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a b s t r a c t

Cyanotoxin is one of the emerging water contaminants that pose serious health risks to humans. 
high performance liquid chromatography and liquid chromatography-mass spectrometry (LC-MS) 
are commonly used analytical tools for the detection and quantification of cyanotoxins. Recom-
mended Environmental Protection Agency drinking water guidelines for majority of cyanotoxins 
is 1 µmg L and is followed by majority of drinking water treatment plants to ensure public health 
and safety. Ozone is an effective method for removing cyanotoxins present in water. Some stable 
cyanotoxin species can be removed by ozone-based advanced oxidation processes. UV irradiation 
and H2O2 when used along with ozone, and TiO2 catalyzed ozonation can accelerate the cyanotoxin 
removal process in water. Water chemistry plays an important role in determining the efficiency 
of advanced oxidation processes. This paper summarizes the recent studies that are carried out 
targeting the removal of cyanotoxins in water, and evaluates benefits of ozonation as a pre- or 
post-oxidation process for drinking water desalination plants.
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1. Introduction

The occurrence and severity of harmful algal blooms
(HABs) also known as blue-green algae have posed a 
serious threat of illness to humans. Cyanobacterial poi-
soning in humans and animals was first reported in lit-
erature by Hunter [1]. Many investigations were carried 
and confirmed cyanobacterial poisoning in humans, 
mammals and birds [2–5]. Cyanobacterial poisoning 
exists also in many other animals and plants [6–8]. Much 
attention was paid to cyanotoxins and clinical investiga-
tions related to hepatotoxicosis following the confirmed 
acute outbreaks of poisoning and human death in Bra-
zil [9–11]. The main causes of poisoning were found to 
be haemodialysis and oral routes, and control measures 
were taken to eliminate cyanotoxins from the drinking 
water supply systems in many countries [12,13]. The 
direct contact with HABs can cause more serious health 
problems. 2-h exposure by direct contact with the bloom, 
which involved immersion, oral ingestion and inhala-

tion in the water containing 48.6 µg/L of microcystin-LR 
(MC-LR), has caused gastrointestinal disorder (nausea, 
vomiting, fever, headache), followed by hepatotoxicosis 
and multiple organ failures [14–18]. Cyanobacterial tox-
ins differ both in their chemical structure and properties. 
Some of the chemical structures of cyanobacterial toxins 
are cyclic peptides, alkaloids, lipopolysaccharides and 
organophosphates. Cyanobacterial toxins are primarily 
classified on the basis of their toxic effect on the organs, 
tissues and cells of organisms. MCs and cylindrosper-
mopsin (CYN) of hepatotoxins group, Anatoxin-a and 
Saxitoxin of neurotoxin group are some important cyano-
toxins that cause poisoning in humans. Concerns regard-
ing the contamination by cyanotoxins of drinking water 
have stimulated the development of a range of detec-
tion methods for their identification and quantification 
[19–26]. Screening protocols included initial microscopic 
analysis of phytoplankton and evaluation of cyanobacte-
rial cell density followed by toxin analysis for monitoring 
cyanotoxin risks efficiently [27]. In addition, many sen-
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sors have been developed for the estimation of cyanobac-
terial abundance and even the estimation of toxic species 
[28,29]. Cyanotoxins can be eliminated from water by a 
variety of methods, for example, flocculation, membrane 
filtration, and adsorption on activated carbon, oxidation 
by permanganate, ozonation and chlorination [11,30–46]. 
However, the conventional treatment methods when 
used alone are unable to remove cyanotoxins completely. 
On the other hand, when different treatment methods 
are combined, toxin elimination becomes expensive pro-
cess. The combination of flocculation by ferric chloride 
and slow sand filtration does cause cyanobacterial lysis 
leading to an increase in dissolved MC concentrations 
in drinking water [47]. Thus, they are effective methods 
for the removal of cell-bound toxins but not suitable for 
dissolved cyanotoxins. Combination of flocculation-fil-
tration-chlorination demonstrated poor removal of MC. 
The methods that lead to cell lysis are not advisable 
because toxins are released from cells. Methods such as 
chlorination, activated carbon adsorption or ozonation 
can be applied to eliminate dissolved cyanotoxins. Flo-
tation, filtration and pumping methods can be applied to 
reduce HABs. However, these methods are not suitable 
for open water columns where the floating algae are not 
thick enough and also because of high costs [48].Chlo-
rination-based disinfection is widely used in the treat-
ment of drinking water and reduces the concentration of 
cyanotoxins [49]. However, studies have shown that MC 
degradation is strongly dependent on chlorine doses, 
contact time and pH [50]. The conversion of various tox-
ins to non-toxic compounds requires different conditions 
[49], and investigations have shown that the optimal con-
ditions for the transformation of all toxins in the mixture 
cannot be achieved with chlorination process. The risk 
of toxin release from cells may also increase following 
chlorination [51]. Alternative process such as ozonation 
methods was proved to be efficient for the removal of 
MC [52,53]. The purpose of this article is to provide some 
background information on cyanotoxin detection and 
removal using ozone and ozone-based advanced oxida-
tion processes (AOPs).

2. Cyanotoxin detection and quantification

Detection of cyanotoxin at very low concentrations 
is required for potable water applications. For such low 
concentration measurements, toxicity-based bioassays are 
impractical in terms of pre-concentration of water samples. 
Sensitivity of enzyme-linked immunosorbent assay (ELISA) 
and Phosphatase assay methods are very high; however, 
cross-reactivity was found to be a major problem which 
causes overestimation or underestimation of toxin concen-
trations. ELISA and Phosphatase assay methods are useful 
qualitative screening tools but not suitable for cyanotoxin 
quantification [9,54]. For monitoring the potential hazard 
of cyanotoxins in water, some qualitative methods can be 
employed. After sampling, identification and quantification 
of cyanotoxins can be precisely carried out by the various 
analytical techniques in the laboratory (Table 1). 

High-performance liquid chromatography (HPLC) is a 
commonly used analytical procedure for the determination 
of cyanotoxins. Separation of toxins have been successfully 
carried out using a reverse phase C18 packed column, amide 
C16 column, internal surface reverse phase column or ion 
exchange column, and with an aqueous mobile phase con-
taining methanol or acetonitrile. For accurate quantification 
of cyanotoxins, good resolution and separation of peaks are 
required; the mobile phase determines whether toxins are 
resolved from each other and from co-extracted compounds. 
MC-LR and  MC-YR co-elute with acetonitrile/ammonium 
acetate as mobile phase. However, good separation and res-
olution can be obtained with methanol-based mobile phases. 
UV absorbance is one of the commonly employed techniques 
for detecting these toxins following chromatographic separa-
tion. Most MCs have a UV absorption maximum at 238 nm; 
however, MC-LW that contains aromatic amino acid con-
stituents has absorbance maxima at lower wavelengths (222 
nm). One of the drawbacks of UV detector is the interference 
from co-eluting components in the sample extract and their 
effects on the quantification of toxins. A photo-diode array 
(PDA) detector records both UV response and the spectrum 
of a separated analyte. It provides better evidence of the pres-
ence of a specific cyanotoxin than using single wavelength 

Table 1
List of analytical techniques used for the removal of cyanotoxins

Analytical techniques Sensitivity range Measurements

HPLC-MS [55–59] 0.01–2.64 µg L
Measures individual toxin. May assist in identification of 
particular toxins. Quantification still depends on available 
standards.

HPLC-PDA [60–63] 0.02 µg L
Measures individual toxins, subject to availability of 
standards

HPLC-UV [64] 0.02 µg L
Measures individual toxins, subject to availability of 
standards

MALDI-TOF-MS [65] <7 µg L
Measures individual toxins, lack of available and versatile 
internal standards has limited its use

NMR [66, 67] Sub-µg levels
Measures individual toxins, subject to availability of 
standards

Electrochemical-based biosensors [68–71] <1 µg L Extremely specific and highly sensitive method 

Capillary electrophoresis (CE, CE-MS) [68] –
Measures individual toxins, subject to availability of 
standards
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detection. However, when the concentrations of cyanotoxins 
are low and spectra are not well defined, the identification of 
peaks is difficult and depends on the experience of the ana-
lyst. Concentrations of cyanotoxins can be obtained by quan-
tification of peaks relative to a standard. Mass spectrometry 
detection following HPLC separation is a better method for 
identification of individual cyanotoxins as long as a mass 
spectrum of an authentic standard is available. MS/MS detec-
tions offer better resolution where the fragmentation pattern 
can be used to greatly assist in determining the identities of 
unknown cyanotoxins. matrix-assisted laser desorption/ion-
ization-time of flight (MALDI-TOF) mass spectrometry has 

also been successfully used as a detection method following 
chromatographic separation. Capillary electrophoresis can 
be employed to separate and quantify cyanotoxins; however, 
this method is less sensitive when compared with HPLC 
method. Nevertheless, the above-mentioned instrumental 
methods require expensive equipment, skilled personnel, 
time consuming and less suitable for routine and field anal-
ysis. Biosensors are attractive and valuable tools for routine 
analysis and quick monitoring of cyanotoxins in water. Opti-
cal, enzyme-based, immune sensors, nanomaterials (gold, 
silver, carbon nanoparticles) have been successfully applied 
in biosensors for the detection of cyanotoxins. 

3. Ozonation process and cyanotoxin removal in water

Ozone is a powerful oxidant for the removal of some 
classes of cyanotoxins. Cyanotoxins such as Anatoxins-a, 
CYN, MC and nodulain in water can be successfully 
removed by ozonation process. Oxidation of MC-LR and 
nodulain in pure water appears to be complete within 
few minutes. Saxitoxin is the least susceptible to ozone-
based destruction. To ensure cyanotoxin removal, ozone 
must be applied and dissolved at the required residual 
concentration in water. Water quality parameters such as 
pH and dissolved organic carbon (DOC) strongly influ-
ence required ozone dosage levels and contact time. In 
general, ozone residual dose of 0.2 mg L with a contact 
time of 5 min will be required for destruction of cyano-
toxins [72]. Reaction kinetics will not be favorable for oxi-
dation of cyanotoxins when organic material is present in 

Fig. 1. SEM image of cyanotoxin before and after ozonation: (a) No ozone, (b) 1 ppm ozone, (c) 3 ppm ozone, and (d) 5 ppm ozone 
[73].[AQ17]

Fig 2. Chart illustrating degradation of cylindrospermopsin at 
various ozone doses. Concentrations of cylindrospermopsin 
measured by LC-MS method are shown in black; concentrations 
calculated out of cytotoxicity assessment are shown in red [76].
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raw water. Studies have shown that the ozonation when 
applied in early phase of water treatment process is prone 
to destroy cyanobacterial cells (as seen in Fig. 1.), increases 
DOC and eventually results in increase in cyanotoxin con-
centrations in water [73–75]. Effect of ozonation on the cel-
lular morphology of Microcystis aeruginosa is shown in Fig. 
3. When the concentration of Ozone dose increased during 
treatment; cell wall gets damaged; and cellular cytoplasm 
gets released from the cells, which in turn increased DOC 
concentrations in water. Performance of ozone process 
was found to be different for the cells from natural bloom 
conditions when compared with laboratory cultured cells. 
In addition, the cyanobacterial biomass and the initial MC 
concentration are factors affecting the effectiveness of the 
oxidation process. O3/DOC and alkalinities are some of 
the factors which would define the inter-bloom reactivity 
and describe the differences in ozone decay. Studies have 
also demonstrated that during direct ozonation of toxin 
cells from natural blooms, MCs were resistant with least 
complete cell lysis and lowest lysis rate [74]. 

Reactivity of ozone varies dramatically with different 
organic functional groups. Reaction of CYN with ozone is 
strongly pH dependent, and the detailed reaction pathways 

of ozonation process have been recently reported by Yan et 
al. [76]. Common ozone reaction mechanisms include double 
bond cleavage, electron transfer, hydroxyl radical oxidation 
and oxygen atom transfer. The degradation begins with car-
bon-carbon double bond cleavage of the toxic uracil moiety 
of CYN, and complete degradation occurs as the ozone dose 
is increased (Fig. 2). Cytotoxicity measurements have con-
firmed that ozone-based oxidation is an effective and prac-
tical method for the removal of CYN in drinking water [76]. 

Arid countries are increasingly reliant on seawater 
desalination for drinking water and industrial purposes. 
An emerging threat to public health is due to unpredicted 
rapid growth of HABs/cyanotoxins in seawater. Contribu-
tors to the growth of blooms are anthropogenic inputs from 
industrial and agricultural waste stream disposal into sea, 
and also climate change. For the effective removal of cyano-
toxins and to avoid lysis in source water, ozonation process 
should be applied at the later phase of water treatment/
desalination process for potable water applications.

4. Ozone-based advanced oxidation 

Ozone-based AOP produces hydroxyl radicals which 
can react with and destroy a wide range of cyanotoxins. 
The effectiveness of an AOP relies on its ability to generate 
hydroxyl radicals. Ozone-H2O2, and UV are some of AOPs 
employed for cyanotoxin removal. The addition of hydrogen 
peroxide facilitates the decomposition of ozone leading to 
the formation of hydroxyl radicals. Once the hydroxyl rad-
icals are formed, the propagation of chain reaction happens 
while destructing target contaminants. The efficiency of MC 
destruction was enhanced by the ozone-H2O2 process when 
compared with ozone alone. With the H2O2:O3 ratio of 0.5, 
1 mg L of MC-LR was completely destroyed within 30 min 
[52]. Effectiveness of toxin removal can be improved by UV 
irradiation along with consequent ozonation process. MC 
degradation was found to be more efficient when UV/O3 
processes applied sequentially. Similar to hydrogen perox-
ide, UV irradiation helps to promote the decomposition of 
ozone to generate strong hydroxyl radicals. With 5 min of UV 
irradiation (intensity 1.9 mW cm2) and consequent 5 min of 
ozonation at 0.5 mg L, 90% of MC removal can be achieved 
for the waters loaded with 1 mg L MC concentrations [77]. 
Process efficiencies of ozone, UV and UV/O3 for MC removal 

Fig. 3. Degradation of microcystin-LR with UV/O3 process and the representation of reaction sites of microcystin-LR [79].

Fig 4. Degradation of CYN present in lake water, Taiwan, by 
ozonation and catalytic ozonation. Experiments were per-
formed at pH 7.5 at 20°C. HPLC-MS analytical tool was used for 
CYN quantification [79].
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with elucidation of reaction pathways and possible mecha-
nisms were recently reported by Chang et al. [78]. 

The study confirmed that high pH and DOC in water 
inhibited the degradation of the toxin for UV/O3 process 
[78]. The degradation of MC-LR initially occurred at four 
sites as pointed out by Chang et al. as shown in Fig. 3.

One of the common and stable cyanotoxin present in 
drinking water is CYN (C15H21N5O7S). USEPA drinking 
water guidelines state that CYN concentration must be less 
than 1 µg L to avoid any kind of health risks to humans. As 
an AOP, heterogeneous catalytic ozonation accomplishes 
both O3 and the adsorptive and oxidative properties of 
solid-phase metal oxide catalysts. Wu et al. has recently 
demonstrated TiO2-based catalytic ozonation to remove 
CYN at room temperature [79].

The study carried by Wu et al. demonstrated that TiO2 
facilitates the decomposition of O3 in the oxidation of CYN 
by forming radicals and increased the rate of oxidation reac-
tion (Fig. 4).

5. Conclusion

Cyanotoxins is one of the emerging water contaminants 
that pose serious health risks to humans. Several monitor-
ing and detection tools are available to date for qualitative 
screening and quantification of cyanotoxins. HPLC-MS/
MS technique can detect even trace amount of cyanotoxin 
present in water. Biosensors are best suited for routine 
monitoring of cyanotoxins. Studies have demonstrated that 
ozonation is an effective and safe method for removal of 
cyanotoxins. AOP when used with ozone accelerates the 
decomposition of ozone, and increases cyanotoxin removal 
efficiency. During AOP/ozonation, water quality parame-
ters such as pH, DOC are some of the factors to be taken into 
account for the successful removal of cyanotoxins. Drinking 
water treatment plants while targeting cyanotoxin removal, 
it is essential and important to use ozone and ozone-based 
AOP in the later phase as a final polishing process. Around 
the world, there are wide variety of cyanotoxin species 
present in lakes, river and in sea. It is worthwhile to per-
form a region specific study to identify and target the right 
cyanobacterial species for ensuring public health and safety. 
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