
* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2017.20730

78 (2017) 132–140
June

Application of ANN and ANFIS to predict the effect of fatty acids on the 
performance of CA composite membranes in removal of pesticides from water

Negin Ghaemia, Abbas Rezaeib, Majid Mohadesia,*
aDepartment of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran, 
emails: m.mohadesi@kut.ac.ir (M. Mohadesi), negin_ghaemi@kut.ac.ir (N. Ghaemi) 
bDepartment of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran, 
email: a.rezaee@kut.ac.ir 

Received 21 October 2016; Accepted 20 March 2017

a b s t r a c t
Modeling of the membrane separation processes in removal of hazardous components like pesticides 
from water would be beneficial to predict the membrane performance in treatment of the polluted 
water sources. In this paper, the computational intelligence (CI) methods such as artificial neural net-
work (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used to model and predict the 
effect of fatty acids on the performance of cellulose acetate composite membrane in treatment of aque-
ous solutions containing nitrophenols as an important class of pesticides. For this purpose, membrane, 
feed and solution pH are selected as the inputs, and the membrane efficiency is selected as the out-
put of the proposed CI models. Comparison between the proposed ANN and ANFIS models and the 
experimental data shows that the proposed CI models are very efficient and fast tools, and there is a 
good agreement between the experimental and our models with a minimum error. The overall mean 
relative error percentages obtained for the ANN and ANFIS models are less than 2.05% and 1.12% for 
flux (less than 1.49% and 0.47% for rejection), respectively, which declare the high reliability of the 
proposed models.
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1. Introduction

Water sources have been always exposed to a variety of 
pollutants influencing water physical and chemical qualities 
in negative and harmful ways. In this way, one of the most 
effective kinds of pollutants has always been pesticides. 
Meanwhile, nitrophenols as one of the important types of 
nitroaromatic pesticides have been extensively observed in 
the effluents released into water sources by some industries 
manufacturing various applicable and commercial chem-
ical compounds such as dye, drug, fungicides, pesticides, 
ammunition and various chemical plants. More importantly, 
nitrophenol compounds might reach the groundwater res-
ervoirs as a result of gravitational settlement of aerosols via 

rain and snow. It should be stated here that nitrophenols can 
be categorized as hazardous compounds due to their detri-
mental influences on human nervous system [1,2]. To tackle 
their unwanted impacts on human being and wildlife, there 
have been some conventional treatment methods such as 
oxidation with chlorine, ozone, potassium permanganate, 
hydrogen peroxide and also adsorption on activated carbon; 
however, these methods lack sufficient efficiency and often 
produce toxics chemicals as by-products [2–4]. By the same 
token, membrane-based removal of pesticides from polluted 
effluents is an efficient and economic treatment approach. 
In this connection, cellulose acetate (CA) has been one of 
the most applicable polymers to prepare various types of 
polymeric membranes due to its environmental-friendly 
property, low price and also high hydrophilicity; however, 
its dense skin layer and low porosity of support layer might 
reduce flux permeated through CA membrane [5,6]. It was 
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proved that introducing additives with amphiphilic proper-
ties into the dope solution could improve membrane struc-
ture and performance thanks to changing penetration rate 
of non-solvent (water) into the casted polymeric film during 
phase inversion process [6]. In this regard, fatty acids as one 
of the amphiphilic additives were added into CA membrane 
matrix with the aim of causing considerable improvement 
in membrane characteristics that eventually resulted in a 
better performance in removal of pesticides from water [5]. 
Computational intelligence (CI) methods such as artificial 
neural network (ANN) and adaptive neuro-fuzzy inference 
system (ANFIS) have been used for estimating physical and 
chemical data in many studies recently [7–24]. Reviewing the 
literature revealed that no study has been published to dis-
cuss the application of ANN [25,26] and ANFIS [27,28] in pre-
dicting the effect of fatty acids on the performance (i.e., flux 
and rejection) of CA nanofiltration membrane in treatment of 
aqueous solutions containing nitrophenols as an important 
class of pesticides. 

2. Experimental method

In the experimental section of this study, three differ-
ent types of fatty acids (palmitic acid, oleic acid and linoleic 
acid) with various concentrations (0.5, 1, 1.5 and 2 wt%) were 
embedded into the matrix of CA membrane. To this end, 
common phase inversion method was used by the researches 
to fabricate composite membranes. Equally important, sev-
eral nitrophenol pesticides with a variety of chemical com-
pounds including p-nitrophenol (PNP), 2,4-dinitrophenol 
(DNP), 2-methyl-4,6-dinitrophenol (DNOC), 3,5-dinitrosal-
icylic acid (DNSA) and 4-nitrophenol phosphate disodium 
salt hexahydrate (NPP) were employed in this study with 
the intent of evaluating performance of the prepared mem-
branes. In this regard, the experiments were conducted by 
use of solutions containing each one of the aforementioned 
nitrophenols (0.1 mM) at acidic (4.5), neutral (7.0) and basic 
solution pHs (8.0) [5]. A batch type, dead-end stirred cell, 
was applied to conduct the filtration tests and to determine 
the composite membrane efficiency. It is worth mentioning 
here that the most applicable parameters indicating mem-
brane performance are flux and rejection. In general, the 
amount of the permeated solution through a membrane can 
be determined by flux that could be calculated using the 
following equation: 

Flux kg m .h/ .
2( ) =QA t∆  (1)

where Q, A and Δt are quantity of permeated solution 
through the membrane (kg), active surface of membrane (m2) 
and sampling time (h), respectively. 

As the other fundamental element representing the mem-
brane capability in separation process, rejection is defined as 
the membrane efficacy in retaining unwanted materials. In 
this study, rejection (Rej (%)) of pollutants (nitrophenols) was 
measured as follows:

Rej %( ) = −
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where Cp (mM) and CF (mM) are concentration of nitrophenol 
in the permeate and feed, respectively [5].

3. Modeling based on ANN and ANFIS

3.1. Artificial neural network

ANN is based on the operation of biological neural net-
works [25,26]. The basic processing element of ANN struc-
ture is the artificial neuron, in which the synapses of the 
biological neurons are modeled as the weights. The weights 
can be adjusted using the backpropagation rule, which is an 
error-minimization technique. Multi-layer perceptron (MLP) 
network is the most widely used ANN structure, which con-
sists of at least three layers (i.e., one input layer, one output 
layer and one or more hidden layers) [25,26]. As shown in 
Fig. 1, each layer has a number of neurons. In Fig. 1, X1, X2, 
..., Xn are the inputs, Y1, Y2, ..., Yn are the outputs, where n 
is the number of inputs and m is the number of outputs. In 
this figure, tth neuron of the hidden layer has the following 
equation:
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where f is the hidden layer activation function (usually 
Tansig function); b is the bias term and W is the weighting 
factor. Also, jth neuron in the output layer has the following 
equation:

y W b j mi
k

i

k kj j= ( ) + = …
=
∑

1

1 2θ , , ,  (4)

3.2. Adaptive neuro-fuzzy inference system

ANFIS is a fuzzy inference system (FIS) implemented 
using ANN, which merges the advantages of both fuzzy sys-
tem and ANN network [27,28]. With a FIS, which has two 
inputs x and y and one output f, a single fuzzy if-then rule for 
the first-order Sugeno model is given by:

Fig. 1. MLP structure.
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Rule #1: if x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule #2: if x is A2 and y is B2, then f2 = p2x + q2y + r2

where pi, qi and ri (i = 1, 2) are the linear output parameters 
named consequent parameters. 

Fig. 2 shows the ANFIS structure. Each ANFIS structure 
has five layers described as follows [27,28]:

Layer 1: Every adaptive node in this layer has a node 
function given by the following equations:

O x ii Ai1 1 2, , ,= ( ) =µ  (5)

O y ii Bi1 2
3 4, , ,= ( ) =

−
µ  (6)

where i is the membership grade of a fuzzy set (A1, A2, B1, B2,) 
and O1,i is the output of the node i in the layer 1. A typical 
membership function is Gaussian function given by:
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σA x

x c( ) exp ( )
= −
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22  (7)

where c and σ are called the premise parameters.
Layer 2: The nodes in this layer are fixed nodes, which 

multiply all incoming signals and represent the firing 
strength of a rule. The outputs of layer 2 are given by:

O w x y ii i A Bi i2 1 2, , ,= = ( ) ( ) =µ µ  (8)

Layer 3: The fixed nodes in this layer are called the nor-
malized firing strength. They calculate the ratio of the ith 
rule’s firing strength to the sum of all rule’s firing strengths 
given by:

O w
w

w w
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1 2
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Layer 4: The adaptive nodes in this layer have the node 
functions given by the following equation:

O w f w p x q y r ii i i i i i i4 1 2, , ,= = + +( ) =  (10)

where wi  is a normalized firing strength from layer 3, 
and {pi,qi,ri} is the consequent parameters set.

Layer 5: This layer has a fixed node, which computes 
the overall output as the summation of all incoming signals:
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3.3. Modeling approach

In general, there are several parameters influencing on 
the membrane performance (flux and rejection) in removal 
of pesticides from aquatic media. Meanwhile, the effects 
of membrane type, feed properties and operating condi-
tions could be extensively dominating due to this fact that 
any alteration in these parameters would make changes in 
membrane flux and/or rejection [5]. In order to create an 
appropriate model to precisely anticipate membrane perfor-
mance in the present paper and also to achieve an acceptable 
level of optimization, three previously mentioned parame-
ters effective on the membrane efficacy are supposed as the 
model inputs. In this regard, accurate models based on ANN 
and ANFIS structures are presented in order to model and 
 predict the effect of fatty acids on the performance of CA 
nanofiltration composite membrane in treatment of  aqueous 
solutions. In these CI models, the input parameters are 
defined as the membrane type (different kinds of fatty acids 
with various concentrations and properties), feed (nitrophe-
nol pesticides with different chemical characteristics) and 
solution pH (acidic, neutral and basic). Moreover, flux and 
rejection (membrane efficiency) are considered as the output 
parameters of the models. In Fig. 3, the simplified overview 
of the proposed CI models is shown.

The data set required to train and test the proposed CI 
models is obtained using the experimental study [5]. The 
total number of the used samples to develop the CI models 
was 195, which about 70% and 30% of them were applied 
for training and testing, respectively. Also, a set of 14 data is 
used to validate the proposed models as the validation data 
set. MATLAB 7.0.4 software was employed for developing 

Fig. 2. An ANFIS structure. Fig. 3. Proposed CI model.
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the proposed models. Different ANN and ANFIS configu-
rations were tested and optimized to obtain the best ANFIS 
and ANN models. To obtain the best ANN structure, many 
different structures were tested with one, two and three 
hidden layers. Also, the number of neurons in each hidden 
layer was changed from 1 to 12, and the number of epochs 
for each MLP structures was changed from 50 to 450. In order 
to obtain the best ANFIS models, input membership function 
type, the number of input membership functions and the 
number of epochs were changed. Then, the ANN and ANFIS 
structures are trained and tested with the training and test-
ing data. To compare the outputs of the developed structures 
with the experimental, we used mean relative error percent-
age (MRE%) defined in Eq. (12). This process is continued 
until the best ANN and ANFIS models are obtained with the 
minimum MRE% for training and testing data. The specifi-
cations of the best proposed ANN and ANFIS models are 
shown in Tables 1 and 2, respectively. In Table 1, Trainlm is 
a network training function that updates weight and biases 
values according to the Levenberg–Marquardt optimization. 

Trainlm is often the fastest backpropagation algorithm in the 
MATLAB software toolbox and is strongly recommended as 
a first-choice supervised algorithm, although it does require 
more memory than other algorithms. In addition, learning 
rate is an important parameter in the training procedure of 
MLP networks, which is carefully selected to ensure that the 
weights converge to a response fast enough without produc-
ing oscillations. 

4. Results and discussion

The comparison between the experimental data and the 
obtained results using the proposed CI models for training 
and testing data are shown in Figs. 4 and 5. In these figures, 
the green circles show the outputs of ANN and ANFIS mod-
els in comparison with the experimental data for flux and 
rejection. As it can be seen, the obtained results using the pro-
posed ANN and ANFIS models are close to the experimental 
data for the both outputs flux and rejection. It also seems that 
the ANFIS models are more accurate than the ANN model 
to follow the outputs in the both training and testing data. 
Also, the validation of the best obtained models is done. In 
Table 3 the comparison between the experimental and pro-
posed ANN and ANFIS models for a set of 14 data as the 
validation data set is shown.

To show a better comparison between the proposed 
ANN and ANFIS models, we used four standard error func-
tions, i.e., MRE%, root mean square error (RMSE), correlation 
factor (CF) and mean absolute error (MAE). The following 
equations define these standard errors:
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where ‘X(Pred)’ and ‘X(Exp)’ stand for the predicted (ANN 
or ANFIS) values and experimental data, respectively, and N 
is the number of data. In Table 4, the overall (training, test-
ing and validation) obtained errors for the proposed mod-
els in comparison with the experimental data are shown. 
From Table 4, it can be observed that the proposed ANFIS 
models are capable of predicting the both outputs flux and 
rejection better than the proposed ANN model. For exam-
ple, the obtained MRE% using the ANN model is more than  
2 times and 1.8 times bigger than the obtained MRE% using the 
ANFIS models for the outputs rejection and flux, respectively. 

Table 1 
Specification of the best proposed ANN model

Neural network MLP

Number of hidden layer 2
Number of neurons in the input layer 3
Number of neurons in the first hidden layer 10
Number of neurons in the second hidden layer 10
Number of neurons in the output layer 2
Learning rate 0.5
Number of epochs 150
Adaption learning function Trainlm
Activation function Tansig

Table 2 
Optimal architectures and specifications of the proposed ANFIS 
models

Specification ANFIS model 
for rejection

ANFIS model 
for flux

Type Sugeno Sugeno
Inputs/outputs 3/1 3/1
No. of input membership 
functions

18 for each 
input

28 for each 
input

No. of output membership 
functions

18 28

Input membership function 
type

Gaussian Gaussian

Output membership 
function type

Linear Linear

No. of fuzzy rules 18 28
No. of non-linear 
parameters

216 336

No. of linear parameters 72 112
No. of epochs 250 300
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Fig. 4. Comparison between the experimental and the proposed models for training data.

Fig. 5. Comparison between the experimental and the proposed models for testing data.
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Figs. 6–8 show a better comparison between the experi-
mental data, the ANFIS models and the ANN model for the 
output flux and rejection. These figures are plotted using the 
training and testing data. In these figures, the type of feed and 
membrane are selected as X and Y axes, and flux and rejection 
are selected as Z axis. Also, pH is varied in three values (4.5, 
7.0 and 8.0). From Figs. 6–8 it is clear that the obtained results 
using the both CI models are close to the experimental data. 
Also, the proposed ANFIS models are more accurate than the 
proposed ANN model. If it is assumed that a membership 
function in ANFIS structure is equivalent to a neuron in ANN 
structure (a membership function is more complicated than a 

neuron), it can be found that the proposed ANN model has a 
simpler structure (consists of 20 neurons) than the proposed 
ANFIS models (consist of 18 + 28 = 46 membership functions). 
Also, ANFIS structure is a one-output structure; thus, two 
ANFIS structures are needed to predict the outputs flux and 
rejection using ANFIS. However, due to this fact that ANN 
model has a multi-output structure, it is possible to use one 
ANN model to simultaneously predict the outputs flux and 
rejection. Hence, these advantages make the proposed ANN 
model more flexible, faster and cheaper in the hardware 
implementation. 

One of the most advantages of the proposed ANN and 
ANFIS models is to present a direct mathematical equation 
for the relationship between the inputs (membrane and 
feed type and pH) and the outputs (flux and rejection). For 
example, a direct mathematical equation can be introduced 
using the ANN model presented in this paper for the rela-
tionship between the inputs (membrane and feed type and 
pH) and the outputs (flux and rejection). Table 5 represents 
the obtained equations for the outputs rejection and flux 
using the proposed ANN model. In Table 5, in order to deter-
mine the types of membrane and feed, a number should be 
assigned to each type as follows:

Types of feed:
DNOC = 1, DNP = 2, DNSA = 3, NPP = 4 and PNP = 5

Type and concentration of the added fatty acids into the 
matrix of membrane, which are defined as follows:

1. Pristine CA membrane,
2. Composite membrane prepared by 0.5 wt% linoleic acid,
3. Composite membrane prepared by 1.0 wt% linoleic acid,
4. Composite membrane prepared by 1.5 wt% linoleic acid,
5. Composite membrane prepared by 2.0 wt% linoleic acid,

Table 3 
Comparison between the experimental and proposed CI models for validation data

Inputs Experimental ANFIS ANN

Feed Membrane PH Rejection Flux Rejection Flux Rejection Flux

DNOC 2.0 wt% oleic acid 4.5 72 4.03 72.425 4.073 68.377 3.900
DNOC 0.5 wt% palmitic acid 7 82 3.95 82.887 3.899 84.393 3.845

DNOC 0.5 wt% palmitic acid 7 82 3.95 82.887 3.899 84.393 3.845

DNP 2.0 wt% linoleic acid 7 85 8.33 84.145 8.405 81.35 8.237

DNP 2.0 wt% oleic acid 4.5 80 6.63 79.214 6.591 77.719 6.393

DNP 1.5 wt% palmitic acid 4.5 78 4.19 76.943 4.211 76.959 4.385

DNSA 1.0 wt% linoleic acid 4.5 77 5.81 76.439 5.688 77.736 5.536

DNSA 1.0 wt% oleic acid 4.5 79 4.38 78.554 4.517 78.04 4.606

NPP 1.0 wt% linoleic acid 8 99 6.62 99.412 6.388 99.567 6.265

NPP 1.0 wt% oleic acid 4.5 99 4.29 98.527 4.119 98.255 4.151

NPP 2.0 wt% oleic acid 8 100 8.31 100.52 8.203 102.94 8.082

PNP 0.5 wt% linoleic acid 4.5 57 1.39 56.74 1.432 57.428 1.46

PNP 0.5 wt% linoleic acid 7 51 2.43 50.288 2.396 52.112 2.343

PNP 0.5 wt% linoleic acid 7 51 2.43 50.288 2.396 52.112 2.343

Table 4 
Obtained errors for the proposed models

Model 
errors

Data CI models
ANFIS ANN
Rejection Flux Rejection Flux

MRE% Training 0.3565 0.9106 1.380 1.606
Testing 0.7601 1.666 1.780 3.249
Validation 0.8604 1.820 2.206 3.662

MAE Training 0.2968 0.0481 1.1730 0.0893
Testing 0.5420 0.0659 1.2955 0.1518
Validation 0.6419 0.0828 1.7128 0.1664

RMSE Training 0.3621 0.0642 1.4139 0.1166
Testing 0.6518 0.0846 1.6727 0.1983
Validation 0.6799 0.1023 2.0323 0.1861

CF Training 0.999513 0.999549 0.992601 0.998518
Testing 0.999069 0.999139 0.993974 0.995469
Validation 0.999260 0.998949 0.991582 0.997494
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6. Composite membrane prepared by 0.5 wt% oleic acid,
7. Composite membrane prepared by 1.0 wt% oleic acid,
8. Composite membrane prepared by 1.5 wt% oleic acid,
9. Composite membrane prepared by 2.0 wt% oleic acid,
10. Composite membrane prepared by 0.5 wt% palmitic acid,
11. Composite membrane prepared by 1.0 wt% palmitic acid,
12. Composite membrane prepared by 1.5 wt% palmitic acid, 

and
13. Composite membrane prepared by 2.0 wt% palmitic acid.

Using this equation we can predict the outputs of a 
new data set that are not belong to the training, testing 
and validation data. Fig. 9 shows the obtained results for a 
specific application of the ANN model using the proposed 
equation. We obtained the plotted data in this figure using 
the proposed equation in <1 s, which is the other advantage 
of the proposed models in comparison with the experimental.

5. Conclusion

In this paper, the effects of type and concentration of fatty 
acids as additives on the performance (flux and rejection) of 
CA composite membrane in treatment of aqueous solutions 
(with different pHs) containing various types of nitrophenol 
pesticides were investigated using ANN and ANFIS. For this 
purpose, one ANN (MLP) structure and two ANFIS models 
were presented. Based on the obtained results and performed 
modeling, the following conclusions were drawn:

• Based on the obtained results, both proposed ANN and 
ANFIS models were able to accurately predict the out-
puts with the least error.

Fig. 6. Comparison between the experimental and the CI models 
for the outputs flux and rejection (pH = 4.5).

Fig. 7. Comparison between the experimental and the CI models 
for the outputs flux and rejection (pH = 7.0).

Fig. 8. Comparison between the experimental and the CI models 
for the outputs flux and rejection (pH = 8.0).
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Table 5 
Obtained equations for the output rejection and flux using the proposed ANN model

Feed = 1
Membrane = 4
pH = 8

o1 = Tansig(–0.0120 × feed + 1.170 × membrane – 0.0104 × pH – 12.722)
o2 = Tansig(–2.2030 × feed – 0.021 × membrane – 1.1125 × pH + 16.762)
o3 = Tansig(–0.3100 × feed + 0.454 × membrane + 0.8032 × pH – 6.1973)
o4 = Tansig(–0.7300 × feed + 0.033 × membrane – 0.8101 × pH + 7.1523)
o5 = Tansig(–0.7140 × feed + 0.074 × membrane + 1.0537 × pH – 3.4008)
o6 = Tansig(0.91570 × feed – 0.688 × membrane – 0.6196 × pH + 3.4774)
o7 = Tansig(–0.5890 × feed – 0.0310 × membrane + 1.3707 × pH – 7.0429)
o8 = Tansig(0.11820 × feed + 3.962 × membrane + 0.0328 × pH – 21.592)
o9 = Tansig(4.01930 × feed + 0.659 × membrane + 0.7080 × pH – 13.303)
o10 = Tansig(–0.071 × feed – 0.0660 × membrane – 0.1780 × pH + 1.4785)

o11 = Tansig(–0.005 × o1 – 1.183 × o2 + 0.0917 × o3 + 1.3930 × o4 – 3.3452 × o5–0.065 × o6 – 0.555 × o7 – 0.0007 × o8 + 0.0047 × o9 + 
0.754 × o10 + 4.42)
o12 = Tansig(1.0025 × o1 + 1.716 × o2 + 0.5433 × o3 + 12.065 × o4 + 8.6736 × o5 + 1.232 × o6 – 1.154 × o7 – 1.0875 × o8 + 0.0681 × o9 – 
11.13 × o10 + 0.79)
o13 = Tansig(0.8400 × o1 + 0.692 × o2 – 3.1533 × o3 – 3.2566 × o4 + 2.7622 × o5 – 1.222 × o6 + 2.387 × o7 + 0.6133 × o8 – 0.8904 × o9 + 
3.322 × o10 – 5.12)
o14 = Tansig(–0.070 × o1 + 2.261 × o2 – 0.2302 × o3 + 6.3874 × o4 – 0.5107 × o5 – 0.205 × o6 + 6.635 × o7 – 0.0777 × o8 – 0.2117 × o9 + 
0.183 × o10 – 1.01)
o15 = Tansig(0.0630 × o1 – 1.090 × o2 – 0.0615 × o3 – 0.5103 × o4 – 0.4736 × o5 + 0.317 × o6 – 0.361 × o7 + 0.1451 × o8 + 0.6565 × o9 + 
0.272 × o10 + 0.69)
o16 = Tansig(–16.30 × o1 – 0.392 × o2 – 1.9166 × o3 + 2.0720 × o4 + 0.1701 × o5 – 1.586 × o6 – 0.607 × o7 – 0.8926 × o8 – 2.9002 × o9 – 
7.217 × o10 – 13.7)
o17 = Tansig(0.0450 × o1 + 0.203 × o2 – 0.0105 × o3 + 0.3098 × o4 + 0.1301 × o5 – 0.181 × o6 – 0.171 × o7 – 0.1616 × o8 – 0.0655 × o9 – 
0.970 × o10 – 1.40)
o18 = Tansig(0.0250 × o1 – 0.804 × o2 – 0.0033 × o3 – 0.9257 × o4 + 0.1796 × o5 + 0.022 × o6 – 0.148 × o7 – 0.0169 × o8 – 0.0035 × o9 – 
0.280 × o10 + 1.84)
o19 = Tansig(–3.590 × o1 – 2.679 × o2 – 7.9508 × o3 – 5.9341 × o4 – 3.1037 × o5 – 3.143 × o6 – 5.873 × o7 + 0.3899 × o8 – 0.2921 × o9 – 
5.081 × o10 + 1.65)
o20 = Tansig(0.0620 × o1 + 4.450 × o2 + 0.4359 × o3 – 4.8204 × o4 + 0.9201 × o5 – 0.192 × o6 – 0.098 × o7 – 0.3125 × o8 – 1.2549 × o9 – 
0.485 × o10 + 2.03)

Rejection = exp(–0.601 × o11 – 0.002 × o12 – 0.0003 × o13 – 0.249 × o14 + 0.219 × o15 + 0.0508 × o16 + 0.6457 × o17 – 1.260 × o18 – 
0.0089 × o19 + 0.2060 × o20 + 5.71)
Flux = exp(–0.67898337 × o11 + 0.235 × o12 – 0.3830 × o13 + 1.562 × o14 + 3.082 × o15 + 0.5767 × o16 + 4.7243 × o17 – 0.937 × o18 – 
0.2106 × o19 + 2.3734 × o20 + 2.78)

Fig. 9. Interpolation using the proposed ANN and ANFIS models.
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• The proposed ANFIS models were more accurate than 
the proposed ANN model; however, the proposed ANN 
had less complex structure and was more flexible, faster 
and cheaper in the hardware implementation.

• Both proposed ANN and ANFIS models were very faster 
than the experimental method, which means that the pro-
posed CI models can be used as the reliable and flexible 
tools due to their high accuracy and fast speed; therefore, 
they can be applied to predict the experiments precisely.
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