l) of Jampur Region, showing positively
skewed distribution.
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fs2; /; r2; tg are required. For this purpose, sample
variogram (Fig. 5) is a useful tool [26]. For range (ϕ),
the priors of uniform distribution were taken with
hyper parameters, 1.0 and 0.5. Commonly, the priors
of inverse gamma distribution are assigned to variance

components, partial sill (σ2) and nugget (τ2) [26].
Therefore, the prior distribution for nugget effect (τ2),
was taken as inverse gamma with scale and shape
parameter 2 and 1.5, respectively. Similarly, for partial
sill (σ2), inverse gamma distribution with scale and
shape parameter 2 and 1.5 was assumed as a prior
distribution. Uniform distribution was specified as a
prior distribution for nugget to sill ratio (υ = τ2/σ2). To
obtain the posterior distribution of parameters, 5,000
iterations of MCMC were executed and the conver-
gence of the fitted models was observed. The function
krige.bayes of geoR package [28] was used while imple-
menting BK. Like OK, the results obtained from BK
were also displayed for prediction mean and predic-
tion SD (Figs. 5 and 6 (right panel)). Comparatively,
BK showed a good picture of sulfate concentration in
groundwater and gave lower prediction error (see
Table 2).

Estimated values of OK and BK are plotted using
image plots as shown in Fig. 6 (Mean Predictive
Maps) and Fig. 7 (Prediction SD Maps). Kriging esti-
mates showed different spatial patterns and identified
high risk areas. The higher values have been indicated

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

12

distance

se
m

iv
ar

ia
nc

e

longitude

lat
itu

de

value

Fig. 4. Plot of variogram envelope of sulfate concentration to examine spatial autocorrelation between neighboring sam-
ples (left panel). Perspective plot showing the continuity assumption of response variable over study domain (right
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Table 1
Parameters estimation of Matern variogram model using OLS and WLS

Estimation technique Range (ϕ) Partial sill (σ2) Nugget (τ2) RMSE

OLS 0.241 3.1412 2.092 5.683
WLS 0.255 3.3514 2.085 4.129
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by blue, yellow, and red colors which are showing
hotspot areas while tolerable values have been showed
by green color, representing good region. Further, the
highest sulfate concentration (greater than 2,000 mg/l)
is observed at top left area of prediction map with east
latitude 29.60–29.63˚ and north longitude 70.33–70.39˚.
The permissible limits as described by WHO [18] are
given at region with east latitude 29.52–29.60˚ and
north longitude 70.30–70.45˚ as shown in Fig. 6 (right
panel). Similarly, spatial region with east latitude
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Table 2
Results of various spatial validation statistics for Ordinary
and BK

Kriging technique

Various spatial validation statistics

RMSE MAE rBIAS rMSEP

OK 949.94 620.33 0.3449 7.1292
BK 865.99 614.76 0.1550 3.4531
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Fig. 7. Image plots of prediction SDs using BK (right panel) and OK (left panel).
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29.45–29.70˚ and north longitude 70.55–70.60˚ showed
permissible level. BK showed relatively lower predic-
tion SD as compared to OK which is clearly shown in
Fig. 7.

3.4. Cross validation for assessing performance of predicted
errors

Leave-one-out cross validation is used where each
of the data location is removed one by one and then
predicted using the remaining data [31]. Both, OK and
BK have been compared using the validation
approaches and the resulted predicted errors have
been given in Table 2.

These statistics are calculated using package
spTimer [38] of R statistical software [37]. The
results taken by cross validation (Table 2) illustrate
that BK gives much better estimation results than
OK, because all validation statistics: RMSE, MAE,
rBIAS, and rMSEP predicted by BK are smaller than
RMSE, MAE, rBIAS and rMSEP predicted by OK.
Thus, results showed the better performance of BK
for the prediction of groundwater salinization at
unmonitored locations.

4. Conclusion

This study aimed to elaborate the use of geostatis-
tical interpolation methods for mapping the level of
sulfate concentration in ground drinking water. BK
gives better prediction and valid estimation of sulfate
concentration in groundwater as compared to OK.
Our findings confirm the results reported in [17].
Moreover, the highest sulfate concentration (greater
than 2,000 mg/l) estimate is observed at east latitude
29.60–29.63˚ and north longitude 70.33–70.39˚. As sug-
gested by Cressie [27], our results also support the use
of WLSs method for the estimation of variogram
parameter.
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