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a b s t r ac t 
The composition of wastewater produced in industrial processes can vary dynamically and often ran-
domly. Immediate intervention is necessary to preserve the water quality before any parameter of the 
wastewater exceeds the threshold limit; therefore, the parameters of the wastewater must be deter-
mined in real time. Direct laboratory methods have long lead times; indirect methods (refraction, pH, 
conductivity, turbidity, etc.) would be suitable as they measure indirect values, so correlations must 
be found between the measured values and the component(s) for analysis. These correlations are often 
stochastic in nature having a standard deviation of the same magnitude as the measured values. This 
paper deals with pharmaceutical wastewater with a high sucrose content, the online measurement of 
its organic material content characterised by chemical oxygen demand (CODcr), refraction and resis-
tance. It finds a correlation between the CODcr and resistance-corrected refraction (r*). To reduce the 
standard deviation, the concept of cumulative CODcr is introduced. Concentration limit values could 
be determined to compare with the cumulative CODcr values calculated continuously during the fill 
up of the wastewater tank. This means that the treatment with the wastewater (into the drain, dilution 
and transfer) can be decided. The validity of the model is checked by trial calculations based on a high 
number of measurements.
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1. Introduction

Unlike slow-changing communal wastewater, the com-
position of wastewater produced in industrial processes 
can vary dynamically and often randomly. Intervention is 
necessary (generally immediately) to preserve the water 
quality before any parameter of the wastewater exceeds the 

threshold limit [1–4]. To achieve this, the parameters of the 
wastewater must be determined in real time [5]. Despite 
being able to provide correct results, traditional laboratory 
methods are not suitable due to their long lead times. Online 
analysers (total organic carbon, phosphate, etc.) also produce 
direct results, but they are expensive and require significant 
maintenance, and the time needed for detection can be lon-
ger than desired. Operating them requires special knowledge 
[6,7]. The remaining methods are the indirect ones (such as 
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refraction, pH, conductivity, turbidity, etc.) [8–10]. Their 
advantages include immediate measurement and evalua-
tion, relatively low cost, no particularly special knowledge is 
required, and they are easy to maintain and calibrate. 

Besides their advantages, however, they have numerous 
disadvantages. The most important is that they measure indirect 
values, so correlations must be found between the measured 
value(s) and the analysed component(s). These correlations are 
often stochastic in nature, as the results from online measure-
ment can be influenced by other parameters [11–16]. Applying 
them does not mean laboratory measurements can be totally 
left out, but these do not have to be real time (they generally 
have to be carried out during calibrations and official checks). 

Due to the characteristics of wastewater, many measuring 
methods can be applied. In this paper, we deal with a rather 
special, but important case, a pharmaceutical company’s 
wastewater with high sucrose content.

2. Measurements

The main part of the dissolved or solubilised compounds 
of the water comes from washing the pharmaceutical instru-
ments of the factory when changing manufactured medi-
cines. This is a diluted coating solution for pills, and mainly 
contains sucrose, as well as citric acid or its salts, surfactants 
and talcum powder. The base conductivity originates from 
the salinity of the water system.

The basic principle of our method is that the concentration 
of a sucrose solution can be measured by refractometrics in 
real time, so we can expect a direct relation between the refrac-
tion (the sugar content of an aqueous solution, BRIX)  and the 
chemical oxygen demand (CODcr) values [3,4,8,10–16]. Since 
the refractometric measurement can be executed online, this 
measurement method can be the basis for this control system. 

The first step was to calculate the relation between the BRIX 
and CODcr values for different sucrose solutions with precise 
laboratory measurements. For the pure sugar solution, there 
is a direct relation between CODcr (k) and BRIX (r refraction), 
which can be expressed with the following equation (Fig. 1):

k r= ⋅α  (1)

where α = 12,500 mg/L∙BRIX and R2 = 0.9950. 

A high number of real-time, online measurements were 
taken to calculate the sucrose equivalent r (BRIX [%]), the 
conductivity Ω (mS/cm), pH and temperature T (°C) values.

The optical lenses of the online instrument must be 
cleaned regularly (washing). This was done using citric 
acidic water. After washing, the equilibrium set in some 60 s 
later (as shown by the restoration of pH values), so the data 
obtained within 60 s of the washing was deleted. Similarly, 
the samples with obvious measurement problems and iden-
tical, consecutively measured data were also deleted.

In some 150 samples, the CODcr was determined under 
laboratory conditions. From the data – and taking the above 
into consideration – 120 samples were selected with the asso-
ciated online data mentioned above. These measurements 
can be regarded as independent. 

For the wastewater, we used Eq. (1) correlation directly, 
α = 5,663 mg/L∙BRIX and R2 = 0.4315. However, there is no 
correlation between CODcr and conductivity (R2 = 0.0011); a 
higher correlation coefficient can be given (R2 = 0.6183) with 
the introduction of conductivity, that is:

k r r= ⋅ + =α β αΩ *,  (2)

where r r* = +
β
α
Ω  is the corrected refraction value (a 

corrected BRIX value is indicated with BRIX*); β is the ques-
tionable coefficient (β = –0.1 mg∙cm/L∙mS). Unfortunately, 
the correlation coefficient was lower than the previous value, 
R2 @ 0.8 (R @ 0.9), and only slightly exceeds the value where 
the correlation is still acceptable, R2 @ 0.36 (R @ 0.6).

3. Model

3.1. Probability model

Since wastewater can contain other components besides 
sugar having an effect on the BRIX values associated with 
several CODcr–s, the latter can be regarded as a random vari-
able, κ where: 

M k D M kκ κ κ σ( ) = ( ) = − ( ) =and 2 2 2  (3)

are (multitude) mean value and standard deviation, respec-
tively. In this case, the relation between CODcr and BRIX will 
be stochastic. 

The correlation may be increased by applying a logistic 
model. The mean value of k using this approximation will be 
a polynomial of degree q as follows:

ln * ... * ...,k
k k

a a r a rq
q

∞ −
= + + + +0 1  (4)

where aq–s are the mean values of polynomial coefficients as 
random variables; k∞ is the asymptote of k (k → k∞ if r* → ∞). 
The standard deviation as the function of r* similar to Eq. (4) 
will be as follows:

ln * ... * ....σ
σ σ∞ −

= + + + +b b r b rq
q

0 1  (5)
Fig. 1. Chemical oxygen demand (CODCR) as a function of 
refraction (r) for industrial wastewater containing sugar and 
pure sugar solution.
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where bq–s are the standard deviations of polynomial 
coefficients, and s∞ is the asymptote of s as above.

3.2. Mathematical method

The values of polynomial coefficients are calculated by 
variations of parameters [8]. Using the mean square error 
(MSE) [17–19], the function of parameters needs to be con-
structed for the mean value of Eq. (4), as can be seen below:

MSE MIN=
−

− →∗

==
∑∑[ln ]

x
k x

a ri

i
q i

q

qi

n

∞

∞

01

2  (6)

where xi and ri
*  are the measured values of CODcr and cor-

rected refraction value, r*, from Eq. (2) at the ith sample.
The measured (calculated) values of the (square) stan-

dard deviation: 

d x ki i i
2 2= −[ ]  (7)

is the square of the difference of the measured (xi) and calcu-
lated mean value (ki) from Eq. (4) at the ith sample. The stan-
dard deviation parameters can be given similarly to Eq. (6): 
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For the mean value of Eq. ( 6), the correlation coefficients 
were also calculated by the degree of the polynomial 
q = 1, R2 = 0.8138 and q = 2, R2 = 0.9481. This latter exceeds 
the “good” correlation coefficient (R2 > 0.8). For the higher 
polynomial degree, the R2 value was enhanced further, 
but the s∞ approximated 0 because there were only a few 
measurements in the higher BRIX range, so there was no 
way to increase the degree of the polynomial. The mean 
values of polynomial coefficients are as follows: a0 = –6.05, 
a1 = 1.09/BRIX, a2 = 0.209/BRIX2 and k∞ = 72,000 mg/L, and the 
standard deviation of those will be b0 = –4.42, b1 = 1.38/BRIX, 
b2 = 0.16/BRIX2 and s∞ = 12,500 mg/L.

3.3. Calibrating curves

Rearranging Eqs. (4) and (5), the calibrating curves that 
are dependences of k and σ on the corrected refraction of Eq. 
(2) will be as follows (Fig. 2):

k k
a a r a r
a a r a r

=
+ +

+ + +∞

exp( * * )
exp( * * )

0 1 2
2

0 1 2
21

 (9)

σ σ=
+ +

+ + +∞

exp( * * )
exp( * * )

b b r r
b b r b r
0 1

2

0 1 2
21  (10)

The standard deviation σ is the same order of the mean 
value k. The k ± 2s is the interval where the random variable 
κ has a probability of 95% in P(k – 2s < κ < k +2s) = 0.95. 

The lower value is practically 0; therefore, the upper (calcu-
lated) value must be given. This upper limit (95% one-sided 
probability level) is as follows: 

k k+ = + 1 64. σ  (11)

Each sample (i = 1, 2, ... n) has an equal amount of waste-
water. Take a tank and start to fill it in until sample j (i ≤ j). 
The j/n means the fullness of the tank, the tank level ratio.

3.4. Cumulative CODcr

The CODcr threshold for the wastewater that has to be run 
out into the drain is kLIMIT (1,000 mg/L) that is k+ ≤ kLIMIT. Since 
k @ σ in the most important range (0 < r* < 2), k must be much 
smaller in Eq. (8) than kLIMIT (k < 400 mg/L) so the CODcr value 
that goes into the drain is much lower than permitted. The 
solution may be to decrease the standard deviation. 

One way to do so is introducing the cumulative CODcr. 
The cumulative random variable to the jth measured value 
will be as follows:

K
n

kj i
i

j

=
=
∑1

1
 (12)

where i = 1, 2, ... j, and n is the number of measurements 
belonging to the full tank.

In the case of independent samples, the mean value and 
standard deviation of cumulative CODcr have been defined 
as follows:

K
n

kj i
i

j

=
=
∑1

1
 (13)

∑ =
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j
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2

2
2

1

1
σ  (14)

Fig. 2. The calibrating curves, the mean value (k) and standard 
deviation (σ) of CODcr as the function of the corrected value of 
refraction r*. The symbols are the measured values; the curves 
are from Eqs. (9) and (10).
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The upper limit of Eq. (11) will now be as follows:

K Kj j j
+ = + ∑1 64.  (15)

An additional limit can be defined by: 

K j
n
kj LIMIT LIMIT, =  (16)

If K Kj j LIMIT
+ < , , then the average CODcr in the tank is 

less than the threshold kLIMIT = 1,000 mg/L. In this case, the 
wastewater can be run out into the drain at any time (Fig. 3). 
Furthermore, there is another threshold limit for the cumula-
tive CODcr from Eq. (16) (j = n full tank), namely:

K kMAX LIMIT=  (17)

If K Kj j LIMIT
+ > ,  but K Kj MAX

+ < , then the waste can be run 
out by dilution (watering). 

If K Kj MAX
+ > , it must be transferred (Fig. 3).

4. Results

4.1. Virtual tanks

Twelve virtual tanks were prepared from the data with 20 
elements (n = 20). The two criteria were: firstly, the average 
COD would be around the critical 1,000 mg/L mark (0 < r < 3), 
and secondly, every piece of data would appear only once 
(independent data). This latter criterion is needed because 
independent measurements can also lead to the same data. 
Therefore, some 80 independent data items remained, from 
which 20 were chosen with different randomisation tech-
niques (i = 1, 2, ... 20). The fullness of the virtual tank was 
marked j (j = 0, 1, 2, ... n), and the ratio j/n essentially meant 
the tank level in a volume proportion. 

In a virtual tank, the measured cumulative values of 
CODcr corresponding to Eq. (13) will be as follows:

X
n

xj i
i

j

= ∑1
 (18)

In Fig. 4, we see the calculated (Kj) and measured (Xj) val-
ues of cumulative CODcr and the upper limit of that Kj

+  at 
the number 1 tank (Table 1). In this case, Kj

+  has reached the 
KMAX limit at value jW so a decision must be made whether 

to let the wastewater into the drain diluted (watering), or to 
fill up the tank and transport it. The decision is partly eco-
nomical, and partly legal and technical, considering that it 
means three run offs and two tanks of water are needed for 
the watering (Fig. 4). 

In the table, the characteristic CODcr values of full 
tanks can be seen, namely the calculated and the measured 
cumulative CODcr values (j = n) K and X, furthermore the 
standard deviation and the upper limit of that Σ and K+ 
complementing the rate X/K+, the efficient estimation of 
which is 60%–70% on average. The model chi-square test has 

Fig. 3. Limit values of cumulative CODcr as the function of sam-
ple serial number (j) and scheme of operations connecting with 
them.

Fig. 4. Changes of the cumulative CODcr (Kj) and upper limit of 
that (Kj

+) plotted against the function of sample serial number (j) 
for tank 1. The symbols are measured values (Xj), the lines are 
calculated from the model.

Table 1 
Cumulative CODcr characteristics of full tanks as the function of the serial numbers of virtual tanks 

CODCR (mg/L) 1 2 3 4 5 6 7 8 9 10 11 12

X 2,118 236 1,125 845 1,511 622 683 912 1,146 825 442 1,965
K 1,996 244 1,012 1,005 1,370 503 605 886 915 953 412 2,148
Σ 695 106 385 390 486 245 274 362 412 365 135 731
K+ 3,136 418 1,643 1,645 2,167 905 1,054 1,480 1,591 1,552 633 3,347
X/K+ 0.68 0.57 0.69 0.51 0.70 0.69 0.65 0.62 0.72 0.53 0.70 0.59
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been controlled [20] using data in the table. The number of 
cells is 5; the degrees of freedom is 4; the chi-square is 0.533 
and the p value is 0.9702. The test has given a good fit between 
the measured data to the calculated values by the model. 

4.2. Determination of optimum measurement number 

In practice, we take n samples during the tank filling, in 
this case j = n and Kj = K. As K is different from tank to tank, 
it can therefore also be regarded as a random variable Κ. 
The mean value of Κ for m tanks is: 

M K
m

K Kl

l

m

( ) ( )= =
=
∑1

1
 (19)

where

K
n

kl
i
l

i

n
( ) ( )=

=
∑1

1
 (20)

is the mean value of CODcr of lth full tank based on the 
Eq. (13); ki

l( ) is the mean value of CODcr of ith measurement in 
the lth tank (assuming the sample number is the same, n for 
all samples). As Eq. (20) is an integral sum, the mean value 
does not (really) depend on n (n >> 1). 

The standard deviation of κ will similarly be as follows:

∑ = =
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where, using Eq. (14), the sign in Eq. (21):
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is a (double) integral sum, and it does not depend on n either. 
By enhancing the number of samples, n → ∞, the standard 
deviation, Σ, can be decreased for as long as the samples are 
independent. The question is: what is the optimum number 
of samples?

Let xi
l( )  be the measured value of CODcr at the ith sample 

in the lth tank. In this case, the measured cumulative values 
of that corresponding to Eq. (20) will be as follows:

X
n

xl
i
l

i

n
( ) ( )= ∑1  (23)

Xl, equivalent to Kl, is an integral sum and therefore does 
not depend on n. 

The measured square standard deviation equivalent to 
Eq. (7) can be written as follows:

s
m

X Kl l

l

m
2 2

1

1
= −

=
∑( )( ) ( )  (24)

where both X(l) and X(l) do not depend on n, so it approximates 
the real (multitude) standard deviation and is independent 
from the number of samples. 

The optimal number of samples nOPT is the number of 
samples (n = nOPT) where Eq. (22) and Eq. (24) would be equal. 
An F-probe was used to check the equality of the two stan-
dard deviations. As we apply an upper approximation for 
the standard deviation (Σ > s), the F-probe can be written as 
follows: 

F
s n s

F
OPT

m m=
∑

= ≤ −− −

2

2

2

2 1 1
1 1µ

ε, ( )  (25)

where Fm–1,m–1 (1 – ε) is the critical value for the m–1 degrees of 
freedom and the 95% probability level (1 – ε = 0.95). (m → ∞ 
Fm–1,m–1(1 – ε) → 1). From this, the optimal number of samples is:

n
F sOPT
m m

=
−− −

1
11 1

2

2
, ( )ε

µ

 (26)

4.3. Technical arrangements

Different technical arrangements can be produced based 
on the model [18,19,21] and an intelligent computer program, 
which controls the parameters and makes decisions both for 
the type of outlet and for the time. It is advisable to display 
the values on the computer screen with different markers, 
warnings and instructions on an easy to understand page. 

5. Discussion

For the refractometric online analysis of the organic mate-
rial content of industrial wastewater containing sucrose, the 
biggest problem is the high standard deviation of the sam-
ples. As the laboratory measurement of CODcr content (k) is 
fairly accurate, the causes of the high standard deviation can 
be found in the refraction measurement (r) errors, namely:

• the measurement error of the refractometer;
• the effects of second compounds (e.g. citric acid etc.);
• the standard deviation due to inhomogeneity derived 

from samples not from the same place (sample was taken 
at the same time, but not from exactly the same place); 
and

• the measured BRIX values are higher than in reality 
because of the sucrose adhesion on the instrument.

The first three causes would result in symmetric standard 
deviations compared with the refraction of a pure sugar solu-
tion (rSUGAR, Fig. 1). As the standard deviation is asymmetric 
to that (around 90%, r > rSUGAR), we assume that of the four 
effects, the adhesion may contribute most to the standard 
deviation. 

With the introduction of cumulative CODcr, the deviation 
can be reduced, as in the case of independent samples, the 
square standard deviations are summed up. The standard 
deviation is thus inversely related to the square root of the 
number of samples. From the table, it can be seen that the dif-
ference between the estimated and measured values of CODcr 
is much smaller (roughly a half, a third) than it was in the 
case of the real-time measurements, meaning a much better 
estimation of the upper limit. 
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The standard deviation can be decreased by raising the 
number of samples to the number of independent samples, 
which can be determined by a model. From the table data, 
μ = 5,630 mg/L, s = 416 mg/L, F11,11 (0.95) = 2.82, from which 
the independent samples nOPT @ 65 nearly equal the data num-
ber (80), i.e., they can be regarded independent, as expected. 
Increasing the m value, the accuracy of approximation can be 
improved, nOPT can be a bit higher.

The deviation is mainly caused by the adhesions. If we 
assume these happen randomly between two washings, the 
samples taken in each washing can be considered indepen-
dent. This applied to the current samples.

6. Conclusions

The measurement of organic content (CODcr) can be taken 
by combining refractometry and conductivity. The advantage 
of the method over direct methods is that it is much cheaper 
and much faster, and most importantly it makes immediate 
intervention possible. Its disadvantage is the inaccuracy, but 
this is important only around the critical value (1,000 mg/L). 
It means that the CODcr content of the water discharge to the 
drain is some 35% lower than the permitted limit.

This value can be significantly decreased with a better 
measurement layout (more practical placing of refractome-
ter), more effective washing but first and foremost by increas-
ing the number of samples up to the independent samples. 
These can result in at least a 50% improvement, which means 
the 35% mentioned above can be lowered to 10%–20%. For 
the outlet CODcr, it would mean 800–900 mg/L instead of 
1,000 mg/L, which could be satisfactory in practice. 

The model and the control system shown in this arti-
cle offer a great, economical and environmentally friendly 
opportunity, but an additional checking system is needed 
to be able to monitor the correct functioning of the online 
instrument continuously.
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