
73 (2017) 90–100
April

Presented at the EDS conference on Desalination for the Environment: Clean Water and Energy, Rome, Italy, 22–26 May 2016.

*Corresponding author.

1944-3994 / 1944-3986 © 2017 Desalination Publications.  All rights reserved.

Desalination and Water Treatment
www.deswater.com

doi:10.5004/dwt.2017.20357

Criteria for improving the traditional artificial neural network methodology  
applied to predict COP for a heat transformer

E. Martínez-Martíneza, B.A. Escobedo-Trujilloa, D. Coloradob,*, L.I. Moralesc,  
A. Huicochead, J.A. Hernándezd, J. Siqueirose

aFacultad de Ingeniería, Universidad Veracruzana, Campus Coatzacoalcos, Av. Universidad km 7.5 Col. Santa, Isabel, C.P. 96535,  
Coatzacoalcos, Veracruz, México, email: escorpion410@live.com.mx (E. Martínez-Martínez); bescobedo@uv.mx (B.A. Escobedo-Trujillo) 
bCentro de Investigación en Recursos Energéticos y Sustentables, Universidad Veracruzana. Av. Universidad km 7.5 Col. Santa Isabel, 
C.P. 96535, Coatzacoalcos, Veracruz, México, Tel. +52(921)2115700 ext. 59230, email: dcolorado@uv.mx,  
cEscuela de Estudios Superiores de Xalostoc, Universidad Autónoma del Estado de Morelos (UAEM), email: laura.morales@uaem.mx 
dCentro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM),  
Av. Universidad No. 1001 Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México, email: huico_chea@uaem.mx (A. Huicochea);  
alfredo@uaem.mx (J.A. Hernández) 
eSecretaria de Innovación, Ciencia y Tecnología, Av. Atlacomulco no. 13, esq. Calle de la ronda, Col. Acapantzingo, Cuernavaca,  
Morelos, C.P. 62440, email: javier.siqueiros@morelos.gob.mx

Received 11 July 2016; Accepted 16 November 2017

a b s t r a c t

This paper introduces three valuable criteria to reduce the number of input variables while pre-
dicting the coefficient of performance (COP) (of an absorption heat transformer with duplex com-
ponents, using an artificial neural network (ANN) model developed in [1], with an experimental 
database of 1310 pieces of data, in which the experimental COP ranged from 0.10 to 0.36, considering 
127 coefficients of adjustment (weights and bias), assuming 16 input variables and a coefficient of 
determination (r2) of 0.9969. The database and COP range described above were used in this research 
considering 50% of data for training and 50%for testing, to present the following criteria: i) creating 
a correlation matrix to select the input variables in the ANN, ii)performing a residual analysis to 
validate the ANN models, and if there are several ANN models iii) this criterion could be used to 
choose the best model. These criteria were studied and included in the traditional ANN methodol-
ogy proposed by authors [1], however, according to our criteria the best models only used 5 and 6 
operation variables in the input layer of ANN architecture, with 33 and 37 coefficients of adjustment, 
respectively, besides a coefficient of determination (r2) r2 ≥ 0.9984.

Keywords: Modeling; Absorption; Correlation matrix; Homoscedasticity; Normal distribution

1. Introduction

This study suggests three criteria to be considered when 
working with the traditional methodology of artificial neu-
ral network models: i) to create a correlation matrix to select 
the input variables in the ANN, ii) to validate the ANN 

models through a residual analysis, and if there are several 
ANN models iii) this criterion could be applied to select the 
best model;the preceding criteria with the main purpose of 
reducing the number of variables involved in the COP pre-
diction by following a rigorous validation process.

The traditional ANN methodology is applied to the 
experimental database of an absorption heat transformer 
with duplex components as it has been reported by [1], who 
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have predicted the coefficient of performance assuming 16 
input variables, considering 127 coefficients of adjustment 
(weights and bias) in their ANN model, and presenting a 
coefficient of determination (r2) of 0.9969 for the validation 
process. Our criteria have been applied on [1].

A traditional artificial neural network model has been 
proposed because of its great capability of estimation 
when assuming hyperbolic tangent or logarithmic tangent 
functions between dependent and independent variables. 
Several authors have previously applied the traditional 
artificial neural network model to estimate the coefficient 
of performance of absorption heat transformers; such as, 
Sozen et al [2] who have determined the performance of 
an ejector-absorption heat transformer using this kind of 
network, including four variables in the input layer with 
the purpose of calculating the coefficient of performance, 
the exergy coefficient of performance and the circulation 
ratio, while assuming a log-sigmoid transfer function in the 
hidden layer. Sozen et al. [3] have presented a traditional 
artificial neural network model to calculate the exergetic 
destruction in each component of an absorption cycle, 
obtaining values of the coefficient of determination higher 
than 0.98 in the validation analysis. There are other stud-
ies related to modeling of heat pumps presented by [4,5].
According to [6], optimizing the ANN configuration will be 
the object of future research.

To the extent of our knowledge, only the results 
obtained by [1,7] are comparable to ours. Morales et al. [1]
have developed an artificial neural network model that 
takes into account the input and output temperature of each 
duplex component, concentration of solution and the pres-
sure and mass flow measurements in the input layer of the 
ANN architecture. Hernandez et al. [7] have presented an 
artificial neural network model to calculate the coefficient 
of performance for a water purification process integrated 
to an absorption heat transformer.

The differences and novelties found when the present 
work was compared to the studies developed in [1] and [7] 
are:

•	 While model [1] takes into consideration 127 coefficients 
of adjustment (weight and bias) and 16 input variables to 
predict the coefficient of performance, our study includes 
a maximum number of six input variables, this, accord-
ing to the correlation matrix suggestion without sacrific-
ing accuracy.

•	 Hernandez et al. [7] presents the coefficient of determina-
tion (r > 0.99) as the only evidence of the model reliability, 
yet in our research a residual analysis is applied to select 
the best model. 

This research simplifies the traditional artificial neural 
network architecture by adding three criteria that translate 
to novel outcomes:

•	 Reduced number of the input variables of ANN models
•	 Enhancements to the ANN models validation 
•	 Improvements to the ANN model developed in [1] 

From an instrumentation point of view and following 
the new criteria proposed in this work, fewer sensors will 
be required to estimate the coefficient of performance with 
high confidence.

The remainder of the paper is organized into 6 sections: 
Section 2 displays the experimental system (absorption heat 
transformer), Section 3 presents the traditional artificial 
neural network methodology used to predict the coefficient 
of performance, and it also shows the traditional validation 
procedure for ANN models. The implementation of the 
proposed criteria and the traditional ANN methodology to 
predict the coefficient of performance for absorption heat 
transformer is presented in Section 4. Main results, con-
sisting of the three criteria to improve the traditional ANN 
methodology, are described in Section 5. Finally, Section 6 
states some concluding remarks.

2. System description and experimental system

This section displays the experimental system.
Fig. 1 illustrates the experimental system, a compact 

absorption heat transformer (CAHT) for water purifica-
tion, built with two duplex units (Generator-Condenser 
and Absorber-Evaporator) installed in the main equipment, 
with the purpose of reducing momentum and heat transfer 
losses.

Both duplex units are falling film helical coil heat 
exchangers. The generator-condenser consists of a dou-
ble concentric coil where the working solution circulates 
through the generator. The condenser is placed in the upper 
part, in a separate chamber, connected to a cover that lets 
steam flow, while preventing the condensate to return into 
the generator. The absorber-evaporator is a chamber where 
one of the concentric helical coil exchangers works as an 
evaporator and the other as an absorber. Two indepen-
dent distributors are installed; the condensed water flows 
down as a falling film on the wall of the evaporator and 
the concentrated working solution flows on the wall of the 
absorber coil. Each duplex unit has an eye hole to monitor 
the level of absorption of the mixture. Pressure transducers, 
temperature and flow meters are calibrated and installed in 
the equipment. Temperatures and pressures are monitored 
with a computer running a data acquisition system.

The CAHT utilities are electric heating and cooling 
water systems. Therefore, to simulate waste heat, water is 
heated and supplied through two different inlets; mean-
while chilled water is supplied by a cooler. There is a mag-
netic pumping system, with a stainless steel body and a 
head of pump of 0.07 hp, where a vacuum pump reduces 
the pressure in the circuit. The thermal load design for the 
CAHT is 2 kW. The approximate dimensions of the absorp-
tion heat transformer are 2.3 m x 2 m x 2 m; its main pieces/
parts of equipment and piping are made of stainless steel 
316 L, and to reduce heat losses the equipment is covered 
with foam insulation.

2.1. Experimental proofs

Experimental proofs were carried out considering sev-
eral concentrations of a lithium bromide solution, while 
adhering to the next procedure: 

•	 Internal pressure was reduced using a vacuum pump 
and when it was equal to 4 kPa we supplied the solution. 

•	 While the waste heat auxiliary system was launched, the 
working solution circulated between the generator and 
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absorber and we monitored the levels of solution in both 
components.

•	 When the working solution reached saturation tempera-
ture, the generator produced steam that went into the 
condenser. Then, the condensed steam was pumped into 
the evaporator. 

•	 In the evaporator, the refrigerant (water) changed into 
vapor; to later join in the absorber the strong solution 
coming from the generator. Then, an exothermic reaction 
was attained and the heat was transferred to the water 
purification system. 

•	 The steady state of the system was reached when the 
deviations in each temperature meter was ±0.1°C. The 
operating parameters such as pressure in the absorb-
er and generator, flow-meter lectures, and samples of 
the solution in the generator and absorber outlets were 
registered.

3. Traditional artificial neural network methodology

The traditional artificial neural network is one of the 
most common methods to perform predictive data analy-
sis according to [8]. An artificial neural network consists of 

a set of highly interconnected processing units called neu-
rons, where each of them accepts a weighted set of inputs 
and responds with an output. This data modeling tool is 
able to capture and represent complex input and output 
relationships because of its ability to learn these directly 
from the data pattern being modeled. 

Let y and x1,x2,x3,...,xn, be the dependent and indepen-
dent variables, respectively. ANN seeks a relationship 
between y and x1,x2,x3,...,xn, which can be written as the fol-
lowing mathematical equation:

y ANN x x x xn= ( ) +1 2 3, , ... ε  (1)

where ε is a random error.
In the internal architecture of ANN, the first layer is 

the input layer, where the independent variables are intro-
duced to the network; the last layer is the output layer that 
shows the dependent variables based on the network com-
putations. Between these two, there is one or more layers, 
called hidden layer(s), which could be located [6]. Each ele-
ment of the hidden layers is connected to each input neuron 
through the weight matrix. As suggested by [9], the archi-
tecture of a standard network for a function approximation 
is the multilayer perceptron (or feed-forward artificial neu-
ral network).

Fig. 1. Analyzed experimental absorption heat transformer system.
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Several authors have proposed the following method 
for ANN training:

•	 First, gather an experimental database based on the 
operational variable range of the system and equipment 
available. However, a clear and effective procedure to 
select the most important operational variables before 
the training process is still lacking.

•	 Second, analyze the database and in some cases eliminate 
the noise in the acquisition process without discarding 
variables. 

•	 Third, define the percentage of data for training and val-
idation, also calculate all necessary parameters: architec-
ture, number of hidden layers, optimization algorithm, 
activation function, number of iterations, and if it is pos-
sible, the most important factor, the number of hidden 
neurons per layer. 

•	 At the end, calculate the difference between the target 
output and network output, which is the error and it 
should be minimized. 

In the literature, tangent sigmoid transfer and loga-
rithmic sigmoid transfer functions are mostly suggested 
in the hidden layer by [2,7], because these functions have 
presented high ability to predict a dependent variable. The 
artificial neural network model with a tangent sigmoid 
transfer function in a hidden layer and a linear function in 
the output layer is given by: 
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where J is the number of neurons in the hidden layer, Wi 
represents the weights in the input hidden layer, b1j is the 
j-th of bias in the hidden layer, Wo denotes the weights in 
the hidden output layer, R is the input neuron number, k is 
the output neuron number and b2{k}  is the k-th value of bias 
in the output layer. 

Fig. 2 shows the prediction procedure of ANN.

3.1. Validation of the ANN model

Traditionally, the process in which the calculation of the 
dependent variable with the ANN model is compared to 
experimental results is called validation. According to [2] 
and [3] the coefficient of determination is enough to val-
idate the ANN model and it is generally assumed as r2 > 
0.98. Colorado et al. [9] corroborated the ANN model with 
coefficient of determination and linear regression between 
experimental and simulated COP values. As stated by [9], 
linear regression focuses on the slope and intercept values 
considered close to 1 and 0 respectively; as a result,obtain-
ing the correct model validation. Nevertheless, the error 
analysis in the linear regression was not performed. 

4. Main result: Criteria to improve the ANN

This section describes the proposed criteria to improve 
the traditional artificial neuronal network (Section 3) con-
sisting of three stages: 1) correlation analysis to select input 
variables of ANN, 2) residual analysis in the validation 
of ANN models and 3) selection of the best ANN model. 
These steps are explained below:

1. Correlation analysis
 Supposing that there are n input variables for the 

artificial neuronal network, x1,x2,...,xn and we want to 
study the correlations among them, the correlation 
coefficient is calculated between each pair of vari-
ables (xi,xj), i,j = 1, 2,…,n. The correlation coefficient 
r measures the linear relationship between paired 
values of two variables X and Y. The mathematical 
definition of is given by: 

r
x x y y

n s s
i

i n

i i

x y

=
− ( )

−( )
−

=

=∑ 1

1

( )  (3)

where xi  (resp. yi ) is the i-th observation of a random vari-
able X (resp. Y), x–, y– and Sx, Sy are the means and sample 
standard deviations of X and Y respectively, n is the number 
of pairs of observations.

Because there are many coefficients, it is convenient to 
arrange them in an orderly and systematic fashion; like in a 
correlation matrix, see [10] for more details.

As other authors have previously mentioned in [10,11] 
there are numerous applications for correlation analysis. In 
this research we used the correlation coefficient in order to 
select those variables that are the most highly correlated 
with each other in order to reduce the number of input vari-
ables in the traditional neural network presented in Section 
3. With regard to the prediction of the COP, this was selected 
as an output variable because it was the most representative 
estimation of the system.

2. Residual analysis in the validation of the obtained 
ANN models 

 Assuming that in the first step we selected the 
 following set of input variables x3,x11,x7,x16,x1,x12 there 
is a possibility of generating different ANN models Fig. 2. Prediction procedure of an ANN.
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(with high coefficient of determination) by changing 
the number of input variables in ANN.

The certainty of the neural network models is tradition-
ally confirmed by calculating:

•	 The coefficient of determination
•	 The linear regression between experimental and simu-

lated data obtained from the neural network model, as 
previously mentioned at the end of Section 3. 

A simple linear regression is a statistical method that 
allows us to study and summarize with an equation the 
nature of the relationship between two variables, such as: 
Variable X, considered the predictor or independent vari-
able and variable Y, considered the response, outcome, 
or dependent variable. The equation for the best fit line is 
expressed as: 

Y X= + +β β ε0 1  (4)

The parameters, b0 and b1 are usually unknown and must 
be estimated using data, whereas e is a random variable.

Key assumptions of linear regression were formulated, 
for example, see [10],

Assumption 1.

a) The error has a mean of zero,
b) The error normally distributed,
c) The error has constant variance (homoscedasticity) 

and,
d) The error is independent.

As presented by authors [10,11], these assumptions can 
be verified with an analysis of residual errors which are 
defined as follows.

Definition 2. Residual errors are defined as:

Residual errors = Yi = Ŷi.

where is the i-th observation of the variable Y, Ŷi is the i-th 
estimated parameter of Yi, i.e., Ŷi = β0 + β1 xi when X = xi, i = 
1,2, ...,n.

The residual analysis verifies that the Assumption 1 is 
true using the residual errors instead of a random error e. 
In this work, this confirmation was made in graphic form 
[10,11]. 

The criteria developed above is summarized in Fig. 3.

3. Selection of the best ANN model.
 In case of obtaining several trained and validated 

ANN models, we select the best model following the 
next criterion.

 Given the frequency histogram of residual errors, 
the best ANN model must satisfy:

 a)  The arithmetic mean of residual errors close to 
zero and,

 b)  Low variance

Properties a) and b) stand out from the following fact: If 
there is a density function for the random error given in Eq. 
(2), we could consider the expected value with respect to 
density, Ef, in both sides of equality (2) to obtain

Y Ef= + + [ ]β β ε0 1X  (5)

which implies that

Ef ε β β[ ] = − +( )Y X0 1  (6)

Thus, the best ANN model must satisfy Ef[e] = 0. As the 
density function is unknown, we do not have the expected 
exact value Ef[e], hence the arithmetic mean of residual 
errors is a good estimator.

5. Results and discussion

From the research that has been conducted improve-
ments to the traditional ANN methodology for COP pre-
diction of an absorption heat transformer are: 1) correlation 
matrix to select input variables in order to build ANN mod-
els following traditional methodology, 2) residual analysis 
for artificial neural networks models validation, consider-
ing from three to six input variables and 3) criterion to select 
the best ANN model. 

The 16 input variables considered in this analysis are: 
TinGE, TinGE-AB, ToutAB-GE, TinAB-GE, ToutGE-AB, TinCO, ToutCO, TinEV, XinAB-GE, 
XoutAB, XoutGE, PAB, PGE, FMGE, FMEV and FMAB, where T is tem-
perature, X is concentration of solution, P is pressure, FM is 

Fig. 3. Mathematical selection of input variables and improved 
methodology.
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mass flow rate, GE is the generator, AB is the absorber, CO 
is the condenser and EV is the evaporator. 

1. Correlation matrix for selecting input variables for ANN.

First, the correlation matrix of the measured variables 
was calculated, allowing us to identify a possible rela-
tionship among them. This correlation matrix is shown in 
Tables 1 and 2. 

Based on a visual inspection of the correlation matrix, 
the following can be concluded:

•	 TinGE, TinEV and PAB are the operating variables that are 
strongly correlated with the COP and they could be used 
to build a simple model. 

•	 If there is more experimental information available: 
T inGE-AB, TinAB-GE, ToutGE-AB and PAB could be registered to sim-
ulate the COP. 

Table 1
Correlation matrix

Tin GE Tin GE−AB Tout AB−GE Tin AB−GE Tout GE−AB Tin CO Tout CO Tin EV Xin AB−GE

Tin GE 1.0000 0.8485 0.7255 0.7972 0.9175 0.3502 0.1423 0.8914 0.1524
Tin GE−AB 0.8485 1.0000 0.5916 0.9547 0.9372 0.0688 –0.1978 0.7120 –0.4073
Tout AB−GE 0.7288 0.5916 1.0000 0.5580 0.6713 –0.1136 –0.1732 0.7235 0.1693
Tin AB−GE 0.7972 0.9547 0.5580 1.0000 0.9528 0.0476 –0.2885 0.7007 –0.4041
Tout GE−AB 0.9175 0.9372 0.6713 0.9528 1.0000 0.1568 –0.1573 0.8273 –0.2561
Tin CO 0.3503 0.0688 –0.1136 0.0476 0.1568 1.0000 0.8273 0.3132 –0.0157
Tout CO 0.1423 –0.1978 –0.1732 –0.2885 –0.1573 0.8273 1.0000 0.0752 0.1006
Tin EV 0.8914 0.7120 0.7235 0.7007 0.8273 0.3132 0.0752 1.0000 –0.0150
Xin AB−GE –0.1524 –0.4073 0.1693 –0.4041 –0.2561 –0.0157 0.1006 –0.0150 1.0000
Xout AB –0.0996 0.1386 0.0789 0.0453 –0.0131 –0.5191 –0.3590 –0.2868 0.1379
Xout GE –0.0346 –0.1100 0.2951 –0.2078 –0.1322 –0.3832 –0.1000 –0.1864 0.5723
PAB –0.8058 –0.6406 –0.7191 –0.6213 –0.7644 –0.2273 –0.0278 –0.9268 –0.0827
PGE –0.4399 –0.3422 –0.1743 –0.3265 –0.4311 –0.2790 –0.0665 –0.3986 0.0899
FMGE 0.0286 0.0087 0.4281 0.0137 0.0056 –0.4418 –0.2811 0.0998 0.3806
FMEV –0.0602 –0.1165 –0.0418 –0.0730 –0.0750 –0.0898 –0.0357 –0.0028 0.5296
FMAB –0.1271 0.1258 –0.2990 0.0373 –0.0537 –0.2317 –0.2562 –0.2449 –0.3567
COP 0.3213 0.2229 0.4307 0.2642 0.3965 –0.0876 –0.2035 0.3123 0.3021

Table 2
Correlation matrix (Continuation)

Xout AB Xout GE P AB P GE F M GE F M EV F M AB COP

Tin GE –0.0996 –0.0346 –0.8058 –0.4399 0.0286 –0.0602 –0.1271 0.3213
Tin GE−AB 0.1386 –0.1100 –0.6406 –0.3422 0.0087 –0.1165 0.1258 0.2229
Tout AB−GE 0.0789 0.2951 –0.7191 –0.1743 0.4281 –0.0418 –0.2990 0.4307
Tin AB−GE 0.0453 –0.2078 –0.6213 –0.3265 0.0137 –0.0730 0.0373 0.2642
Tout GE−AB –0.0131 –0.1322 –0.7644 –0.4311 0.0056 –0.0750 –0.0537 0.3965
Tin CO –0.5191 –0.3832 –0.2273 –0.2790 –0.4418 –0.0898 –0.2317 –0.0876
Tout CO –0.3590 –0.1000 –0.0278 –0.0665 –0.2811 –0.0357 –0.2562 –0.2035
Tin EV –0.2868 –0.1864 –0.9268 –0.3986 0.0998 –0.0028 –0.2449 0.3123
Xin AB−GE  0.1379 0.5723 –0.0827 0.0899 0.3806 0.5296 –0.3567 0.3021
Xout AB 1.0000 0.7287 0.2223 0.1429 0.3824 0.2448 0.1966 0.1293
Xout GE 0.7287 1.0000 0.1459 0.1638 0.5939 0.3640 –0.1719 0.1988
PAB 0.2223 0.1459 1.0000 0.3743 –0.0616 –0.0160 0.1197 –0.3875
PGE 0.1429 0.1638 0.3743 1.000 0.1832 –0.0389 –0.1642 –0.6491
FMGE 0.3824 0.5939 –0.0616 0.1832 1.0000 0.2970 –0.3489 0.0752
FMEV 0.2448 0.3640 –0.0160 –0.0389 0.2970 1.0000 0.0924 0.0898
FMAB 0.1966 –0.1719 0.1197 –0.1642 –0.3489 0.0924 1.0000 –0.0880
COP 0.1293 0.1988 –0.3875 –0.6491 0.0752 0.0898 –0.0880 1.0000



E. Martínez-Martínez et al. / Desalination and Water Treatment 73 (2017) 90–10096

•	 Input variables previously selected only include 
experimental information for the absorption process 
(Generator-Absorber). Therefore, in order to include 
the vapor production in the evaporator, the correlation 
matrix reveals that we can associate TinEV,TinGE, TinGE-AB, 
TinAB-GE and ToutGE-ABto COP.

•	 Finally, the COP is correlated with TinGE, TinGE-AB, TinAB-GE, 
ToutGE-AB, TinEV and PAB, which means that we are able to 
measure practically the entire system. 

According to the matrix inferences, shown in Tables 1 
and 2, to predict the coefficient of performance of our sys-
tem, the proposed number of neurons in the input layer can 
only be within 3 and 6.

For each suggestion of the correlation matrix of the 
input variables described above, we developed four ANN 
models considering the following conditions: For the 
artificial neural network, the experimental database con-
sisted of 1310 pieces of data, considering 50% of them for 
learning and the other 50% for testing. The coefficients of 
the network, weights and bias, the number of iterations 
of the optimization algorithm were calculated during the 
training stage, thus minimizing a root mean square error 
(RMSE) between simulated and experimental data. The best 
weights and biases were determined to obtain the highest 
possible value of the regression coefficient. In this work, for 
the learning process, we fixed the number of neurons in the 
hidden layer as four. Four ANN models were developed 
with a hyperbolic tangent transfer function in one hidden 
layer and a linear function in the output layer, see Fig. 4. 
Throughout our analysis the Levenberg-Marquardt method 
was selected and used for the network optimization follow-
ing the suggestion by [12].

 The four ANN models are described as follows: 

ANN model with 6 neurons in the input layer. Fig. 4(a) dis-
plays the ANN model considering six operation variables 
(TinGE, TinGE-AB, TinAB-GE, ToutGE-AB, TinEV and PAB) in the input layer 
of ANN architecture. ANN Eq. (2) was developed assum-
ing: J = 4, R = 6, k = 1 and yk = COPsim. Thus, ANN model for 
this case is given as:

COP
e e e esim =

+
−

+
−

+
−

+
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0 6578
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4 6990
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−

− −( . . .
.

Tin Tin Tin
Tou

GE GE AB AB GE

tt TinGE AB EV− − + +16 6884 3 7124 13 7787. . . )PAB
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16 2158

= − − + −
−

− −( . . .
.

Tin Tin Tin
To

GE GE AB AB GE

uut TinGE AB EV− + − +10 8729 1 7951 3 1875. . . )PAB
 

A comparison was made between experimental and 
simulated COP values. As a result, the next linear regres-
sion was obtained: 

COPsim = 0.00043121 + 0.9978 COPexp (8)

Fig 4. Comparison between the COPEXP and the predicted COPANN, considering a) 6 neurons, b) 5 neurons, c) 4 neurons and  
d) 3 neurons;in the input layer.
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From Eq. (8) it can be seen that the intercept and the 
slope approximated to 0 and 1, respectively. Indicating that 
COPexp could be predicted with the ANN model, the coef-
ficient of determination (r2) was calculated, resulting in a 
value equal to 0.9987. 

ANN model with 5 neurons in the input layer. Fig. 4b pres-
ents the proposed model. The input variables selected by 
the correlation matrix for ANN model involve the absorp-
tion process and the input temperature of the evaporator. 
The five operating variables were: TinEV, TinGE, TinGE-AB, TinAB-GE 
and ToutGE-AB. 

The ANN model considering 5 operating variables as 
we developed it is: 

COP
e e e e

sim =
−

+
+

+
−

+
−

+



2
0 8681

1

0 1671

1

0 0876

1

0 7073

11 2 3 4

. . . .
ϕ ϕ ϕ ϕ




− − + − −( ) +0 8681 0 1671 0 0876 0 7073 0 2047. . . . .

 (9)

where:

ϕ1 2 5 3875 5 0064 2 6359
6 1035

= − − −
+

− −( . . .
.

Tin Tin Tin
Tout

GE GE AB AB GE

GGE AB EVTin− + −8 1112 8 6445. . ),  

ϕ2 2 34 0036 6 5302 32 6466
19 2428

= − − −
+

− −( . . .
.

Tin Tin Tin
T

GE GE AB AB GE

oout TinGE AB EV− + −30 2894 33 2274. . )

ϕ3 2 0 2642 5 8341 4 8368
21 4879

= − + +
−

− −( . . .
.

Tin Tin Tin
Tou

GE GE AB AB GE

tt TinGE AB EV− + +11 6259 1 2319. . ),

and

ϕ4 2 3 7847 5 6966 2 8396
8 8353

= − − + +
−

− −( . . .
.

Tin Tin Tin
Tou

GE GE AB AB GE

tt TinGE AB EV− − +9 8910 9 7929. . ).  

The coefficient of determination between experimental 
and simulated COP (COPsim) value was equal to 0.9984 and 
the linear regression obtained was: 

COPsim = 0.00051675 + 0.9984 COPexp (10)

ANN model with 4 neurons in the input layer. Fig. 4c depicts 
the comparison between experimental and simulated COP 
values when the input operating variables were: TinGE-AB, 
TinAB-GE, ToutGE-AB and PAB. The coefficient of determination 
decreased to 0.9976, which indicates that knowing the inlet 
temperature of the evaporator contributes significantly to 
the COP prediction. 

The mathematical model to predict COP as function of 4 
input operating variables is as follows:

COP
e e e e

sim =
+

+
+

+
+

−
+

+
−

+
2

0 5677

1

3 0483

1

2 6140

1

3 0089

11 2 3 4
. . . .

ϕ ϕ ϕ ϕ
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 (11)

where:

ϕ1 2 6 3642 0 8439 1 5006
19 952

= − − +
−

− − −( . . .
.

Tin Tin ToutGE AB AB GE GE AB

88 2 3051PAB + . ,
 

ϕ2 2 0 1968 2 0206 1 6507
7 3422

= − + −
−

− − −( . . .
.

Tin Tin ToutGE AB AB GE GE AB

PPAB + 1 7520. ),
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10 204

= − + −
−

− − −( . . .
.

Tin Tin ToutGE AB AB GE GE AB

22 2 1190PAB + . )

and

ϕ4 2 0 2428 1 5574 1 5029
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= − − + −
−

− − −( . . .
.
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11 0 1387PAB + . ).
 

The linear regression obtained for simulated and exper-
imental values of COP is given by:

COPsim = 0.00095383 + 0.9950 COPexp (12)

ANN model with 3 neurons in the input layer. Fig. 4d shows 
the proposed experimental test as a case with a few mea-
surement instruments. According to the previous models, 
the COP prediction assuming 3 operating variables as input 
neurons is expressed as:

COP
e e e e
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+
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where:
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T
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and

ϕ4 2 10 2878 30 3397 22 7721 33 3396= − − − − −( ). . . . .Tin Tin PGE EV AB  

The comparison between experimental and simu-
lated data of the COP was done, obtaining a coefficient of 
determination of 0.9948 and the linear regression model is 
given by:

COPsim = 0.0020 + 0.9884 COPexp (14)

Remark. Table 3 shows the results of coefficient of deter-
mination and linear regression coefficients for the models 
previously described. As can be seen in Table 3, the four 
ANN model presented the intercept close to 0 and the slope 
close to 1. In accordance with [2], [7] and [9] the four models 
predicted a COP with high confidence.

From Table 3, it is important to emphasize that, the 
artificial neural networks models developed in this work 
had higher values of r2, and they presented better values of 
slope and intercept in comparison with the model proposed 
by Morales et al [1]. It is clear that, the r2 value and the sta-
tistical information such as, slope and intercept in the linear 
regression justify the suggested criteria to improve the tra-
ditional methodology presented in this work.

2. Residual analysis of ANN models

The ANN models presented in the second step were 
validated with the coefficient of determination and linear 
regression between experimental and simulated data as it 
has traditionally been demonstrated by several authors, 
such as [2,7,9]. However, these authors haven’t taken into 
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account if the assumptions (see Assumption 1) on lin-
ear regression models have been satisfied. As it has been 
reported by others [10,11], if the previous assumptions are 
not supported, then, the linear regression model could not 
be suitable for the data.

The points on the graph of the residual errors with at 
least 3 standard deviations from the mean are known as 
outliers, which may affect the adequacy of the linear regres-
sion, therefore, in this work we performed residual analyses 
to verify the assumptions of the linear regression models 
(3)–(6) with and without outliers, with the aim of discarding 
any violation to Assumption 1.

a)–b) Mean of zero and normal distribution. Histograms of the 
residual errors with and without outliers are presented in Figs. 
5 and 6, where it can be observed that residual errors for the 
ANN models with 6, 5 and 4 input variables have a normal 
distribution with a mean of zero. But, the ANN model with 3 
input variables does not satisfy the assumption of normality.

To simplify this study, we only demonstrate the analysis 
of assumptions 1 c) and 1 d) for ANN model with 6 input vari-
ables, although, the analysis was done for all ANN models 
and it was found that they satisfy assumptions 1 c) and 1 d).

Table 3
Results of each ANN model presented in this work

Input operation variable Number of hidden 
layer neurons

r2 Slope Intercept

16 input operation variables Morales et al. [1] 7 0.9969 0.9787 0.0014
TinGE, TinGE-AB, TinAB-GE, ToutGE-AB, TinEV and PAB, Eq. (3) in this work. 4 0.9988 0.9978 0.00043121
TinEV, TinGE, TinGE-AB, TinAB-GE and ToutGE-AB, Eq. (5) in this work. 4 0.9984 0.9984 0.00051675
TinGE-AB, TinAB-GE, ToutGE-AB and PAB, Eq. (7) in this work. 4 0.9976 0.9950 0.00095383
TinGE, TinEV and PAB, Eq. (9) in this work. 4 0.9948 0.9884 0.00200000

c)–d) independent and has constant variance (homosce-
dasticity). Fig. 7 illustrates the predicted coefficient of  
performance against standardized residual with and 
without outliers for ANN model with 6 input variables. 
It can be seen that the average of standardized residual  
is zero, the variance is constant and the residuals are 
independent.

Remark. As it can be noted, ANN models with 6, 5, and 
4 input variables satisfy the linear regression assumptions 
(Assumption 1), but ANN model with 3 input variables 
does not satisfy the assumption of normality. So, for authors 
[2, 7] and [9] this model has been approved, though, in our 
study it has been discarded.

3. Selection of the better ANN model

Based on the selection criterion established in Section 4, 
the best ANN model must satisfy:

a) The arithmetic mean of residual errors close to zero 
and,

b) Low variance.

Fig. 5. Histogram of the standardized residuals without outliers.
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Under this criterion ANN models with 4 (TinGE-AB, TinAB-GE, 
ToutGE-AB and PAB) and 3 (TinGE, TinEV and PAB) input variables 
must to be discarded, see Table 4.

Table 4 shows that the ANN model with 6 input vari-
ables (TinEV, TinGE, TinGE-AB, TinAB-GE and ToutGE-AB) has the low-
est mean and the ANN model with 4 input variables 
(TinGE, TinGE-AB, TinAB-GE, ToutGE-AB, TinEV and PAB) has the lowest 
standard deviation. Thus, none of the two ANN models 

simultaneously satisfies both requirements given in the 
selection criterion. But, because the validation of these 
ANN models were confirmed with the coefficient of deter-
mination and linear regression analysis, besides a residual 
analysis to verify that the linear regressions were correct 
(adequacy of fit), consequently, it can be concluded that 
these ANN models are valid. Therefore, both ANN models 
were selected.

Fig. 6. Histogram of the standardized residuals with outliers.

Fig. 7. Predicted coefficient of performance against standardized residual with and without outliers for the ANN model with 6 input 
variables.
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6. Conclusions

Traditional methodology of ANN models has been 
improved by adding the following criteria: i) correlation 
matrix to select the input variables in the ANN, ii) residual 
analysis to validate the ANN models, in our case there were 
several ANN models and these were validated in a traditional 
way, therefore the following criterion was applied iii) criteria 
to select the best model, all previously stated, in order to sim-
plify the architecture of ANN models, by adding an improved 
validation and considering a mathematical property to select 
the best model (only if there are several). This last criterion was 
applied to predict the coefficient of performance of an absorp-
tion heat transformer with duplex components. 

The main contributions of this work are: 

1. Simplifying the traditional artificial neural network 
model by selecting input operating variables of 
ANN, based on a correlation matrix suggestion. The 
accuracy to predict the coefficient of performance 
has not been sacrificed, the new artificial neural 
models have shown a coefficient of determination 
higher than 0.98. Thus, the models presented in this 
research, considering five and six input operating 
variables are simpler than the ANN model presented 
by [1].

2. The residual analysis has been presented as tool with 
the objective of improving the methodology of tra-
ditional validation in the artificial neural network 
models. 

3. The best ANN models fulfilled the requirements 
such as, the arithmetic mean of residual errors close 
to zero and, low variance. 

4. Even though, for some authors [2,7] and [9] ANN 
model with 3 input variables could be good. In this 
study, it has been discarded, because it does not sat-
isfy the assumption of normality.

5. The ANN models with 3 and 4 input variables have 
been discarded because do not satisfy the selection 
criterion given in Section 4.

6. Artificial neural networks with four neurons in the 
hidden layer, five and six neurons in the input layer 
were successfully trained and validated for coeffi-
cient of performance prediction. These models have 
shown that measuring TinGE, TinGE-AB, TinAB-GE, ToutGE-AB, 
TinEV and PAB is enough to predict the coefficient of 
performance r2 = 0.9988 with high confidence and 
complying with strict residual analysis.
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Table 4
Comparison of means and standard deviations for each ANN models obtained considering the residual errors with and without outliers

Input variables to the ANN Mean with 
outliers

Mean without 
outliers

Standard deviation 
with outliers

Standard deviation 
without outliers

TinGE, TinGE-AB, TinAB-GE, ToutGE-AB, TinEV and PAB 0.000077913 0.00015703 0.0035 0.0025
TinEV, TinGE, TinGE-AB, TinAB-GE and ToutGE-AB 0.000042659 0.000092035 0.0039 0.0030
TinGE-AB, TinAB-GE, ToutGE-AB and PAB 0.000061085 0.00039466 0.0048 0.0037
TinGE, TinEV and PAB –0.000058619 0.00019679 0.0071 0.0064


