
* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2017.20617

74 (2017) 137–148
May

A new approach in simultaneous calibration of Hazen–Williams coefficients 
and demand of nodes in of water distribution systems

Fariba Sherria, Amir Hossein Mahvib,*, Abbas Toloie Eshlaghyc, Amir Hessam Hassania

aDepartment of Environmental Engineering, Faculty of Environment and Energy, Science and Research Branch, 
Islamic Azad University, Tehran, Iran, Tel. +989125461588; email: faribasherri@gmail.com (F. Sherri), 
Tel. +989121039899; email: ahhassani@srbiau.acir (A.H. Hassani) 
bCenter for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran, 
Tel. +989123211827; email: ahmahvi@yahoo.com 
cFaculty of Management and Economic, Industrial Management Department, Science and Research Branch, Islamic Azad University, 
Tehran, Iran, Tel. +989123108756; email: toloie@gmail.com  

Received 19 May 2016; Accepted 17 February 2017

a b s t r a c t
Calibration is necessary to make models of water distribution systems (WDSs) perform similarly to 
actual events; however, calibration is often complicated and time-consuming. The present study pro-
vides a new approach for simultaneous calibration of Hazen–Williams coefficients and nodal demand 
using the hydraulic simulator of the WaterGEMS that includes fast messy genetic algorithm as the 
optimization tool. For WDS calibration, instead of optimization using extended period approach 
during a day, several hourly optimization problems are considered. This reduces optimization time 
and computational effort. In the proposed approach, pipes and nodes are classified by physical char-
acteristics such as age and material and topology of the water distribution network. Classification 
of pipes and nodes makes the decision space smaller and makes it easier to find a solution in a rea-
sonable time. The water distribution network was calibrated at each time step separately, and then, 
by aggregating the results, an optimal solution was achieved to minimize the difference between the 
measured performance and simulation results. The validity of the proposed approach was tested for a 
two-loop network, and its efficiency in complicated cases was evaluated through application to a part 
of the Tehran WDS. The results show that the proposed method can produce acceptable results in a 
reasonable time even for large and complicated WDSs. The case study under actual conditions showed 
that the difference between observed and simulated pressure at all nodes was <2 m and volume of 
computation decreased to 66.7%.
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1. Introduction

Water distribution systems (WDSs) are complex, essential 
and costly structures in urban areas. The purpose of a WDS 
is to supply the demand of consumers with enough pressure 
and at the desired quality [1]. Water pressure management 
is a way to reduce operating expenses [2]. Given the critical 
role of water distribution networks (WDNs) in urban areas, 

the performance of these infrastructures is very important. 
Several optimization models and techniques have been used 
to improve WDSs performance [3].

Given that the majority of WDNs are composed of aging 
pipelines, the redesign and reconstruction of these net-
works is an undeniable necessity that will entail huge cost 
for water and wastewater companies. Optimal manage-
ment of these systems and the related costs makes it nec-
essary to evaluate their current states and determine their 
main weaknesses. The hydraulic reliability of WDNs can be 
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increased by implementing optimal and economic plans for 
reconstruction of networks.

Different evolutionary optimization algorithms have 
been used in WDS optimization, such as genetic algorithms 
(GA) [4–6], simulated annealing [7], ant colony optimiza-
tion (ACO) [8], harmony search [9,10], shuffled frog leaping 
algorithm [11], scatter search [12] and honey-bee mating 
optimization [13]. Different objective functions for hydrau-
lic calibration of WDNs have been proposed. Ormsbee and 
Wood [14] considered the minimum difference between 
observed and calculated pressure in network nodes as the 
objective function when adjusting the roughness coefficient 
of the model. Kumar et al. [15] considered the WDS calibra-
tion objective function to minimize the difference between 
observed and simulated pressure and flow. Parameters such 
as the roughness coefficient, nodal demand, demand patterns 
and leakage of nodes as well as water quality coefficients, 
including the volumetric decline coefficient and the decay of 
pipe wall coefficient, were the calibration parameters used. 
Weiwei et al. [16] calibrated a roughness coefficient using 
the real-coded GA under steady-state conditions. Borzì et al. 
[17] minimized the difference between the observed and cal-
culated pressure at nodes as well as the difference between 
the observed and calculated flow of pipes as the objective 
function of the calibration model. Yu et al. [18] minimized 
the difference between the observed and calculated pressure 
at nodes, flow in pipes and water level in the tank as the 
objective function in calibration process.

Jamasb et al. [19] calibrated the pipe roughness coeffi-
cient and nodal demand in a WDS using a GA under the 
steady-state conditions. Kang and Lansey [20] calibrated 
the pipe roughness coefficient and nodal demand using 
the least squares method under the steady-state conditions. 
Cheng and He [21] calibrated nodal demand in a WDS using 
sensitivity analysis for extended period. Asadzadeh et al. 
[22] calibrated pipe roughness and demand pattern coeffi-
cients using a GA for extended period. Sanz and Pérez [23] 
calibrated demand pattern coefficients using the first-order 
second-moment method based on a linear gradient for 
extended period. Morosini et al. [24] calibrated the pipe 
roughness coefficient and nodal demand using a Bayesian 
algorithm called shuffled complex evolution metropolis 
(SCEM-UA) for extended period.

Tabesh et al. [1] compared demand-driven and 
pressure-dependent hydraulic analysis methods for optimal cal-
ibration of the WDS under critical conditions using a standard 
GA. The pipe roughness coefficient, nodal demand and diameter 
of the pipe were used as calibration variables. They found that the 
pressure dependent method was more efficient than the demand-
driven method. Kang and Lansey [25] reduced the dimensions of 
the unknowns in a WDS calibration problem by considering the 
nodal demand with similar patterns as lumped parameters and 
grouped pipes with similar materials. The calibration parameters 
considered were nodal demand and pipe roughness.

Dini [26] used an artificial neural network for WDS 
simulation to increase the computational speed of the opti-
mization algorithms. Dini and Tabesh [27] calibrated the 
Hazen–Williams and nodal demand pattern coefficients 
simultaneously using an ACO algorithm. The algorithm 
was time-consuming for complicated WDNs. The pro-
posed approach in this study for WDS calibration uses the 

Hazen–Williams coefficient and nodal demand as calibration 
parameters. The objective function is to minimize the square 
of the difference between the measured and simulated pres-
sures at junctions in the network.

The pipes and nodes are first classified into groups 
based on physical conditions such as pipe age and material, 
land use and population density where the nodes/pipes are 
located on the network topology. Classification of pipes and 
nodes decreases the size of the decision space in the calibra-
tion process. The 24-h calibration problem is broken into 
several steady-state problems to reduce the number of eval-
uations and the time needed to reach an optimal solution. 
The times selected for steady-state calibration are selected 
in a way to be representative of changes in system demand 
for a given demand pattern. Each episode is optimized sep-
arately with the fast messy GA (FMGA), and the results are 
aggregated to achieve a final model parameter that mini-
mizes the calibration objective function. Different method 
of WDS calibration that proposed in this study is the main 
innovation of this study. The main difference between this 
study and previously published studies on WDS calibration 
is that the 24-h simulation optimization is disaggregated to 
several steady-state optimization problems to reduce simula-
tion optimization time and computational effort. A method is 
then proposed for finding the total calibration results based 
on individual simulations.

2. Materials and methods

Differences in materials and the age of pipes in a WDN 
and changes in the roughness coefficient as the age of the 
pipes increase have direct effects on the hydraulics of a 
WDN. Before planning a WDN, the model must be calibrated 
based on the roughness coefficient and nodal demand. The 
objective function is minimizing the difference between the 
measured and simulated pressures and flows at monitoring 
points along the WDN. In the proposed approach, the 24-h 
period of calibration was broken into steady-state calibration 
problems to reduce the number of calculations and the time 
needed to reach an optimal solution. The calibration times 
were representative of variability in system hydraulics. Each 
time step selected was optimized separately, and the results 
were aggregated to find a final optimal solution.

2.1. Network calibration

Calibration changes model characteristics and parame-
ters until the simulation results match the values observed 
during actual system performance as much as possible. The 
Hazen–Williams coefficients and nodal demand were the 
adjusting parameters for hydraulic calibration of the WDN. 
A GA was used to solve the optimization model proposed 
for calibration. Calibration efficiency was evaluated as how 
well the simulated pressure and flow in the hydraulic model 
matched the observed values. The criteria for this purpose is 
as follows [28]:
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where Wnh is the normalized weighting factor of the hydraulic 
heads. The weighting factor can be calculated as follows [28]:

Wnh
nh

nh

Hobs
Hobs

=
∑  (2)

Hobsnh is the observed hydraulic head at nh-th point; Hsimnh 
is the simulated hydraulic head at nh-th point; NH is the num-
ber of hydraulic head observations. HPnt notes the hydraulic 
head per fitness point [28].

Root mean squared error (RMSE) and Nash–Sutcliffe effi-
ciency (NSE) were used to evaluate the results of calibration. 
The RMSE value that is closest to zero represents the most 
accurate result. RMSE is calculated as follows:

RMSE
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where n is the number of observations; Actuali and Forecasti 
are the measured and simulated values of the desired 
variable, respectively (pressure and flow), at point i. The NSE 
is calculated as follows:
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where obs and sim are the measured and simulated values 
of the calibration variables, respectively (pressure and flow), 
at point i. The NSE that is closest to 1 represents the most 
desirable results.

2.2. Optimization algorithm

The optimization algorithm used was the FMGA, which is 
able to increase the rate of convergence by reducing the length 
of the chromosomes and eliminating unfavorable genes [29]. 
In the FMGA, the length of the strings (chromosomes) changes 
from one string to another. Short strings (partial solutions) 
are produced and evaluated in the first stage of GA optimi-
zation. Short strings with higher than the average fitness are 
preserved in the building blocks to produce better solutions. 
FMGA begins with an initial population of full-length strings, 
which are filtered by a building block. FMGA identifies the 
superior short strings by deleting some genes from the basic 
strings, and the short identified strings are then used to pro-
duce a new solution. Each solution is created using link and 
cutting operations instead of a standard crossover operator in 
GA. The cutting operator divides each string into two strings, 
and the link operator joints two strings to form a unique string. 
FMGA identifies building blocks and reproduces solutions in a 
number of foreign repetitions. The generation continues until 
an optimal solution is found, and the maximum number of 
iterations is reached. FMGA works like a filter that eliminates 
undesirable genes; the resulting population includes only short 
chromosomes with desirable genes. Filtering is continued until 
all chromosomes are reduced to the desired length. This type of 
algorithm resists exposure to the local minimum and, thus, can 
solve problems in a shorter period of time. FMGA is safer from 
deception than standard GA, and they converge to an optimal 
answer with incredibly enticing functions [30].

At the onset of optimization, it is important to determine 
appropriate values for the parameters. In many evolution-
ary algorithms, such as GA, optimization depends on the 
parameters used, and the appropriate amount determined. 
Parameters cannot be precisely determined, and their effect 
in any particular case may vary [31].

3. Assessment of the proposed model

3.1. Case study #1

The two-loop network proposed by Alperovits and 
Shamir [32] was used to illustrate the validity of the proposed 
approach. This network has been often used as a benchmark 
example [27]. The layout of the network is shown in Fig. 1, 
and the specifications of the network and demand patterns 
are shown in Table 1. A hydraulic model of the network was 
developed by WaterGEMS software, and the pressure of the 
nodes in the network was simulated for 4, 7, 10, 13, 16, 19, 
22 and 24 h of the day. These times are considered repre-
sentative of times of variation in daily water demand. The 
pipes were classified into four groups based on their Hazen–
Williams coefficients.

After steady-state calibration of the WDN for the selected 
times using WaterGEMS simulator and FMGA, different 
Hazen–Williams coefficients were obtained for the pipes. The 
most-often repeated coefficient in each group was selected as 
the appropriate roughness coefficient.

3.2. Case study #2

The case study that is focused in this study is a WDN at 
the west of Tehran, the capital of Iran. The number of pipes 
and nodes in this network is very high; thus, the network 
was simplified, and pipes with diameters of <60 mm, which 
do not perform as main pipes, were omitted from the WDN. 
The system was then checked to assure that the simplifica-
tion had not affected the system hydraulics. The simplified 
WDN consisted of a reservoir, 191 pipes, 137 nodes and 10 
pressure relief valves to reduce downstream pressure to 
2.5–2.6 atm. The maximum water level of the reservoir was 
1,324.21 m. A summary of network pipes characteristics are 

Fig. 1. Two-loop network with eight pipes and seven nodes [32].
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shown in Table 2. The population was 113,378, and area 
encompassed by this portion of the WDN was 659.18 ha. The 
maximum demand occurs at 1 pm and is 682 L/s. The mini-
mum demand occurs at 4 am and is 361 L/s.

This WDN was considered for improvement by a local 
organization; thus, it is important to provide a realistic view 
of current performance. The hydraulic model of this WDN 
was developed using ArcGIS and WaterGEMS software. The 
inflow to this WDN was recorded by ultrasonic flow meters 
for a total of 1 year in 15 min time steps. The inflow was mea-
sured by a flow meter (Ultrasonic Flexim, Germany) having 
an accuracy of ±0.1% and a repeatability of ±0.2%. These 
observations were used for WDN model calibration. The 
daily demand pattern for the study area is shown in Fig. 2.

For pressure monitoring, nine logger devices were 
placed at nine points according to WDN layout as shown 
in Fig. 3. The data loggers (Sharif Tarasheh, Iran) had an 
accuracy of ±0.1%. Nodal pressure was measured 24 h/d for 

Table 2 
Properties of network pipes

Material Total length in the 
considered WDN (m)

Diameter (mm)

Ductile iron 835 60
1,170 80
8,052 100
9,681 150
8,718 200
3,263 250
1,836 300
1,438 350
2,290 400

1,130 500
1,714 700

Steel 3,547 1,200
1,345 900

Total 45,019

Table 1
Two-loop pipe network data [27]

Demand pattern coefficientPipe characteristicsNode characteristics
C (%)T (h)C (%)T (h)C (%)T (h)HWD (mm)L (m)No.BD (L/s)E (m)No.
1.08171.0090.9611304501,000102101
1.09181.01100.922803501,000227.81502
1.08191.02110.8831303501,000327.81603
1.07201.03120.844701501,000433.41554
1.06211.04130.851003501,000575.01505
1.05221.05140.866801001,000691.71656
1.00231.06150.9071003501,000755.61607
0.98241.07161.068702501,0008
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Fig. 2. Demand pattern coefficient of the real case study.

Fig. 3. Layout of the WDS model and location of pressure 
measurements.
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4 months. The data loggers were placed at critical points in 
pressure variation to better identify system weaknesses to 
be considered in the improvement plans.

Because there are a large number of demand nodes and 
pipes of various diameters, ages (20–30 years) and materials, 
classification of pipes and nodes was useful. Network pipes 
were classified based on diameter, material and age as well 
as spatial distribution into nine classes. Each category of pipe 
had a unique Hazen–Williams coefficient (Fig. 4) that should 
be determined during calibration. Demand nodes were also 
classified into nine categories as shown in Fig. 5. The basis of 
node classification was the service area population density, 
land use and spatial distribution. The calibration parameter 
of each node shows the ratio of demand to average demand 
that was calculated based on per capita water demand and 
the population serviced by that node. It should be empha-
sized that especial attention should be paid to demand vari-
ations in nodes, before classification. There may be some 
nodes with very low or high water demands in a small region 
that should be taken into account.

Classification of pipes and nodes decreases the size of 
the decision space; therefore, the calibration model finds 
the desired answer easier and faster, which is desirable for 
practical applications. To avoid from unrealistic calibration 
results in the case study, the optimum Hazen–Williams coef-
ficients were selected in a range of 0.15–1.3 times the initial 
value with an interval change of 0.1. For nodal demand, 
the search interval of optimal values were 0.1–1.2 times 
the initial value with a 0.002 change interval. A Pentium® 
Dual-Core CPU E5300 @ 2.60 GHz computer was used in this 
study. After running the model, various solutions with differ-
ent fitness were produced. The smallest fitness value shows 
the most appropriate calibration results [33]. Because calibra-
tion results may be very similar, a dual check for results of 
calibration under different conditions was carried to deter-
mine the RMSE and NSE. The WDN was calibrated at 4, 7,10, 
13, 16, 19,22 and 24 h over the course of 1 day based on the 
demand pattern. The different episodes for calibration of the 
nodal demand and Hazen–Williams coefficients as well as 
uncertainty in data measurements could produce different 
values for the variables for the same groups of components. 
Because a pipe cannot have several roughness coefficients 
over the course of a day, the results were aggregated by 
selecting the most repeated coefficient to provide the best 
result for calculation of the fitness function, NSE and RMSE 
in other episodes as follows:

Cgi ti=mode (C )  (5)

where Cgi is selected Hazen–Williams coefficients in a group; 
Cti is obtained Hazen–Williams coefficients at different times 
in a group 4.

Walski [34] found that WDN calibration will be accept-
able if the difference between the pressure measurement and 
simulations is <5 m. In the present study, a maximum differ-
ence of 2 m was considered to be the threshold for acceptance 
of calibration results.

4. Results and discussion
4.1. Case study #1

Table 3 shows the calibrated and selected Hazen–
Williams coefficients at different times in pipe groups 1 to 4. 
Table 4 compares the Hazen–Williams coefficients from Dini 
and Tabesh [27] and the proposed approach and indicates 
that the results are the same.

Table 5 shows the RMSE and NSE values at different 
hours of the day for simulated pressure after aggregation. 
The RMSE were <1 with a minimum of zero and a maxi-
mum of 0.67. The NSE values are close to 1 with a mini-
mum of 0.9969. The results show the good performance of 
the proposed method. The total run time of the proposed 
method was 3 s per run and 24 s for all runs. The method 
proposed by Dini and Tabesh [27] required 9.70 min. This 
indicates the ability of the proposed method for application 
in real cases.

4.2. Case study #2
After sensitivity analysis of the parameters of the 

FMGA algorithm for a real network in this study, it was 

Fig. 4. The classification of WDN pipes into nine groups.

Fig. 5. The classification of demand nodes into nine groups.



F. Sherri et al. / Desalination and Water Treatment 74 (2017) 137–148142

concluded that the most important parameters were 
population size, cut, splice and mutation probabilities. 
Table 6 shows the results of sensitivity analysis at 4 am. 
As seen, for population sizes of 45, 95, 145, 190 and 225 
in Table 6(A), the best fitness (0.031) was obtained from a 
population size of 145.

For a population size of 145, the cut probability increased 
gradually from 0.3% to 1.8% in Table 6(B). For this parame-
ter, a value of <10% is desirable [31], and the best fitness was 
obtained at 1.5% cut probability.

A value of 50%–90% was desirable for optimal splice 
probability [31]. The best fitness value (0.031) was obtained 
at a splice probability of 90% (Table 6(C)).

The mutation is one of the most important GA operators. 
This study showed that the best result can be obtained in 
optimization process by only correct setting of this param-
eter. Usually, mutation probability is <10% [31], and in this 
study, its value was increased from 0.4% at first to 1.3% at the 
end. Finally, at 0.7% mutation probability, the fitness func-
tion reached its minimum value of 0.031 (Table 6(D)). Table 7 
shows the summary of the best results for the optimization 
model parameters.

The results obtained in the first step of calibration for 
the different hours of the day are shown in Table 8. The five 
Hazen–Williams coefficient values selected for the different 

pipe groups are shown in the far right column of Table 8. 
For group 1, the Hazen-Williams coefficients were 117, 117, 
119.6, 110.5, 119.6, 117, 117 and 110.5 at different times of 
day. The Hazen–Williams coefficient of 117 is repeated sev-
eral times; therefore, it is assigned to this group. This process 
was repeated for the other groups, and the Hazen–Williams 
coefficients for remaining groups were 117, 99, 99.75, 99.75, 
102.90, 94, 82, 98 and 70.

These values were replaced by the Hazen–Williams coef-
ficients obtained from hourly calibration, and simulation was 
repeated for the same time periods. If the pressure difference 
was <2 m, (Pji ≤ 2 m) in all simulations, the values were con-
sidered to be acceptable; values that simulated pressures 
were considerably different from observations were replaced 
with the next most frequent coefficient and the simulation 
was repeated. This process was repeated until the criteria for 
pressure difference was satisfied.

Fig. 6 compares the observed and calibrated pressure 
after step one of calibration at 4, 7, 10, 13,16, 19, 22 and 24 h of 
the day. As shown, there was very good agreement between 
the calibrated and measured values.

Fig. 7 shows the observed pressure variations in pres-
sure measurement points with simulation results before 
and after aggregation during a day. The results match well, 

Table 3 
Hazen–Williams coefficients values at different times in pipe groups 1–4

Hazen–Williams coefficients values at different times Selected option of 
Hazen–Williams 
coefficientsGrouping Pipe t = 4 t = 7 t = 10 t = 13 t = 16 t = 18 t = 21 t = 22 t = 24

C C C C C C C C C C

Group 1 1 130 130 130 130 125 130 130 130 130 130
Group 2 2 85 85 75 80 75 80 77.67 80 80 80
Group 1 3 130 130 130 130 125 130 130 130 130 130
Group 3 4 70 70 75 70 70 70 71.38 70 70 70
Group 4 5 105 105 100 95 100 100 102.45 95 100 100
Group 2 6 85 85 75 80 75 80 77.67 80 80 80
Group 4 7 105 105 100 95 100 100 102.45 95 100 100
Group 3 8 70 70 75 70 70 70 71.38 70 70 70

Table 4 
Comparison of Hazen–Williams coefficients from Dini and 
Tabesh [27] and the proposed approach

Pipe Previous study Current study (proposed approach)

1 130 130
2 80 80
3 130 130
4 70 70
5 100 100
6 80 80
7 100 100
8 70 70

Table 5 
RMSE and NSE values at different hours of the day for simulated 
pressure after aggregation

Time RMSE (m) NSE

4 0.37 0.9983

7 0.49 0.9981

10 0.67 0.9969

13 0 1

16 0.33 0.9993

18 0.19 0.9998

21 0.06 1

22 0.05 1

24 0 1
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and the proposed algorithm was able to preserve system 
performance.

Table 9 shows the calibrated demand after aggregation 
at pressure measurement points for 4, 7, 10, 13, 16, 19, 22 and 
24 h. The results of calibration were evaluated at different 
hours of the day.

Table 10 shows the RMSE and NSE at different hours 
of the day for pressure simulation after aggregation. 
Table 10 shows that the RMSE was always <1 with a 

minimum value of 0.26 and a maximum value of 0.74. The 
NSE approached 1 with a minimum value of 0.9954 and a 
maximum value of 0.9994.

Local standards [35] set the maximum allowable pres-
sure for WDSs at 50 m. Under certain circumstances and 
if the topographic conditions result in significant cost, the 
maximum allowable pressure can be increased to 60 m. 
The minimum pressure for the water demand supply of 
a 4-story building is 26 m. Local measurements showed 
that when the pressure drops to below 10 m, no water 
can be supplied because of head loss in the home piping 
system and flow meter equipment. If the node pressure 
is <10 m, the network is in a no-service state. Using these 
pressure limitations, four classes of system performance 
were developed as shown in Table 11 as the percentages 
for nodes in different classes before and after calibration 
at different hours of the day. It can be concluded that if 
the system was simulated based on the initial assump-
tions about the calibration variables, the results of the 
performance evaluation and, therefore, modification 
plans would differ. This illustrates the strong importance 

Table 6
The results of sensitivity analysis for real network at 4 am (A: population size, B: cut probability, C: splice probability, D: mutation)

Trial
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000
Fitness Fitness Fitness Fitness Fitness Fitness Fitness Fitness Fitness Fitness Fitness

A: Population size
45 0.143 0.143 0.117 0.061 0.044 0.043 0.043 0.043 0.040 0.040 0.040
95 0.178 0.074 0.074 0.045 0.037 0.037 0.037 0.037 0.037 0.037 0.037
145 (the best option) 0.194 0.156 0.061 0.036 0.032 0.031 0.031 0.031 0.031 0.031 0.031
190 0.143 0.143 0.143 0.102 0.071 0.049 0.044 0.044 0.043 0.036 0.036
225 0.143 0.143 0.127 0.072 0.072 0.043 0.037 0.032 0.032 0.031 0.031
B: Cut probability
0.3 0.194 0.194 0.101 0.056 0.037 0.033 0.032 0.031 0.031 0.031 0.031
0.6 0.194 0.194 0.101 0.056 0.037 0.033 0.032 0.031 0.031 0.031 0.031
0.9 0.194 0.194 0.101 0.056 0.037 0.033 0.032 0.031 0.031 0.031 0.031
1.2 0.194 0.130 0.108 0.101 0.065 0.065 0.065 0.053 0.043 0.041 0.041
1.5 (the best option) 0.194 0.156 0.061 0.036 0.032 0.031 0.031 0.031 0.031 0.031 0.031
1.8 0.194 0.163 0.064 0.056 0.037 0.037 0.035 0.033 0.031 0.031 0.031
C: Splice probability
50 0.194 0.166 0.100 0.096 0.045 0.045 0.034 0.032 0.030 0.030 0.030
60 0.194 0.142 0.088 0.088 0.065 0.053 0.036 0.032 0.031 0.030 0.031
70 0.194 0.194 0.126 0.102 0.085 0.085 0.085 0.054 0.044 0.037 0.037
80 0.194 0.163 0.103 0.099 0.064 0.064 0.064 0.042 0.040 0.034 0.034
90 (the best option) 0.194 0.156 0.061 0.036 0.032 0.031 0.031 0.031 0.031 0.031 0.031
D: Mutation
0.4 0.194 0.133 0.107 0.105 0.067 0.067 0.067 0.041 0.033 0.031 0.031
0.7 (the best option) 0.194 0.156 0.061 0.036 0.032 0.031 0.031 0.031 0.031 0.031 0.031
1.0 0.194 0.136 0.088 0.049 0.037 0.036 0.035 0.033 0.031 0.031 0.031
1.3 0.194 0.134 0.072 0.039 0.036 0.033 0.031 0.031 0.031 0.031 0.031

Table 7 
The summary of the best results for the optimization model 
parameters (real network)

Parameter Best value Trial Fitness 

Population size 145 6,000 0.031
Cut probability 1.5 6,000 0.031
Splice probability 90 6,000 0.031
Mutation 0.7 6,000 0.031
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of calibration. The proposed scheme allows calibration 
more quickly with more desirable operation. Water qual-
ity in WDN can also be assessed by fuzzy logic methods 
[36].

5. Conclusions

The Hazen–Williams coefficients and nodal demand 
were calibrated over the course of 1 day using WaterGEMS 
simulator and FMGA using the new approach of aggregation. 
The objective function was to minimize the square of the dif-
ference between the measured and simulated values. The 
Hazen–Williams coefficients and nodal demand were the 
decision variables.

Table 8 
Hazen–Williams coefficients values at different times in groups of 1–9

Hazen–Williams coefficients values at different hours Selected options of Hazen– Williams 
coefficients

Group 
name

t = 4 t = 7 t = 10 t = 13 t = 16 t = 19 t = 22 t = 24 1 2 3 4 5 (the 
best 
option)

C C C C C C C C C C C C C

Group 1 117.0 117.0 119.6 110.5 119.6 117.0 117.0 110.5 117.0 117.00 117.0 117.00 117.00

Group 2 90.00 90.00 99.00 85.00 99.00 98.00 110.00 102.00 90.00 99.00 99.00 99.00 99.00

Group 3 90.30 100.80 99.75 89.25 99.75 108.15 94.50 96.60 99.75 99.75 99.75 99.75 99.75

Group 4 94.50 115.50 99.75 89.25 99.75 108.15 94.50 96.60 94.50 94.50 99.75 99.75 99.75

Group 5 102.90 113.40 97.65 89.25 97.65 108.15 94.50 98.70 97.65 98.70 108.15 113.40 102.90

Group 6 83.00 93.00 94.00 85.00 94.00 98.00 100.00 70.00 94.00 85.00 83.00 98.00 94.00

Group 7 82.00 82.00 104.00 85.00 94.00 103.00 90.00 80.00 82.00 85.00 94.00 90.00 82.00

Group 8 101.00 98.00 91.00 85.00 91.00 98.00 90.00 90.00 90.00 91.00 98.00 98.00 98.00

Group 9 92.00 105.00 104.00 102.00 104.00 103.00 90.00 70.00 104.00 92.00 90.00 90.00 70.00

Table 9 
Calibrated demand after aggregation at pressure measurement points at different hours

Measurement 
points

4 am 7 am 10 am 1 pm 4 pm 7 pm 10 pm 12 am

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

Demand 
(L/s)

1 2.16 2.79 3.78 4.29 3.73 4.12 3.85 2.35

2 2.10 3.12 3.85 3.73 3.82 4.03 3.86 3.57

3 2.50 3.23 4.38 4.80 4.32 0.44 4.46 3.93

4 1.74 1.18 3.04 3.44 2.99 3.36 2.94 2.72

5 2.26 2.91 3.95 4.25 3.89 3.99 4.13 1.93

6 2.41 3.58 4.96 4.71 4.89 5.44 4.98 4.33

7 2.17 2.99 4.00 3.44 3.83 4.05 3.45 3.41

8 2.60 3.35 4.55 5.16 4.49 4.60 4.85 3.12

9 2.59 3.34 3.96 5.14 4.47 4.58 3.42 3.27

Table 10 
The values of RMSE and NSE at different hours of the day to 
simulate of pressure

Time RMSE (m) NSE

4 0.49 0.9972
7 0.59 0.9959
10 0.26 0.9994
13 0.74 0.9954
16 0.37 0.9989
19 0.33 0.9992
22 0.38 0.9988
24 0.41 0.9985
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Fig. 6. Comparison of the observed and calibrated pressures after the first step of calibration in different times in a day.
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Fig. 7. Comparison of the observed pressure variations in pressure measurement points with simulation results before and after 
aggregation during a day.
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In this new approach, the 24-h day was divided into some 
hourly calibration to reduce the number of calculations and 
the time needed to reach an optimal solution. Each unit was 
optimized separately, and the results aggregated to achieve 
an optimal solution to minimize error. In previous studies, 
the high volume of calculations and time consumed for cal-
ibration of average demand and the demand variability was 
ignored. In the proposed approach, all hours of the day are 
considered in calibration easily; thus, the network can be 
modified using the optimal calibration coefficients. The 
results of the proposed method on a benchmark example 
showed that the Hazen–Williams coefficients obtained were 
identical to results of previous studies. In addition, the time 
required to reach an optimal solution using aggregation was 
much less than for previous methods.
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