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a b s t r a c t

Accurate and robust approaches for quantifying regional numeric nutrient criteria are critical to the 
management and restoration of aquatic ecosystems. In this paper, systematic statistical approaches 
combining reference condition approach and stressor-response models were developed to determine 
nutrient criteria in Anhui lakes and reservoirs, China. Reference lake method and lake population 
distribution method served as the reference condition approach were used to identify nutrient cri-
teria by respectively selecting the upper 25th percentile and the lower 25th percentile as the reference 
condition. The stressor-response models determined by linear regression model (LRM), Bayesian 
non-hierarchical linear model (BNLM), classification and regression tree (CART), and change point 
analysis (CPA) were developed to compare and verify the consistency of these methods. Results 
indicated that there were no significant differences in nutrient criteria determined by the two types 
of methods. The ranges of numeric nutrient criteria in Anhui lakes and reservoirs were determined 
as follows: 0.020–0.046 mg/L for TP and 0.42–0.81 mg/L for TN. The advantages, disadvantages, and 
applicability of each method were discussed and estimated, which would be beneficial in the scien-
tific selection of nutrient criterion approach and improving the feasibility of setting nutrient criteria.

Keywords:  Lake and reservoir; Nutrient criterion; Reference condition approach; Stressor-response 
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1. Introduction 

Eutrophication causing by the excessive input of nitro-
gen and phosphorus has been threatening the numerous 
lakes and reservoirs in China. Nutrient criteria have been 
assumed to be important for regulators to control cultural 
eutrophication and to protect current and future water 
quality [1–3]. However, the establishment of numeric nutri-
ent criteria has been proven to be exceedingly difficulty due 
to intensive human activities and the unavailability of lake 
watersheds minimally affected [4]. 

Nutrients such as nitrogen and phosphorus are not 
toxic to aquatic organisms or humans at low concentrations 
[5,6], and the dose-response relationships that represent the 
toxic effects of chemical pollutants using simple laboratory 
studies have limited applicability to nutrient criteria devel-
opment. The statistical method based on large amounts of 
monitoring data would provide the theory and approach 
foundation for the establishment of nutrient criteria. Three 
types of scientifically statistical approaches including the 
reference condition approach, mechanistic modeling, and 
stressor-response analysis have been widely employed to 
determine numeric nutrient criteria in US, Europe, and 
Canada [3,7–9]. 
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The reference condition approach, based on the frequency 
distribution of nutrient data, commonly containing reference 
lake method and lake population distribution method, is pre-
ferred for regions with available reference lakes [10,11]. The 
Regional Nutrient Criteria Research Plan of China imple-
mented in 2008 preliminarily explored the feasibility of the 
reference condition approach to support the development of 
nutrient criteria in China by case studies [12–15]. The mech-
anistic modeling method requires adequate data to construct 
the feasible equations for representing waterbodies and to 
calibrate the parameters in these equations [3]. In addition, 
the current research on the mechanism of lake eutrophication 
is faultiness, the mechanistic modeling method is not applied 
widely [16]. If minimally affected sites cannot be identi-
fied and paleoecological or historic data are unavailable in 
the region of interest, the stressor-response models may be 
appropriate to set numerical criteria [12,16–18]. Because of 
the widespread contamination of aquatic ecosystems by 
industrialization, urbanization, and agriculture, the stress-
or-response models are more suitable for the establishment 
of nutrient criteria in China [12]. 

Recently, linear regression models (LRM) have been 
developed to explore the stressor-response relationship 
between nutrient and response variables that are directly or 
indirectly associated with designated water uses [5,13,14]. 
For example, a simple linear regression (SLR) model and a 
multiple linear regression (MLR) model were estimated and 
interpreted for deriving numeric nutrient criteria to address 
total nitrogen (TN) and total phosphorus (TP) pollution in 
the Eastern and Yungui Lake Ecoregion [14,19]. A Bayesian 
non-hierarchical linear model (BNLM) has been employed 
to estimate a multilevel linear model for the prediction of 
chlorophyll a (Chl a) from TN and TP [5]. However, the 
biological response to nutrient gradients might be subtle 
and difficult to detect with a linear regression analysis [20]. 
Meanwhile, ecological responses to environmental gradi-
ents are often nonlinear, non-normal, and heterogeneous 
[21]. Hence, non-linear models including a classification 
and regression tree (CART) and a change point analysis 
(CPA) are developed for the stressor-response relationship 
to establish nutrient thresholds [16,22]. 

In this study, the reference condition approach, includ-
ing the reference lake method and the lake population 
distribution method, and the stressor-response models 
developed by LRM, BNLM, CART, and CPA are compared 
and analyzed to determine nutrient criteria in Anhui lakes 
and reservoirs, China. The specific objectives are: 1) to deter-
mine nutrient criteria of lakes and reservoirs; 2) to validate 
the consistency of LRM, BNLM, CART, and CPA results for 
TN and TP; and 3) to discuss and estimate the advantages, 
disadvantages, and applicability of these methods for the 
determination of nutrient criteria. 

2. Materials and methods

2.1. Study area

Anhui Province (114°54’-119°37’E, 29°41’-34°38’N) is a 
monsoon climate zone located in the eastern China. The 
lakes cover a total area of approximately 1750 km2, mainly 
distributed in the watershed of the Yangtze River and Huai 
River. Some lakes of this area have suffered from serious 

eutrophication in recent decades and environmental quality 
continues to decline with the rapid economic development 
in Anhui Province. In this study, 37 water bodies are investi-
gated and studied to establish nutrient criteria in this region 
(Fig. 1). The information about the 37 studied lakes and res-
ervoirs are listed in Table S1 (Supporting Information, SI).

2.2. Data sources and data quality

Data for Anhui lakes and reservoirs were obtained from 
the ambient lake monitoring network, which is supported by 
the Department of Environmental Protection of Anhui Prov-
ince. The obtained data consist of measurements for stressor 
variables such as TN and TP, and response variables such as 
Chl a. A total of 37 water bodies were selected for this analysis, 
mainly from 1991 to 2013. Data were included for lakes and 
reservoirs that had at least three surveys every year over this 
time interval. Six reservoirs minimally impaired by human 
activities, were identified as reference sites. TN, TP, and Chl 
a were analyzed in laboratory using standard testing proce-
dures as recommended by the Ministry of Environmental 
Protection of China [23]. The TN was measured by the method 
of alkaline potassium persulfate digestion with ultraviolet 
light spectroscopy. The TP was measured by the ammonium 
molybdate spectrophotometric method. Chl a measurements 
were achieved by the spectrophotometric method.

The detection limits for TP and TN were 0.01 mg/L 
and 0.1 mg/L, respectively. Observations in the database 
below the detection limits were assigned values equal to 
one-half the detection limits because these observations 
were encountered infrequently (less than 15% of the total 
dataset). This method of addressing the detection limits has 
been reported to be sufficiently accurate for determining 
descriptive statistics such as the mean and standard devi-
ation [11,24,25].

2.3. Methods for setting nutrient criteria

2.3.1. Reference condition approach

The reference condition approach requires judging 
and discerning reference lakes or sites, and depends on 
the availability of sufficient data from these reference sites 
representing the distributions of different variables [3]. 
The reference lake method and the lake population distri-
bution method, as the reference condition approach, were 
employed to determine nutrient criteria in Anhui lakes and 
reservoirs. 

Reference sites are relatively undisturbed monitoring 
points which have minimal human activities and can sup-
port all designated water uses [24]. Based on existing and/
or new data collected, the upper 25th percentile of the fre-
quency distribution for reference sites can be identified as 
the nutrient criteria. Generally, the proportion of reference 
lake could be at least 10% of the lakes and reservoirs per 
ecoregion [7], cropland and/or urban land ratio is no more 
than 20% in the watershed, and the reference sites do not 
connect a drain outlet and/or shoreline directly and there is 
no obvious endogenous pollution [10,11,26]. Six reservoirs 
in Anhui Province may meet the above requirements, and 
are able to serve as the reference lakes minimally impaired 
by human activities. 
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The population distribution approach does not need to 
identify the reference lakes or sites; it can set the criterion 
values by the use of all the lake and reservoir data presently 
available. The lower 25th percentiles of nutrient reflecting 
high water quality can be selected as the nutrient criteria. 
In general, the 25th percentile of the frequency distribution 
may be insufficient for the protection of lakes and reservoirs 
if water quality has been severely degraded for most lakes 
and reservoirs in the region. Therefore, a low percentile 
may be suggested as the nutrient criteria of this region . If 
almost all lakes are impacted by human activity to some 
extent, the 5th percentile is recommended [7].

2.3.2. Stressor-response models

Stressor-response models including LRM, BNLM, 
CART, and CPA, were used to estimate and interpret for 
deriving numeric nutrient criteria to address both nitrogen 
and phosphorus pollution [3,7]. The LRM method provides 
an estimate of the linear relationship between one response 
variable and more than one stressor variables such as the 
concentration of TP and/or TN. The LRM method can be 
further divided into the simple linear regression (SLR) 
model and multiple linear regression (MLR) model. The 
results of SLR are two coefficients specifying the intercept 
and slope of a straight line representing the modeled rela-
tionship between the two variables [3]. MLR is useful in 
cases in which other environmental factors except nutrients 
influence the response variable, or in cases in which effects 
of different nutrients must be modeled together [19]. 

The BNLM method is able to provide probabilistic 
predictions, enabling inference at unmonitored sites [27]. 

The advantages of the BNLM method are 1) the ability of 
incorporating prior information, 2) the explicit handling 
of uncertainty, and 3) the straightforward ability to absorb 
new information [28]. We assume that the response vari-
ables and the related parameters for BNLM meet the fol-
lowing distribution in this paper: 
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Fig. 1. The locations of studied lakes and reservoirs in Anhui Province.
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where µi is the mean of observation i, σ2 is the error  
precision. 

The initial values of models are set as: list (sigma = 100, 
sigma0 = 1, sigma1 = 1, sigma2 = 1, sigma3 = 1, mu.beta0 = 
1, mu.beta1 = 1, mu.beta2 = 1, mu.beta3 = 1). In the process 
of modeling operation, the Gibbs algorithm is used to con-
duct the simulation analysis by 4000 initial iterations and 
26000 iterations to ensure the convergence of parameters. 

CART is attractive for exploring environmental and 
ecological researches due to its capability to address 
both continuous and discrete variables, predict interac-
tive effects, and establish hierarchical structure [29,30]. 
CART analysis does not make assumptions about the 
underlying distribution of the predictor variables. It can 
accommodate numerical data that are highly skewed 
or multi-modal as well as categorical predictors. This 
reduces the time of estimating whether variables are nor-
mally distributed and transforming non-normally dis-
tributed data [29]. 

CPA can be realized by nonparametric change point 
analysis (nCPA) and Bayesian hierarchical modeling (BHM) 
to establish the nonlinear stressor-response relationship. 
The CPA is applied to calculate the location of thresholds or 
change points in bivariate relationships [3]. If observations 
from multiple sites are ordered along the gradient, a thresh-
old or sudden change in the statistical attributes of the 
dependent variable will occur in the relationship between a 
stressor variable and a response variable. CPA can therefore 
be used to determine the point at which the change occurs 
[22,31]. In this study, the response variables can be approx-
imated by a normal distribution, and a Gibbs sampling 
procedure was used to estimate the parameters [32,33]. 
Before conducting the CPA using the BHM method, specific 
information on the distribution of the response variable is 
required to estimate whether the distribution satisfies the 
assumption of normality. 

2.4. Statistical analyses

In this study, TN and TP were chosen to represent the 
stressor variables, and Chl a was selected as the biological 
response variable. The annual mean data of lakes and res-
ervoirs were applied to build the stressor-response rela-
tionship by using LRM, CART, and CPA methods, and the 
original data were employed by the reference condition 
approach and the BNLM model. The concentrations of 
TN, TP, and Chl a in Anhui lakes and reservoirs were log 
transformed (base 10 for the LRM, CART, and CPA; base 
natural logarithm for the BNLM) to meet the normality 
assumption [34]. 

The reference condition approach and LRM analyses 
were performed by using SPSS 16. The WinBUGS14 soft-
ware was developed to simulate the BNLM. The R func-
tion rpart was used to calculate the node of the CART 
model and the change point of nCPA, and the R function 
bootstrap was applied to evaluate the 90% confidence 
interval of each threshold with 1000 random permuta-
tions (R 3.0.2, http://cran.r-project.org/bin/ windows/
base/). Matlab software (R2007b, The MathWorks 
 Company, US) was used for the BHM analysis and the 
calculation of the 90% confidence interval for the change 
points. 

Reservoirs have the similar characteristics to lakes in 
nutrients ecological effect and human activities, hence, sim-
ilar methods can be used to determine reservoir nutrient 
criteria. 

3. Results 

3.1. Reference condition established by reference lake method and 
population distribution method 

Six reservoirs being in Anhui Province were selected to 
serve as the reference sites because of the reservoirs min-
imally impaired by human activities. Reference values 
derived from the reference lake method were slightly higher 
than the values derived from the lake population distribu-
tion methods (Table 1). Reference TN concentrations were 
0.63 mg/L for the reference lake method and 0.47 mg/L for 
the lake population distribution method. Reference TP val-
ues were 0.028 mg/L and 0.020 mg/L, respectively. Finally, 
reference Chl a had values of 2.8 µg/L and 2.1 µg/L, respec-
tively. This indicated that reference values by using the 25th 
percentile of the lake population distribution were more 
conservative than the 75th percentile of reference lakes in 
this region. 

3.2. Stressor-response model for nutrient criteria

3.2.1. Linear regression model

The use of stressor-response models is based on the 
assumption that lakes and reservoirs within Anhui Prov-
ince are likely to have similar Chl a responses to nutrient 
variation. The annual values of Chl a, TP and TN were col-
lected regularly from this region to build the linear regres-
sion models. SLR models of lgChl a using lgTP or lgTN as 
predictor are shown in Fig. 2 and Table 2. Confidence inter-
vals (90%) were used to describe the inherent uncertainty 
in estimating a mean response value when deriving criteria 
from stressor-response relationships. 

Fig. 2 and Table 2 indicated that there were significant 
positive correlations (p < 0.001) between lgChl a and lgTP 
or lgTN in this region, respectively. The correlation between 
lgChl a and lgTP was much stronger than that between 
lgChl a and lgTN for the region. 

To accurately predict future conditions using regression 
models, residual values against predicted values are plotted 
in Fig. S1 (SI). It could be seen that the scatter of the residual 
values was constant over the entire range of fitted values and 
randomly distributed around zero. This suggested that sam-
pling variance was constant, and certain inferences from the 
regression relationship may be accurate. The distributions 
of the error in observed values of the dependent variable 
about the estimated relationship are shown in Fig. S2 (SI). 
As shown in Fig. S2 (SI), quantile-quantile plots provided a 
robust, graphical approach for assessing whether residuals 
were normally distributed [34]. Most values clustered around 
the solid line, indicating a near-normal distribution. Depar-
tures of samples at the upper and lower end from a straight 
line suggested that the residuals extended to slightly more 
extreme values than predicted by a normal distribution. 

The prediction intervals and confidence intervals can 
provide useful information when deriving nutrient criteria 
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from SLR [3]. Compared with using prediction intervals to 
derive a range of possible criteria, criteria associated with 
confidence intervals spanned a narrower range because 
that the confidence interval depicts the inherent uncer-
tainty of predicted values. The hypothesis that 5 µg/L Chl 
a concentration was served as the criteria of the response 
variable for lakes and reservoirs in this region to satisfy the 
drinking water use [19]. The upper 90% confidence interval 
intersected Chl a = 5.0 µg/L at TP = 0.036 mg/L, TN = 0.57 

mg/L, and the lower confidence interval intersected at TP 
= 0.048 mg/L, TN = 0.83 mg/L, and the mean relationship 
intersected at TP = 0.041 mg/L, TN = 0.69 mg/L (Arrows A, 
C, and B, respectively in Fig. 2 (a) and (b)), respectively. The 
confidence intervals of SLM for TP and TN in Anhui lakes 
and reservoirs were 0.036–0.048 mg/L and 0.57–0.83 mg/L, 
respectively. 

Furthermore, lgTN and lgTP were simultaneously used 
to construct a multiple regression model for lgChl a in 

Table 1
Statistical results by reference lake method and lake population distribution method

Method Variable Percentage, % N

5 15 25 50 75 85 95

Reference lake method TN (mg/L) 0.25 0.32 0.36 0.46 0.63 0.75 1.01 2217
TP (mg/L) 0.010 0.012 0.013 0.019 0.028 0.036 0.056 2213
Chl a (µg/L) 1.2 1.6 2.0 2.4 2.8 3.2 6.0 1976

Lake population distribution 
method

TN (mg/L) 0.30 0.39 0.47 0.84 1.7 2.4 4.6 5288
TP (mg/L) 0.011 0.015 0.020 0.047 0.13 0.21 0.42 5550
Chl a (µg/L) 1.0 1.7 2.1 2.9 8.1 16.0 39.8 4190

Note: bold text-reference condition.
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Fig. 2. The simple linear regression models for Anhui lakes and reservoirs. (a) the relationship between lgTP and lgChl a; (b) the 
relationship between lgTN and lgChl a.

Table 2
Results of SLR and MLR for the lakes and reservoirs in Anhui Province (TP and TN unit: mg/L)

Variables Coefficient p R2 N Predicted 
variable

Predicted 
value

90% confidence interval

Lower limit Upper limit

Intercept (b) 1.56 <0.001** 0.485 128 TP 0.041 0.036 0.048
lgTP 0.622 <0.001**

Intercept (b) 0.792 <0.001** 0.260 126 TN 0.69 0.57 0.83
lgTN 0.585 <0.001**

Intercept (b) 1.492 <0.001** 0.485 126 – – – –
lgTP 0.567 <0.001** – – – –
lgTN 0.090 0.370 – – – –

Note: ** correlations are significant at P < 0.01 (two-tailed).



W. Sun et al. / Desalination and Water Treatment 79 (2017) 161–177166

Anhui lakes and reservoirs. This model was not effective 
and un-useful for accurately predicting future conditions in 
this region because the p-value of TN was much more than 
0.05 (Table 2). 

3.2.2. Bayesian non-hierarchical linear model

Taking into account the characteristics of data, the 
original data of 37 lakes and reservoirs were integrated 
to determine the stressor-response relationship using the 
BNLM. Based on the assumed condition, the simple and 
multivariate BNLMs were estimated for the prediction of 
lnChl a using predictors lnTP or/and lnTN. The results of 
the BNLM for lnChl a-lnTP, lnChl a-lnTN, and lnChl a-lnTP 
+ lnTN in this region are listed in Table 3. As shown in Table 
3, the obtained MC errors were lower than the 10% of stan-
dard deviation (SD), which indicating that a posteriori esti-
mation was accurate through the preliminary judgment. 

The diagram of kernel density estimation can be devel-
oped to reflect the variation tendency of mean values and 
confidence intervals for beta0, beta1, beta2, and beta3 (Fig. 
S3, SI). Moreover, the autocorrelation function was ana-
lyzed to diagnose whether the estimated values of model 
could reach the goal of convergence. 

It can be seen that the kernel density of lnChl a-lnTP, 
lnChl a-lnTN, and lnChl a-lnTP+lnTN models approxi-
mately satisfied the normal distribution (Fig. S3, SI), mani-
festing that the estimated values of BNLM for lnChl a-lnTP, 
lnChl a-lnTN, and lnChl a-lnTP + lnTN reached the simula-
tion requirements by WinBUGS software. The autocorrela-
tion functions of lnChl a-lnTP and lnChl a-lnTN models soon 
falled to zero with the increase of iterations, showing that 
the iteration processes had converged (Fig. S4, SI). While the 
decreasing tendencies of autocorrelation functions for lnChl 
a-lnTP + lnTN model were not significant, only the param-
eter beta3 had faster convergence speed. This indicated 
that only the related parameters for lnChl a-lnTP and lnChl 
a-lnTN can well satisfy the prior distribution information of 
BNLM, and can be employed to build the BNLM.

The BNLMs for lnChl a-lnTP and lnChl a-lnTN were 
built using the original data in this region, and the corre-
sponding equations were shown as following: 

ln . . * ln
ln . . * ln

Chl a TP

Chl a TN

 
 

= +
= +





4 431 0 792
2 302 0 806

 (2)

According to the above equations, the deduced TP and 
TN criteria of 0.028 mg/L and 0.42 mg/L were required to 
maintain an average Chl a concentration of 5 µg/L. The 
correlations between lnChl a and lnTP/lnTN were low, 
which indicated there were non-linear relationship existed 
between stressor variables and response variables for the 
original data. Hence, the non-linear models (such as CART 
and CPA) were employed for the further research.

3.2.3. Classification and regression tree model

CART can be acted as a variable selection method to 
identify important factors associated with the variation 
of the response variable. Chl a was used as the response 
variable for the CART model. The selected variable firstly 
meets the requirements which is the most important one 
or has the greatest influence on the Chl a concentration. TP 
and TN observations were included as potential predictor 
variables. The final models were selected based on their 
predictability, which was simulated by cross-validation. 
The CART analyses indicated that a hierarchical structure 
existed between nutrients and Chl a (Fig. 3). The standard 
error (SE) of the Chl a concentration data was used as a 
measure of dispersion.

The variability of Chl a in this region was driven pri-
marily by TP (Fig. 3). The mean Chl a concentration for TP 
less than 0.045 mg/L was 3.47 µg/L (with a standard devi-
ation of 1.68), and the mean Chl a concentration at higher 
TP concentrations was 10.8 µg/L (2.14). For TP lower than 
0.045 mg/L, TN was the next most important variable. The 
other splits were all made on TN. The lower panel of Fig. 3 
shows boxplots of Chl a concentrations within each of the 
terminal nodes. Only the first five splits including in the 
terminal model demonstrated that further splits would not 
reduce the model’s relative predictive error or increase the 
predictive correlation coefficient [29]. 

The CART models presented in this study might not be 
developed to predict Chl a concentrations. However, the 
model can provide valuable information for water quality 
management. For example, the boxplots show that a large 
variance in the Chl a concentration corresponds to high TP 
and high TN concentrations. The variations in TP and TN 
concentrations in this region must be controlled simultane-
ously, to effectively improve water quality. 

Table 3
The results of the BNLM for lnChl a-lnTP, lnChl a-lnTN, and lnChl a-lnTP + lnTN (SD-Standard deviation)

Variable Parameter Mean SD MC error 2.50% Median 97.50% Initial iteration Iteration

TP beta0 4.431 0.042 0.001 4.348 4.432 4.511 4001 26000
beta1 0.792 0.025 0.001 0.742 0.791 0.843 4001 26000

TN beta0 2.302 0.041 0.001 2.219 2.303 2.382 4001 26000
beta1 0.806 0.030 0.001 0.746 0.806 0.865 4001 26000

TP + TN beta0 4.567 0.094 0.006 4.378 4.570 4.746 4001 26000
beta1 0.908 0.051 0.003 0.810 0.907 1.009 4001 26000
beta2 –0.202 0.071 0.004 –0.343 –0.199 –0.071 4001 26000
beta3 –0.253 0.045 0.002 –0.344 –0.251 –0.167 4001 26000

Note: MC error = SD n/
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3.2.4. Changepoint analysis

The CART results for each node in the regression tree 
were verified by the CPA method. The changepoints, the 
mean and standard deviation (SD) of the response variable 
Chl a on both sides of the changepoints were estimated 
using the nCPA and the BHM methods (Table 3). Uncer-
tainty in the changepoint location can be quantified using 
the range of the middle 90% of the 1000 bootstrap simula-
tion replicates for the nCPA method and the 90% confidence 
intervals for the BHM method. 

The distributions of TP and TN, along with the Chl a 
data based on the annual data, are illustrated in Fig. 4. The 
results from the nCPA method were comparable to those 
generated from the BHM method. There were no significant 
differences between the changepoints from the nCPA and 
BHM methods for TP and TN, indicating that the proba-
bility distribution assumptions for the response variable 
under the BHM method were appropriate. Because the 
BHM method utilized the distributional information for 
the response variable, it generated narrower confidence 
intervals for the changepoint (see Fig. 4) [22]. If the true 
probability distribution of the response variable cannot be 

determined, the nCPA method should be used to confirm 
the changepoint. Table 5 lists the advantages, disadvan-
tages and applicability of the stressor-response models. 

The changepoint analysis was conducted by ordering 
observations along a stressor gradient (x axis of TP or TN) 
and identifying the point along the gradient that divides 
the response variable into the two groups with the great-
est difference in deviation. Accordingly, the nCPA method 
split the dataset into two groups around each unique value 
of the stressor variable, and then calculated the difference 
between the deviation for the entire dataset and the sum 
of the deviations of the two groups. The changepoint was 
defined as the point that maximizes this difference. Abrupt 
changes in the response variables were observed, ranging 
from 0.045 mg/L to 0.046 mg/L for TP and 0.81 mg/L for 
TN using the nCPA and BHM methods (Table 3). 

3.3. Establishment of nutrient criteria

The results obtained by the reference lake method, the 
lake population distribution method, LRM, BNLM, CART, 
and CPA in Anhui lakes and reservoirs are listed in Table 6. 

Fig. 3. Regression tree plot of observed Chl a partitioned with TN and TP concentrations. The boxplots which represent the Chl a 
concentrations in each terminal node, are ordered from small to large by the mean of Chl a concentrations in categorical data.
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As shown in Table 6, the nutrient threshold values 
determined by the CART method were nearly bracketed 
by the values derived from the nCPA and BHM methods in 
Anhui Province. The criteria obtained by the reference lake 
method, the lake population distribution method, LRM and 
BNLM were obviously lower than those obtained by CART, 
nCPA and BHM methods. A Friedman test suggested that 
there were no significant differences in the results obtained 
from the various statistical methods (p > 0.05). Hence, 
the range of nutrient criteria in Anhui Province could be 
defined as: 0.020–0.046 mg/L for TP and 0.42–0.81 mg/L 
for TN. The nutrient criterion ranges by the lake population 
distribution approach and the LRM method were 0.014–
0.043 mg/L and 0.020–0.032 mg/L for TP, 0.36–0.78 mg/L 
and 0.25–0.47 mg/L for TN, respectively, in the Eastern 
Plain Ecoregion (including North, Mid-East, and Southeast 
Lake Ecoregion) [14,16,19,35], which were in good consis-
tency with the scope of nutrient criteria in Anhui lakes and 
reservoirs. In the USA, nutrient criteria of ecoregions V 
(South Central Cultivated Great Plains) and IX (Southern 
Temperate Forested Plains and Hills), which are located in 
the same climate zone as Anhui Province, were similar to 
nutrient criteria in Anhui lakes and reservoirs (see Table 6) 
[5, 38]. In the case of Chl a less than 5.0 µg/L, the probability 
of TN less than 0.81 mg/L is 71.2%, and the probability of 

TP lower than 0.046 mg/L is 74.1%. This indicated that the 
criteria values obtained by the various methods were scien-
tific and reasonable for Anhui lakes and reservoirs. 

4. Discussion 

A systematic method, including the reference lake 
method, the lake population distribution method, LRM, 
BNLM, CART, and CPA, was developed to determine 
nutrient criteria in Anhui lakes and reservoirs. The refer-
ence conditions were unavailable if the aquatic ecosystems 
are widely contaminated by industrialization, urbaniza-
tion, and agriculture in the region of interest. In this case, 
changepoints or thresholds were considered as reference 
concentrations to determine nutrient criteria. Hence, ref-
erence conditions were compared with changepoints and 
thresholds in this paper. The nutrient criteria determined 
by the various methods were approximate and unani-
mous, and at least two types of potential approaches were 
available to establish criterion values which offered some 
degree of certainty. Nutrient criterion thresholds or ranges 
determined by the different methods in various countries 
and regions are listed in Table 6. There were no significant 
differences in the results obtained by the various statisti-

Table 4
Threshold values for TP and TN concentrations (mg/L) with Chl a concentrations (µg/L) determined using the nCPA and BHM 
methods (standard deviation: SD) 

Method TP TN

nCPA Changepoint 0.045 0.81

Confidence interval 0.042, 0.094 0.72, 1.34

Chl a mean [n] ± SD 3.5 [79] ± 1.68, 10.8. [50] ± 2.14 3.7 [81] ± 1.87, 9.8 [461] ± 2.13
BHM Changepoint 0.046 0.81

Confidence interval 0.044, 0.046 0.80, 0.84

Chl a mean [n] ± SD 3.5 [80] ± 1.68, 11.1 [49] ± 2.12 3.7 [81] ± 1.87, 9.8 [461] ± 2.13

 
(a)  (b) 

Fig. 4 Changepoint distributions of (a) TP and (b) TN estimated for Chl a using the nCPA (dashed lines) and BHM (solid lines) 
methods. Polyline shows modeled response, with a step increase at changepoint. Vertical lines show the 90% confidence intervals 
about the changepoint. Data are shown as open circles. 
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cal methods for the same region. For example, the nutrient 
criteria determined by the CART, nCPA, and BHM meth-
ods were almost consistent for the seven lake ecoregions, 
China, and were in the ranges of criteria obtained by the 
LRM method (except Yungui Lake Ecoregion) [16,19]. For 
the Yungui Lake Ecoregion, the criteria determined by the 
reference condition method were in consistency with the 
values derived from the LRM method [19,36]. Table 6 also 
showed there were significant regional differences in the 
nutrient criteria among various regions and indicated that, 
in the absence of human activities, environmental factors 
rather than TP and TN (e.g., salinity, light, temperature, 
water color, and suspended sediment) would promote or 
inhibit the growth of algae [16].

All the methods could be used simultaneously to pro-
vide various criteria for comparison. Due to some ecore-
gions lack a large amount of data, an order of preference 
to apply these difference techniques should be considered 
to setting criterion values. Where minimally impacted ref-
erence lakes exist in a region, the reference lake method 
should be given preference to determine the regional nutri-
ent criteria [7,11,36]. Where undisturbed or nearly undis-
turbed conditions are difficult to identify, but sufficient 
data are available in a region, the population distribution 
method could be preferred to determine the regional nutri-
ent criteria [35]. If degraded conditions prevail and appro-
priate data exist to adequately quantify the relationship of 
variables, the stressor-response relationship would be pre-

ferred to provide a statistically defensible method [5,11]. If 
only one method can be used to determine criteria due to 
the limitation of data quantity and type, professional judg-
ment and expertise will be required to be implemented [13]. 

The reference condition method is to determine nutrient 
criteria based on the frequency distribution of the original 
survey data. It was identified as one of the most straight-
forward methods for setting criteria because the data 
includes natural variability [39]. However, the selection 
of percentage would easily introduce subjective bias, and 
the attainment of designated water uses was not consid-
ered by the reference condition approach for determining 
nutrient criteria. The scientific determination of reference 
lakes or reference sites also had restricted the application 
of the reference condition method. Lakes or sites impacted 
minimally by human disturbance are scarce in developed 
regions and historic data are few and even problematic [40]. 
The establishment of criterion thresholds based on percen-
tiles might be skewed by a bias in the data toward either 
pristine or highly influenced sites, which would introduce 
great uncertainty. Hence, more research should be devel-
oped to quantify sources of uncertainty, to account for the 
uncertainty and the correlative impact of uncertainty [40]. 

The stressor-response relationship between nutrient and 
Chl a was considered as the best method to develop nutri-
ent criteria for the widespread contamination of aquatic 
ecosystems by industrialization, urbanization, and agricul-
ture [16]. Compared to the reference condition approach, 

Table 5
The advantages, disadvantages and applicability of the stressor-response models 

Model Advantage Disadvantage Applicability

LRM 1) Quantitatively analyses the influence of 
nutrient increase on the response variables; 
2) not require identifying the reference lakes 
or least impacted lakes in the studied region, 
and not require collecting amount of history 
data. 

1) Need to set the response criteria; 2) the data 
need to be classified to eliminate the influence 
of confounding factors on the relationship; 
3) the model extrapolation would introduce 
greater uncertainty; and 4) the land use-nutrient 
regression model could not quantify all sources of 
anthropogenic influence. 

Heavy impacted by 
human activities 
and good linear 
relationship between 
stressor variable and 
response variable 
existed in the region.

BNLM 1) Adjust the influence of covariate variables 
on the all levels to predict for the variability 
of the output result; and 2) effectively 
relieve the data missing and measuring 
error to evaluate and compare the relative 
heterogeneity, and to avoid under or over 
estimates.

1) Need to set the response criteria; 2) the modeling 
dataset are generated randomly, which leads to 
slightly different in the calculated result.

CART 1) A non-parametric method and makes 
no assumptions about the underlying 
distribution of values of the predictor 
variables; and 2) not require the 
establishment of a response threshold value.

Model is lack of robustness when the number of 
samples is small, and the accuracy of the results 
might not be guaranteed.

Heavy impacted by 
human activities 
existed, ecological 
responses to 
environmental 
gradients are 
nonlinear, non-
normal, and 
heterogeneous, and 
the stressor-response 
relationship cannot 
be expressed by the 
linear models in the 
region. 

CPA 1) Evaluate the positions of thresholds or 
changepoints in binary relationships and 
provide natural candidates for nutrient 
criteria; and 2) not require the establishment 
of a response threshold value.

1) Additional analyses are required to determine 
whether the characteristics of the chosen value are 
consistent with a protective target; and 2) require 
estimating whether the values of the response 
variable at values below the changepoint support 
the designated uses of waterbodies.
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the stressor-response models do not require identifying ref-
erence lakes and obtaining a large amount of data from ref-
erence or minimally impacted lakes in the studied region. 
The majority lakes of China are suffering from significant 
human activities, and no or minimally impacted reference 
lakes are usually not available in the ecoregions. Hence, 
stressor-response models are more suitable for determining 
nutrient criteria. 

The stressor-response model could be classified as the 
linear and the non-linear relationship. The LRM and BNLM 
methods would be employed to establish the linear regres-
sion relationship between stressor and response variables. 
They could be able to quantify the influence of response 
variables with the increase of stressor variables. In the 
region that good linear relationship existed between nutri-
ent and Chl a, LRM and BNLM can be used to deduce reli-
able nutrient criteria. The BNLM method combines prior 
data and the actual monitoring data. For the small sample 
data, it can reduce error and a priori data, and nearly had 
no influence on the calculation result for the great sample 
data. The application of prior information and the Markov 
chain Monte Carlo (MCMC) simulation method in BNLM 
can effectively relieve the data missing and measuring error 
to evaluate and compare the relative heterogeneity, and to 
avoid under or over estimates. The BNLM provided a new 
pathway and method to correctly clarify and explain the 
relationship between nutrients and Chl a. 

However, the linear relationship also has disadvan-
tages, which hampered the application for the special-type 
lakes to some extent. 1) The stressor-response relationship 
between nutrients and algae was susceptible to being con-
founded with environment factors, such as turbidity, water 
temperature, light, and lake area. Hence, these confounding 
factors should be identified or included in future models 
[12,19,41]. 2) The biological response to nutrient gradients 
might be subtle, nonlinear, non-normal, and heteroge-
neous, which would likely be difficult to detect with a linear 
regression analysis [20,21]. 3) If there are many high anthro-
pogenic impact lakes in a specific ecoregion, the predicted 
data would be required far from the data points to extrap-
olate the relationship [3,19]. 4) The linear stressor-response 
relationship requires the establishment of a threshold value 
for the response variable to determine a potential numerical 
criterion, which would introduce some subjective biases. 

The non-linear relationship combining CART and CPA 
methods could be developed to verify the validation of the 
linear results. Compared with the linear stressor-response 
relationships, the non-linear models do not require the set-
ting of a response threshold value to determine numerical 
criterion [3]. A threshold or a changepoint refers to the posi-
tions of stressor variable leading to abrupt changes in both 
the mean and the variance of the ecological response vari-
able, which provides natural candidates for nutrient criteria 
[22,31]. The CART and CPA methods can be used to explore 
the subtle non-linear relationship between the stressor and 
response variables, and do not require the hypothesis of 
classical regression, such as independence, normality, lin-
ear or smoothness [16]. The CPA could potentially provide 
a criterion to determine this threshold value; additional 
analyses are required to estimate whether the values of the 
response variable at values below the changepoint would 
support the designated uses of waterbodies. 

The CART method can be used to analyze the influence 
of various factors (such as nutrients, environment, and lake 
type) on the response variable Chl a and to explore the sig-
nificance of factors on the response variable under various 
concentrations [28]. As the CPA method, the nCPA and 
BHM methods estimate the relationship between a response 
variable and a stressor variable to identify the changepoint. 
The impact of other factors on the response variable was not 
considered in the nCPA and BHM analysis; thus, the thresh-
old value may incorporate greater uncertainty. The nCPA 
method does not make probabilistic assumptions about the 
response data; it is more robust, and the related calculations 
are more straightforward than the BHM method. However, 
the nCPA method could not effectively use the information 
about the probabilistic distribution of the response variable, 
which is less efficient than the BHM method when such 
information exists [22]. 

The CART analysis recommended a hierarchical struc-
ture for Chl a, TN, and TP, and the thresholds in the regres-
sion tree model were nearly consistent with those observed 
when assessed individually by the nCPA and BHM meth-
ods. The information derived from the hierarchical struc-
ture might be useful in the establishment of nutrient 
criteria. Therefore, utilizing hierarchical structure as a tool 
to understand large datasets may stimulate the develop-
ment of nutrient criteria [20].

Although more and more datasets on hydrology, chem-
istry, and biology of lakes and reservoirs could be obtained 
from national water quality monitoring networks, the lack 
of sufficient data was still the biggest obstacle for the devel-
opment of a water quality management plan. The com-
plexity of natural processes in lakes and reservoirs made 
it difficult to transform routine monitoring data into scien-
tific knowledge that can be developed to support lake-spe-
cific management decision. The integration of the reference 
condition approach and stressor-response model would be 
beneficial to determine scientific and reasonable nutrient 
thresholds in lakes and reservoirs. 

5. Conclusions

Developing accurate and effective ways to estimate 
numeric nutrient criteria are critical for the management 
and recovery of aquatic ecosystems. The reference condi-
tion approach and stressor-response models were synthe-
sized to set nutrient criteria, which proposes an attempt in 
supporting policies for eutrophication control, and provides 
a reference for establishing nutrient criteria. The ranges of 
numerical nutrient criteria were 0.020–0.046 mg/L for TP 
and 0.42–0.81 mg/L for TN, which may control the growth 
of algae in Anhui lakes and reservoirs. The various meth-
ods determined nutrient criteria should be comprehen-
sively considered when providing technical support and 
implementing water quality standards for regulation to 
avoid the under or over protection of lakes and reservoirs. 
In addition, the process described will be benefit to support 
countries and regions with similar climate characteristics in 
incorporating reference condition approach and stressor-re-
sponse models into their numeric criteria development pro-
grams and to achieve the further water management goal of 
reducing nitrogen/phosphorus pollution.
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Fig. S1. Residuals from regression fit plotted versus predicted lgChl a: (a) TP; (b) TN.
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Fig. S2. Quantile-quantile plot comparing residuals from the relationship: (a) TP; (b) TN.
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Fig. S3. The diagram of kernel density estimation for (a) lnChl a-lnTP, (b) lnChl a-lnTN, and (c) lnChl a-lnTP + lnTN. 
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Table S1
The information about the 37 studied lakes and reservoirs

NO. Lake Name Position (Latitude and 
Longitude)

Lake 
Area 
(Km2)

Mean/
Maximum 
Depth (m)

Water 
Volume  
(× 108 m3)

Catchment 
area 
(km2)

Age 
(y)

Type Reference 
Lake 

YES or NO

1 Anfeng Tang 116°38´-116°44´E, 32°16́ -32°20´N 36.42 2.67/3.60 0.97 390 ~2600 Reservoir NO

2 Baidang Lake 117°19´-117°27´E, 30°47´-30°51́ N 39.67 3.06/4.50 1.21 775 – Lake NO

3 Bo Lake 116°19´-116°33´E, 30°04´-30°15´N 180.40 4.41/6.86 7.94 1087 ~1600 Lake NO

4 Caizi Lake 117°01́ -117°09´E, 30°43´-30°58´N 172.10 1.67/8.28 2.87 3234 – Lake NO

5 Chao Lake 117°16́ -117°05´E, 31°25´-31°43´N 769.55 2.69/3.77 20.70 9258 ~12000 Lake NO

6 Chengdong Lake 116°18´-116°28´E, 32°12´-32°22´N 120.00 1.50/2.60 2.10 2128 ~2.60 × 
106

Lake NO

7 Chengxi Lake 116°01́ -116°18´E, 32°11́ -32°33´N 199.00 2.70/3.90 5.37 1750 ~2.60 × 
106

Lake NO

8 Chengxi Reservoir 118°16́ -118°18´E, 32°19´-32°21́ N – – 0.85 168 60 Reservoir NO

9 Dongpu Reservoir 117°08´-117°12´E, 31°52´-31°55´N – – 2.42 207.5 61 Reservoir NO

10 Fengyangshan 
Reservoir

117°33´-117°38´E, 32°40´-32°42´N – – 10.35 146 59 Reservoir NO

11 Foziling Reservoir 116°13´-116°20´E, 31°15´-31°21́ N – – 4.96 1840 65 Reservoir YES

12 Gaotang Lake 117°07´-117°13´E, 32°34´-32°44´N 49.00 1.73/2.50 0.85 400 – Lake NO

13 Guangou Reservoir 117°23’-117°25’E, 32°43’-32°45’ N – – – 92 – Reservoir NO

14 Huangda Lake 116°14’-116°33’E, 29°56’-30°08’ N 299.20 3.94/5.30 11.79 1686 ~2200 Lake NO

15 Huayuan Lake 117°45´-117°53´E, 32°55´-33°02´N 34.00 1.35/2.10 0.50 875 ~2×108 Lake NO

16 Jiaogang Lake 116°34´-116°41́ E, 32°15´-32°18´N 40.00 0.44/1.1 0.18 480 – Lake NO

17 Longgan Lake 115°19´-116°17´E, 29°52´-30°05´N 316.20 3. 78/4.58 11.96 5511 ~690 Lake NO

18 Longhekou 
Reservoir

116°39´-116°48´E, 31°15´-31°20´N 50.00 – 8.20 1111 59 Reservoir YES

19 Longzi Lake 117°23´-117°25´E, 32°53´-32°56́ N 7.80 – – 143 – Lake NO

20 Lutang Reservoir 117°39´-117°40´E, 32°47´-32°48´N 2.28 – 0.14 33.6 – Reservoir NO

21 Matang Lake 116°34´-116°38´E, 30°24´-30°27´N 8.50 – 0.40 87 – Lake NO

22 Meishan Reservoir 115°42´-115°55´E, 31°30´-31°42´N – – 23.37 2100 63 Reservoir YES

23 Mozitan Reservoir 116°20´-116°23´E, 31°11́ -31°14´N – – 3.39 570 61 Reservoir YES

24 Nanyi Lake 118°50´-119°02´E, 31°03´-31°10´N 148.40 2.25/3.25 3.34 3369 ~1400 Lake NO

25 Nvshan Lake 117°58´-118°14´E, 32°50´-33°02´N 104.60 1.71/2.40 1.78 4215 ~7.3 × 108 Lake NO

26 Pogang Lake 117°04´-117°13´E, 30°33´-30°42´N 60.00 1.52/2.50 0.91 346 – Lake NO

27 Qili Lake 118°09´-118°15´E, 32°51́ -32°57´N 37.71 – – 889 ~2 × 108 Lake NO

28 Randeng Reservoir 117°47´-117°49´E, 32°43´-32°46́ N 9.27 – – 173 – Reservoir NO

29 Shengjin Lake 116°58´-117°14´E, 30°15´-30°28´N 78.48 1.26/3.50 0.99 1554 ~3 × 106 Lake NO

30 Shitang Lake 117°04´-117°07´E, 30°36́ -30°40´N 11.00 – – 97 – Lake NO

31 Taiping Lake 117°38´-118°26́ E, 29°58´-30°29´N 88.00 – – 2800 59.00 Reservoir YES

32 Tuo Lake 117°45´-117°51́ E, 33°09´-33°17´N 40.00 1.20/2.00 0.48 2983 – Lake NO

33 Wabu Lake 116°48´-117°01́ E, 32°23´-32°33´N 163.00 2.42/4.15 3.94 800 – Lake NO

34 Wuchang Lake 116°36́ -116°53´E, 30°14´-30°20´N 100.50 3.43/4.31 3.45 1084 – Lake NO

35 Xianghongdian 
Reservoir

115°59´-116°09´E, 31°26́ -31°37´N – – – 1400 61.00 Reservoir YES

36 Xiangjian Lake 117°15´-117°45´E, 33°06́ -33°12´N 45.00 0.93/4.89 0.42 8173 – Lake NO

37 Yi Lake 118°59´-119°04´E, 32°46́ -32°50´N 18.00 1.70/2.30 0.31 245 – Lake NO


