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a b s t r a c t

Finding the optimal solution in a single-treatment drip-irrigation and fertilizer scheme is nontriv-
ial because of the inherent difficulty in evaluating the overall benefit of such a scheme. To address 
this problem, we have developed the project pursuit model based on the improved double chains 
quantum genetic algorithm, and applied it to integrative drip-irrigation and fertilization. The dou-
ble chains quantum genetic algorithm was introduced to optimize the projection index function 
and seek the optimum projection vector. This algorithm was improved by introducing an immunity 
operator, a simulated annealing operator, and gradually optimizing and compressing the quantum 
chromosome search space during the evolution process. The improved projection pursuit model was 
applied to maize cultivation. The results show that the optimization efficiency and global search 
capability improved substantially. Increased nitrogen splits promoted dry matter above ground and 
nitrogen uptake in the maize, and also improved the yield and the plumping of seeds. A manage-
ment practice of 150–200 kg/hm2 of nitrogen applied at three splits produced the highest production 
in integrative drip-irrigation and fertilizer schemes for the black soil in Northeast China.

Keywords:  Real coding; Quantum computing; Quantum genetic algorithm; Integrative drip- 
irrigation; Fertilizer

1. Introduction

Integrative water and fertilizer technology was intro-
duced into the agricultural industry to have synchronous con-
trol of irrigation and fertilization processes [1,2]. This largely 
involved mulched drip irrigation, which offered savings in 
water and fertilizers by combining plastic film mulching and 
drip irrigation techniques, and transported water and nutri-
ents to the soil at the crop root level. Currently, mulched drip 
irrigation technology is used for crops such as maize [3], cot-
ton [4], potato [5], tomato [6] and cucumber [7]. The planting 
area of grain crops reached 214 million mu in the Heilongji-

ang province in 2014, and the planting area of maize, the first 
grain crop, reached 106.15 million mu in the same year. Water 
shortages caused by a lack of precipitation and low reservoir 
levels, chill damage and less than optimal water and fertil-
izer use have directly influenced maize yields, and this trend 
is predicted to continue. To solve the imbalance between 
supply and demand of fertilizer resources, the development 
of integrative drip-irrigation and fertilizers for black soil has 
played an important role in achieving the objective of realiz-
ing a water-saving agricultural system.

Projection pursuit (PP) [8–10] is an emerging statistical 
method that is designed to treat high-dimensional non-nor-
mal data, which overcomes the so-called curse of dimension-
ality. PP models have been used to convert high-dimensional 
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indices (e.g., Sample Evaluation Index) into low-dimensional 
space. This is done by projecting the data into a specific 
direction; the optimal direction will reduce the dimension of 
the data while retaining as much of the original information 
as possible. This optimization problem has been approached 
using artificial intelligence methods.

In this research, we optimized and compressed the 
search space of quantum chromosomes by changing the 
value range of argument q, which is the quantum bit of 
such chromosomes in the unit circle. We also improved 
the population diversity by introducing an immu-
nity operator. For the above, we used parallel searches 
in a quantum algorithm and serial searches in a simu-
lated annealing algorithm. The result is the improved 
accelerating double chains quantum genetic algorithm 
(ADCQGA), which we employ in a projection pursuit 
classification (PPC) model to evaluate integrative drip-ir-
rigation and fertilization. The improved ADCQGA was 
used to find the best projection direction. At the same 
time, many evaluation indexes values of each scheme 
could be synthesized projection value with one dimen-
sion which indicates advantage of each scheme. Finally, 
we demonstrated how the integrative drip-irrigation and 
fertilizer scheme could be classified and evaluated for the 
black soil in Northeast China.

2. Projection pursuit model based on the improved double 
chains quantum genetic algorithm

2.1. Double chains quantum genetic algorithm

The concept of quantum computing was proposed 
by Feynman while developing computer simulations of 
a physical system in 1982 [11]. Peter Shor presented the 
quantum algorithm for discrete logarithms and factoring 
in 1994 [12]. It wasn’t until 1996, though, when Grover 
devised a fast quantum mechanical algorithm for data-
base searches [13], that quantum computation with its 
high performance became an international research focus. 
A quantum genetic algorithm (QGA) [14–18] is a proba-
bility optimization algorithm based on the quantum unit 
calculation principle, which has the advantages of having 
small populations, rapid convergence, and good global 
search capabilities.

In the double chains quantum genetic algorithm, the 
initial value qij of the probability amplitude of the quantum 
bit [cosqij, sinqij]

T is randomly generated in the domain (0, 
2p). In the current approach, the quantum bit phase has a 
quantum rotation gate, and a quantum not gate is used to 
effect quantum mutation [19]. The probability amplitudes 
of the quantum bits [cosqij, sinqij]

T are given by the peri-
odic function, argument qij of the quantum chromosomes’ 
phase, which is relocated in the unit circle during the pro-
cess of evolution. This ensures that the quantum chro-
mosome search space is large and converges rapidly. To 
enhance the above algorithm, we developed the improved 
ADCQGA, in which the initial value qij of the probabil-
ity amplitude of the quantum bit is randomly generated 
in (0, p/2), thereby ensuring a monotonic population fit-
ness value. The corresponding argument sorting reduced 
the search space of quantum chromosomes. The improved 
ADCQGA calculates the selection probability and expected 

reproductive rate based on the similarity and the vector 
distances of quantum chromosomes in the search space 
[20–22]. From the Metropolis criterion [23,24], the quantum 
chromosomes are selected with certain probability, and 
updated with the simulated annealing operation, which 
optimizes and compresses the search space of quantum 
chromosomes.

2.2. Projection pursuit model of integrative drip-irrigation and 
fertilization

The projection index function in the PPC model was 
used as an optimized objective function for the ADC-
QGA, making the projection of each index an optimiza-
tion variable. The optimum projection direction and the 
corresponding index function value (greatest or least) 
were calculated by optimizing the projection index 
function. The results were classified and sorted. A com-
prehensive evaluation of integrative drip-irrigation and 
fertilization was performed using the PP model imple-
menting the improved ADCQGA, as follows.

Step 1. Normalization of the sample index set. For 
sample set {x(I, j)|1 ~ n, j = 1 ~ m}, x(i, j) is the index 
value j of sample i, which corresponds to quantum bit 
j of quantum chromosome i, where n is the population 
size, m is the number of qubits of the quantum chromo-
some and the number of the evaluation index. To reduce 
the dimension of each index value, the sample index set 
is normalized as follows.

The bigger the index, the better the index,

' min

max min
ij j

ij
j j
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where Xij was variable with before normalization process-
ing, Xij was variable with after normalization processing, 
maxXj was the maximum of the index j, minXj was the min-
imum of the index j.

Step 2. Establishment of the projection index function 
F(a). Dimension m in {x(I, j)|1 ~ n, j = 1 ~ m} gives the 
one-dimensional projection value z(i), with a = {a(1), a(2), 
a(3), L, a(m)} being the projection direction,
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1
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The a is the unit vector. F(a) = SvDv is the projection 
index function, in which Sv and Dv are the standard devi-
ation and the local density of projection value z(i).

Step 3. Optimization of the projection index function. The 
optimum projection direction can be estimated by solving 
the maximization problem of the projection index function.

( )max v vF a S D=  (4)

The constraint condition is
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The optimization of the projection index function is a 
nonlinear optimization problem with the projection direc-
tion {a(j)|j = 1, 2, L, m} as the optimization variable. We used 
the improved ADCQGA to solve the high-dimensional 
global optimization problem. The optimum projection 
direction was obtained when the objective function reached 
its extreme points.

Step 4. The improved Accelerating Double Chains 
Quantum Genetic Algorithm.

1) Population initialization. The initial chromosome 
population Q(t) = {q1, q2, …, qm} was generated ran-
domly in (0, 2p) by the DCQCA coding method; i = 
(1,2,Λ,m), m is population size, n is quantum digit 
capacity, q0 is the initial step value of the angle q, and 
Pm is mutation probability. The fitness value of the 
quantum chromosome is the projection index func-
tion value.

2) Solution space transformation. Each chromosome 
in the population has a 2n probability amplitude 
in the quantum bit. The 2n probability amplitudes 
are mapped to the solution space of the continu-
ous optimization problem maxF(a) using a linear 
transform. The ith quantum bit of chromosome qj 
is [ai

j, bi
j]T, and the variables of the corresponding 

solution space are:

            ( )j j
ic i i i iX a b aα= + −  (6)

            ( )j j
is i i i iX a b aβ= + −  (7)

 Xic
j is the cosine solution of quantum bit i of chro-

mosome j, Xis
j is the corresponding sine solution,  

i = 1,2,Λ,m and j = 1,2,Λ,n.
3) The expected reproductive rate and selection 

probability are calculated from the vector distance 
of chromosomes in the population Q(t)m, in which 
chromosomes constitute a nonempty immune sys-
tem X. The vector distance of chromosomes f(xi) in 
set X is regulated as

            ( ) ( ) ( )
1

m
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For quantum chromosomes, their density is given by
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the selection probability is
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and their expected reproductive rate e(xi) is
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 In the above, i,j,k = 1,2,Λ,m.
4) According to the expected reproductive rate of 

quantum chromosomes, P(t) the algorithm makes 
u higher expected reproductive rate of quantum 
chromosomes of population Q(t) into the new 
population P(t).

5) In the selection probability evaluation, the quantum 
bit of v quantum chromosomes is executed by rota-
tion gate updating and by the mutation operation 
of DCQCA. These chromosomes are selected with a 
large selection probability in population Q(t) and are 
entered into the new population P(t). The quantita-
tive relation of quantum chromosomes should meet 
the requirement u + v = m.

6) Each quantum chromosome of Xnew is updated 
by using a quantum-rotating gate from DCQGA, 
implemented by the Hadamard mutation opera-
tion with mutation probability.

7) The new individual becomes the initial solu-
tion for the simulated annealing algorithm. The 
Metropolis criterion is used in this process, which 
uses a rate of 90% in Xnew.

8) The fitness values of population P(t) are determined 
by an evaluation function. The best quantum chro-
mosomes and their corresponding quantum bit cod-
ing are recorded.

9) Optimize and compress the search space of quantum 
bit argument q. The quantum chromosomes in popu-
lation P(t) are sorted by their quantum bit arguments 
qij, recording the maximums qijmax and minimums 
qijmin. To improve the flexibility and robustness of the 
algorithm, the search space of argument qij is repeat-
edly reevaluated according to the condition |qijmin–
qijmax|<ε, where ε is an error tolerance.

10) Accelerated running and evolutionary iterations. 
If the convergence condition is not met within the 
maximum number of iterations, the interval (qijmin, 
qijmax) of the optimized argument qij of the quantum 
bit is used as the new initial variable interval, the 
new population Q(t) is randomly produced with a 
size m having n quantum bits, and the algorithm 
returns to step (2).

Step 5. The index contribution rate was determined 
by computing the optimum projection directions a*, sort-
ing them in descending order, calculating the projection 
value z*(i) of each sample point to determine its preferential 
ordering, and substituting a* into Eq. (3).

3. Application example of ADCQGA-PPC

3.1. Experimental setup

The integrative drip-irrigation and fertilization 
experiments for maize were carried out at the test  
center of Heilongjiang Water Conservancy Institute in 
2011. The perennial mean temperature was 3.1°C, the 
frostless period was 130–140 d, and the long-term aver-
age annual precipitation was 400–650 mm. The soil was 
loam with an average dry density of 1.34 g/cm3, a field 
water-holding rate of 0.36 cm3/cm3, an organic matter 
content of 25.07 g/kg, and an average initial nitrate con-
tent of 67.79 mg/kg.
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The maize was sowed on May 5th and harvested in 
September. Using planting of one big ridge two rows with 
plastic film mulching. The distance between two adjacent 
ridges was 130 cm, the row spacing of maize above ridge 
was 50 cm, width of ridge was 100 cm, the bottom width of 

ridge and furrow 30 cm, the height of ridge was 15 cm, the 
width of film was 120 cm, the thickness of film was 0.008 
mm. Each experimental district had four ridges, which 
comprised two rows of maize. The plant spacing was 33 cm 
and the planting density was 46,620 strains/hm2.

The nitrogen content of the fertilizer and the fertilizing 
frequency were experimental variables. The base fertilizer 
did not contain nitrogen. For each nitrogen split, four nitro-
gen levels were used: 50, 100, 150 and 200 kg N hm2. The 
fertilizing consisted of a single nitrogen application at the 
jointing stage and three nitrogen splits, corresponding to 
the jointing, heading and filling stages. There were eight 
experimental treatments that were each repeated three 
times. Each experimental treatment covered an area of 40 
m × 5.2 m of random arrangement. The effective rainfall 
was 308.9 mm in the growth stage. The irrigation system 
delivered 15 mm, 10 mm and 10 mm of precipitation at the 
jointing (July 16th), heading (August 2nd) and filling stages 
(August 15th), respectively.

3.2. Application of the ADCQGA-PPC model

As in this heading, they should be Times New Roman 
11-point boldface, initially capitalized, flush left, with one 
blank line before, and one after.

Fig. 1. Planting patterns of mulched and drip-irrigated maize.

Table 1
Experimental parameters for irrigation–fertilization 
optimization of mulched drip irrigation

Experimental 
treatment

Content of 
nitrogen 
fertilizer 
(kg/hm2)

Nitrogen 
fertilizer 
application 
frequency

Irrigation 
and 
fertilization 
modes

T1N50 50 1 Mulched drip 
irrigation, 
integrative 
water and 
fertilizer

T1N100 100 1

T1N150 150 1

T1N200 200 1

T3N50 50 3

T3N100 100 3

T3N150 150 3

T3N200 200 3

Table 2
Evaluation indexes of different treatments

Experimental 
treatment

Leaf area 
index

Dry matter above 
ground/(t/hm2)

Nitrogen uptake of 
maize/(kg/hm2)

Barren ear 
tip/cm

The 100-seed 
weight/g

Yield /(t/hm2)

T1N50 3.57 19.45 247.8 2.24 38.55 10.36

T1N100 3.65 18.93 242.5 2.31 36.73 10.17

T1N150 3.67 20.57 258.6 2.48 38.26 10.37

T1N200 3.79 21.41 269.7 2.4 39.75 10.7

T3N50 3.74 21.06 248 2.4 40.7 10.55

T3N100 3.85 22.43 272.5 2.51 39.2 10.87

T3N150 3.69 22.67 276.2 2.03 39.28 10.97

T3N200 3.78 23.27 284.9 2.28 39.84 11.4
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In the comprehensive evaluation of the integrative 
drip-irrigation and fertilization schemes, leaf area index and 
the quantity of dry matter above ground were important in 
the physiological and biochemical crop processes. The nitro-
gen uptake of maize indicates the fertilizer utilization. Barren 
ear tip and 100-seed weight indicate the plumpness of the 
grain. Yield is the water saving as well as the maize harvest. 
Leaf area index, dry matter above ground, nitrogen uptake 
of maize, barren ear tip, 100-seed weight and yield were cho-
sen and sorted as metrics of the eight mulched drip-irrigation 
treatments (Table 2). Besides barren ear tip, other index were 
that the bigger the index, the better the index.

The parameters for ADCQGA and DCQGA were: popu-
lation size m = 50, quantum bit n = 91, selection probability 
Pr = 0.009, mutation probability Pm = 0.05, initial angle step 
q0 = 0.05p , initial temperature T0 = 1000, termination Te = 1, 
maximum number of iterations Lmax = 20 , and limiting fac-
tor ε = 10–4. A comparison of the optimization results from 
10 experiments is summarized in Table 3.

ADCQGA-PPC and DCQGA-PPC were optimized 
within 20 iterations. The optimal and average function val-
ues of ADCQGA-PPC were 0.3120 and 0.3070, respectively, 
and those for DCQGA-PPC were 0.3120 and 0.3070. ADC-
QGA-PPC produced a better quality result than did DCQ-
GA-PPC. The average computing time of ADCQGA-PPC 
was 5.91 s, 15% faster than DCQGA-PPC (6.96 s). ADCQ-
GA-PPC had a maximum projection index value of 0.3120 
and optimum projection directions a* = (0.3757, 0.5751, 
0.5089, 0.0919, 0.3504, and 0.4877); see Table 4. The projec-
tion value z*(i) is shown in Table 5.

3.3. Analysis of the simulation results

The preferential order of the integrative drip-irriga-
tion water and fertilizer schemes was T3N200 > T3N150 > 
T3N100 > T1N200 > T3N50 > T1N150 > T1N50 > T1N100.

The magnitude of the components of the optimum pro-
jection vector reflect the contributions of the evaluation 
indices on the integrative drip-irrigation water and fer-
tilizer scheme. The a* calculated from the ADCQGA-PPC 
model in Table 4 shows that dry matter above the ground 
in which the maize was planted had the most influence 
on the model predictions, followed by nitrogen uptake of 
maize, yield, leaf area index, 100-seed weight and barren 
ear tip. The results suggest that dry matter accumulation 
of water and fertilizer will lead to efficient use of nitrogen, 
thereby improving yield and quality, which has practical 
importance.

In single nitrogen applications, increasing the amount 
of nitrogen applied resulted in a higher leaf area index. 
When there were three nitrogen splits, however, the nitro-
gen applied had no obvious effect on leaf area index, 
although it might satisfy the reproductive growth of plants 
in the late growth stage. When the durations of the nitro-
gen splits were equal, the dry matter and nitrogen uptake 
in each growing stage increased when the nitrogen was 
applied. The nitrogen uptake was greatest when nitrogen 
was applied in three splits; increasing the nitrogen treat-
ment from 50 kg N/hm2 to 200 kg N/hm2 improved the 
uptake by 15%. For a single nitrogen application, increasing 
the nitrogen treatment from 50 kg N/hm2 to 200 kg N/hm2 
caused a 10% greater uptake, which is associated with dry 
matter accumulation of the plant. The barren ear tip after a 
single nitrogen application was, on average, 2% higher than 
for three nitrogen splits. In contrast, the 100-seed weight 
and the yield after three nitrogen splits were, on average, 
4% and 5% higher, respectively, than after a single nitrogen 
application. For example, increasing the applied nitrogen 
from 50 to 100, 150, and then 200 kg N/hm2 for three nitro-
gen splits improved the yield by 4%, 5% and 8%. From the 
above analysis, we recommend a management practice of 
150–200 kg N/hm2 of nitrogen applied in three splits and 

Table 3
Comparison of optimization results (10 experiments)

Model Optimization 
times

Optimal function 
value

Poorest function 
value

Average function 
value

Average time (s)

DCQGA-PPC 20 0.2931 0.2755 0.2845 6.96

ADCQGA-PPC 20 0.3120 0.2887 0.3070 5.91

Table 4
Optimal projection direction 

Projection index Leaf area 
index

Dry matter above 
ground

Nitrogen uptake  
of maize

Barren ear 
tip

The 100-seed 
weight

Yield

Component of 
projection direction

0.3757 0.5751 0.5089 0.0919 0.3504 0.4877

Table 5
Projection values of different deficit irrigation treatments

The preferential order 1 2 3 4 5 6 7 8

Treatment T1N50 T1N100 T1N150 T1N200 T3N50 T3N100 T3N150 T3N200

Projection value 0.5751 0.3555 0.8508 1.3974 1.1178 1.5950 1.5952 1.9766
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to employ a drip-irrigation integrative water and fertilizer 
scheme for the black soil in Northeast China.

4. Conclusion

In this research we developed the project pursuit model 
using the improved double chains quantum genetic algo-
rithm. This ADCQGA-PPC model could meet the value 
range and mapping relation of both adaptive value and cor-
responding argument of adaptive value. The global optimal 
solution was reached rapidly with the introduction of the 
immunity operator, the simulated annealing operator, and 
gradually optimizing and compressing the quantum chro-
mosome search space during the evolution process. The 
ADCQGA-PPC outperformed the DCQGA-PPC in terms of 
quality and efficiency.

Comprehensive evaluation of integrative drip-irriga-
tion and fertilizer using ADCQGA-PPC had contained the 
weight of each evaluation index, given the projective direc-
tion and magnitude of each evaluation index, which had 
made an objective analysis on the contribution rate and 
directivity of each evaluation index. The yield with three 
nitrogen splits was on average 5% higher than for a single 
nitrogen application; 150–200 kg/hm2 of nitrogen applied 
at three splits produced the optimum integrative drip-ir-
rigation and fertilizer scheme. We submit that the ADCQ-
GA-PPC provides a novel solution to the scheduling and 
optimization of integrative drip-irrigation and fertilization.
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