
*Corresponding author.

1944-3994 / 1944-3986 © 2017 Desalination Publications.  All rights reserved.

Desalination and Water Treatment
www.deswater.com

doi:10.5004/dwt.2017.20809

79 (2017) 196–203 
June

Determination of stormwater first flush treatment strategies 
at tropical urban catchments 

Chow Ming Faia,*, Zulkifli Yusopb

aCenter for Sustainable Technology and Environment (CSTEN), Universiti Tenaga Nasional, 43000 Kajang, Selangor, 
Tel. +60389212020, email: mingfaichow12345@gmail.com 
bCentre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor 
DarulTa’zim, Malaysia, email: zulyusop@utm.my

Received 1 March 2017; Accepted 5 April 2017

a b s t r a c t

This study was conducted to determine the first flush magnitude and treatment strategies of storm-
water pollutants at tropical urban catchments. Stormwater samples were manually grabbed and the 
flow rates were measured during 52 storm events at residential, commercial and industrial catch-
ments. The mass based first flush (MBFF) ratio was used to quantify the first flush magnitude of 
stormwater pollutants. The treatment effectiveness factor [E(v)] was determined in order to identify 
the treatment strategies for first flush runoff volume at different urban land uses. The results showed 
that commercial catchment has the strongest MBFF for BOD, COD, TSS, NO3–N and SRP. Residential 
catchment showed the highest MBFF for NH3–N and Zn while industrial catchment exhibited the 
highest MBFF for O&G, TP and NO2–N. The study found that treating the first 10% of runoff volumes 
can remove most of the pollutant loadings for NH3–N, SRP, TP and Zn at residential and commercial 
catchments. Meanwhile, majority of the stormwater pollutants at industrial catchment could only be 
treated effectively in the first 30%–50% of runoff volumes.
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1. Introduction

Developing countries in Southeast Asia are experienc-
ing rapid urban development and industrialization pro-
cesses due to population and economic growth in the recent 
decades [1]. Increasing urban areas with high impervious-
ness surface has promotes the build-up of various pollutants 
that readily to be flushed away into the drainage system 
during storm event [2,3]. The non-point source (NPS) pol-
lution due to urban stormwater runoff has degraded the 
quality of receiving water body significantly [4–7]. The 
stormwater pollution in urban cities is of great concern 
nowadays and many efforts have to be carried out in order 
to control this alarming situation. Since it is not possible to 
design and construct best management practices (BMPs) 
that can treat all of the stormwater runoff from urban 

catchment for every storm event, there must be cost-effec-
tive alternative treatment strategies for urban stormwater 
runoff. Many researchers in various countries have found 
high concentration in stormwater runoff at the early part 
of storm event which also known as first flush phenome-
non [8–13]. The existence of a first flush may present alter-
native opportunities for stormwater pollutant reduction 
strategies. In order to effectively quantify the first flush 
runoff volume, different definitions have been proposed 
by various researchers from different countries based on a 
threshold ratio of percentage of cumulative pollutant mass 
over percentage of cumulative runoff volume (%M /%V). 
For examples, 40–60/25 [14]; 40/20 [15]; 50/25 [2]; 80/30 
[16] and 80/20 [17] of M/V ratios were applied. These mass
based first flush (MBFF) ratio can help the stormwater man-
ager to design a cost effective capacity of BMPs facilities
[5,18,19]. This is mainly because of the treatment cost for
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stormwater BMP is more dependent on the runoff volume 
to be treated than the contaminant concentrations. It was 
also found out that the removal efficiency of BMP facilities 
is always greater at higher concentration of stormwater pol-
lutant [20]. Successful treatment of first flush runoff volume 
by BMPs structures will definitely reduce the stormwater 
pollution at urban cities [21,22]. 

The evaluation of MBFF for stormwater pollutant 
can be influenced by many factors including catchment 
characteristics [23,24], imperviousness area [5,8,24–26], 
land use [27–31], mean rainfall intensity [15,23,24,32], 
maximum rainfall intensity [15,33–35], antecedent dry 
day [5,33,35–37], and rainfall duration [33,34]. Although, 
studies on first flush effect of urban stormwater runoff 
have started over the past two decades, only very limited 
studies have been carried out in the tropical regions. This 
issue is especially important for developing countries in 
the tropics because of the rapid urban development pro-
cesses and the rainfall pattern and distribution are totally 
different from those in the temperate countries. Short and 
intense storms which are common in the tropics tend to 
produce highly polluted runoff at the beginning of a storm 
event. Therefore, better understanding of this first flush 
effect could provide important information to design the 
BMP facilities for urban stormwater pollution control. 
Thus, the objectives of this study were 1) to identify the 
MBFF ratios for selected stormwater quality parameters; 

and 2) to determine the treatment strategies for treating 
the first flush runoff volume at different urban land uses.

2. Materials and methods

2.1. Study sites 

Three different urban catchments located in Skudai, 
Johor Bahru, Malaysia, namely residential, commercial and 
industrial land uses were selected as the study sites (Fig. 1). 
This study area has a typical tropical climate with a mean 
annual temperature of 30ºC and mean annual rainfall of 
2481 mm. The catchment area for residential, commercial 
and industrial sites is 32.77 ha, 34.21 ha and 4.38 ha, respec-
tively. The percentage of impervious surface is estimated as 
85% for residential catchment, 95% for commercial catch-
ment and 93% for industrial catchment. The residential 
catchment has an underground stormwater drainage sys-
tem whereas the commercial and industrial catchments 
have open channel systems. None of these catchments has 
wastewater treatment plant within it, thus the effect of land 
use could be easily singled out. All the study catchments 
are located within 3 km from the water quality analysis 
laboratory in University of Technology Malaysia. Thus, the 
sampling personnel were able to reach the sampling sites 
for stormwater samples collection prior to the beginning of 

Fig. 1. The locations of studied catchments and sampling points for stormwater runoff.
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storm event. The characteristic for each studied catchment 
is summarized in Table 1.

2.2. Stormwater samples and flow measurements

The rainfall data was measured by a HOBO tipping 
bucket rain gauge (Model RG3) with resolution of 0.2 
mm in each catchment during the monitoring period. 
The water level of stormwater runoff was measured and 
converted into flow rate by using the stage-discharge rat-
ing curve that developed earlier at each sampling site. 
Stormwater samples were manually grabbed by using 1 L 
polyethylene bottles at the catchment outlet. Manual grab 
sampling technique is preferred due to inappropriate 
sampling of oil and grease (O&G) by automatic sampler 
[38]. The sampling was commenced at 1–10 min interval 
when the water level started to rise and 10–20 min inter-
val on the falling limb of the hydrograph. More samples 
were collected on the rising limb in order to minimize 
the risk of missing the peak concentration of pollutants. 
Between eight and fifteen samples were collected during 
each storm event. This sampling protocol was followed 
according to the guidelines recommended by Caltrans 
[39]. The water quality parameters such as total sus-
pended solids (TSS), biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), O&G, nitrate-nitro-
gen (NO3–N), nitrite-nitrogen (NO2–N), ammonia-nitro-
gen (NH3–N), soluble reactive phosphorus (SRP), total 
phosphorus (TP) and zinc (Zn) were analyzed for each 
stormwater sample by following the standard methods 
for the examination of water and wastewater [40]. The 
TSS concentrations were analyzed according to Standard 
Method 2540B [40] by filtering sample aliquots through 
pre-weighted glass fiber filters (Whatman GF/A filter), 
dried at 105º for 1 h and weighed again (detection limit 
of 5 mg/L). The filtered samples were analyzed for PO4, 
NO3–N, NO2–N and NH3–N using HACH DR5000 spec-
trophotometer (detection limit of 0.001 mg/L for NO2–N, 
0.01 mg/L for NO3–N, NH3–N and PO4) by following 
standard methods of 4500 P.E, 4500 B, 4500 B, and 4500 F, 
respectively [40]. The unfiltered samples were analyzed 
for TP using the potassium persulfate digestion method 
followed by PO4 analysis as described above. The water 
quality parameters of BOD, COD, O&G and Zn were ana-
lyzed based on the standard methods of 5210B, 5220B, 
5520B and 3120 B respectively [40].

2.3. Data analysis

2.3.1. Mass based first flush (MBFF)

Mass based first flush (MBFF) is a ratio of normalized 
cumulative pollutant mass to the normalized cumulative 
runoff volume as described by Ma et al. [26]. MBFF ratio 
for stormwater constituent can be calculated by using Eq. 
(1) as below:
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Where t is lapsed flow time (min) corresponding to n% total 
flow volume, C(t) is concentration of pollutant at time t 
(mg/L), Q(t) is runoff flow rate at time t, M is total pollut-
ant mass (kg), V is total flow volume (m3). The first flush 
phenomenon occurs if MBFF is greater than 1.0 [26].

2.3.2. Treatment effectiveness factor

In order to estimate the potential benefits of treating pol-
lutants in the early runoff, a treatment effectiveness factor, 
E(v) as a function of MBFFn was determined in this study. 
The effectiveness factor E(v) at a specific cumulative runoff 
volume, v is calculated as in Eq. (2) [20].
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where Mv is the normalized cumulative mass at a specific 
normalized cumulative runoff volume, v. The E(0.1) of 5 
represents that treating the first 10% of stormwater runoff 
volume will be 5 times more effective than treating an equal 
volume of runoff at the later part of storm event. 

3. Results and discussion

3.1. Storm characteristics

A total of 52 storm events were collected at the studied 
catchments as shown in Fig. 1, which consisted of 18 events 
for residential catchment, 17 events for commercial catch-
ment and 17 events for industrial catchment, respectively. 
The storm characteristics including grain fall depth (Rd), 
duration (Rdur), hourly mean intensity (I), max 5 min inten-
sity (Imax5) and antecedent dry days (ADD)were analyzed in 
detailed for each storm event and the statistical results were 
summarized in Table 2. The observed rainfall depths ranged 
from 1.8 mm to 107.4 mm while the intensity varies from 2.7 
mm/h to 99.5 mm/h. These collected storm events mainly 
represent the frequent or common storms in the study area, 
with mostly having average recurrence interval (ARI) less 
than 3 month as shown in Fig. 2. As stated in the Urban 
Stormwater Management Manual for Malaysia (MASMA) 
[41], storms of 3 month ARI or less produces over 90% of 
annual runoff volume in the country. Thus, the results in 
this study will provide the representative criteria for the 
first flush treatment design of BMP facilities. 

Table 1
Characteristics of the studied urban catchments

Site Residential Commercial Industrial

Coordinates 1º32’17’’ N
103º40’40’’ E

1º32’26’’ N
103º37’45’’ E

1º32’21’’ N
103º37’20’’ E

Area (ha) 32.77 34.21 4.38
No. of shops/
houses/factories

473 609 25

Impervious area (%) 85 95 93
Average daily traffic 
(vehicles/day)

7811 33286 3148
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3.3. Mass based first flush analysis

Mass based first flush (MBFF) ratios were evaluated 
for all stormwater quality parameters at residential, com-
mercial and industrial catchments. The MBFF ratio was 
calculated for every normalized cumulative runoff vol-
ume of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respec-
tively. The median MBFFs for each runoff volume interval 
at every studied catchment are summarized in Table 3. 

Some water quality parameters such as BOD, COD, TSS, 
and NH3–N exhibited consistently median MBFF ratios 
greater than 1.0 which suggested the first flush effect. Park 
et al. [42] and Li et al. [5] also found similar observations 
at the urban catchment in Korea and China, respectively. 
Commercial catchment had exhibited the strongest MBFFs 
(greater than 2.0) for BOD, TSS, NH3–N and SRP at the first 
20% of the runoff volume. The mean MBFFs for NO3–N, 

Table 2
Characteristics of the monitored storm events

Catchment Depth [Rd] 
(mm)

Duration [Rdur] (h) Mean intensity [I] 
(mm/h)

Max 5 min 
intensity  
[Imax5] (mm/h)

Antecedent 
dry day 
[ADD] (d)

Residential (n = 18)
Minimum 1.8 0.18 2.7 9.6 0.1
Maximum 46.0 2.5 99.5 151.2 8.53
Median 19.6 0.91 25.2 57.6 1.7
Mean ± SD 21.7 ± 15.4 1.01 ± 0.62 27.9 ± 24.8 64.9 ± 45.9 2.3 ± 2.2
Commercial (n = 17)
Minimum 2.0 0.23 2.7 4.8 0.03
Maximum 107.4 4.85 53.7 146.4 16.53
Median 11.0 1.12 22.1 50.4 3.74
Mean ± SD 30.2 ± 33.4 1.22 ± 1.14 23.0 ± 13.3 65.6 ± 42.0 2.12 ± 3.14
Industrial (n = 17)
Minimum 3.6 0.37 3.3 9.6 0.02
Maximum 53.2 2.16 40.5 127.2 13.02
Median 9.8 0.96 17.6 48.0 1.89
Mean ± SD 16.6 ± 14.4 1.01 ± 0.51 17.2 ± 10.3 56.3 ± 31.6 2.68 ± 3.33

n: number of events; SD: standard deviation

 
ARI: Average recurrence interval 

Fig. 2. Intensity-Duration-Frequency (IDF) curves for the monitored storm events.
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NO2–N and Zn at all catchments were relatively constant 
and showed weak first flush effect during the storm event. 
The relative first flush strength of stormwater pollutants 
at residential catchment is NH3–N > COD > BOD > TSS > 
TP > O&G = NO3–N = Zn > SRP > NO2–N, while it is TSS 
> SRP > NH3–N > BOD > COD > TP > NO3–N > O&G > 
Zn at the commercial catchment. Meanwhile, the relative 
first flush strength with regards to various pollutants at 
industrial catchment is TSS > NH3–N > SRP = COD > BOD 
> TP > O&G > NO2–N > NO3–N > Zn. This study found 
the MBFFs of TSS > TP> COD at industrial catchment and 
these observations are similar as Lee et al. [24] in Korea 
and Li et al. [43] in China. Commercial catchment had 
exhibited the strongest mean MBFF for most of the storm-
water pollutants including BOD, COD, TSS, NO3–N and 
SRP. On the other hand, residential catchment showed the 
strongest mean MBFF for NH3–N and Zn while industrial 
catchment only exhibited the strongest mean MBFF for 
O&G, TP and NO2–N. Commercial catchments had larger 
MBFF for COD than that in the industrial catchment as 
similar with the findings by Lee et al. [24] and Li et al. 
[43]. The results indicated the different first flush magni-
tude of stormwater pollutants at urban land uses in the 
tropics. This implies that taking into account the targeted 
pollutant at particular land use should be considered in 
the effective BMP facilities design.

3.4. Treatment strategies for first flush runoff volume

The effectiveness factor was calculated at 5 runoff vol-
ume interval for selected water quality parameters at each 
study catchment and the results are plotted as shown in 
Fig. 3. The dashed line at 1.0 shows the expected value of 
E(v) for constant pollutant concentrations or no first flush 
effect. The highest median E(v) for stormwater quality 
parameters at residential, commercial and industrial catch-
ments are summarized in Table 4. Most of the stormwater 
quality parameters show E(v) greater than 1 at every run-
off volume interval except Zn in industrial catchment. Low 
E(v) for Zn may suggest that treating the first 50% of runoff 
volume is not more effective than treating the later part of 
runoff. Residential and commercial catchments both have 
the highest E(v) for NH3–N, SRP, TP and Zn at the first 10% 
of runoff volumes. It is readily apparent that treating these 
pollutants in the early runoff is several times more effec-
tive than treating the later runoff. It is seen that treating the 
first 10%–20% of runoff volume at commercial catchment 
can achieve the highest E(v)for TSS and NO3–N. Most of 
the stormwater quality parameters at industrial catchment 
could only be treated effectively at the first 30%–50% of 
runoff volumes. This could be due to the mass emission 
rate in the middle of storm event is greater than that at the 
beginning, in spite of lower concentrations in the middle of 
storm. The results suggested that BMPs removal efficiencies 

Table 3
Median MBFFn ratios for water quality parameters at each study site

MBFF BOD COD TSS O&G NO3–N

Res Com Ind Res Com Ind Res Com Ind Res Com Ind Res Com Ind

FF10 1.80 2.10 1.40 1.70 1.10 1.40 1.60 3.00 1.60 1.40 1.00 1.20 1.30 1.20 1.00
FF20 1.50 2.00 1.70 1.60 2.00 1.80 1.60 2.50 1.80 1.20 1.10 1.20 1.20 1.30 1.00
FF30 1.40 1.83 1.67 1.53 1.83 1.73 1.50 2.07 2.00 1.20 1.13 1.20 1.25 1.20 1.12
FF40 1.30 1.60 1.60 1.43 1.68 1.60 1.40 1.75 1.85 1.15 1.15 1.25 1.20 1.20 1.15
FF50 1.32 1.40 1.40 1.33 1.50 1.44 1.32 1.52 1.64 1.16 1.12 1.20 1.20 1.16 1.16
FF60 1.23 1.28 1.30 1.23 1.40 1.37 1.10 1.40 1.48 0.97 1.10 1.15 1.00 1.15 1.15
FF70 1.19 1.24 1.21 1.19 1.27 1.26 1.10 1.29 1.32 1.00 1.07 1.11 0.99 1.09 1.13
FF80 1.11 1.14 1.13 1.13 1.18 1.15 1.08 1.18 1.20 1.00 1.06 1.08 0.98 1.08 1.09
FF90 1.07 1.07 1.07 1.07 1.09 1.08 1.00 1.09 1.09 0.98 1.03 1.07 0.97 1.04 1.04
Mean 1.32 1.52 1.39 1.36 1.45 1.43 1.30 1.76 1.55 1.12 1.08 1.16 1.12 1.16 1.09

MBFF NH3-N NO2-N SRP TP Zn

Res Com Ind Res Com Ind Res Com Ind Res Com Ind Res Com Ind

FF10 2.80 2.60 1.80 1.00 1.20 1.10 1.45 3.00 1.20 1.80 1.60 1.60 1.40 1.20 1.00
FF20 2.15 2.00 1.90 1.20 1.15 1.20 1.28 2.20 1.80 1.58 1.40 1.70 1.30 1.15 1.00
FF30 1.85 1.67 1.87 1.27 1.17 1.10 1.22 1.77 1.67 1.43 1.23 1.47 1.23 1.07 1.00
FF40 1.59 1.50 1.60 1.18 1.15 1.13 1.16 1.50 1.65 1.35 1.20 1.45 1.18 1.01 1.00
FF50 1.46 1.36 1.46 1.12 1.12 1.12 1.12 1.40 1.60 1.32 1.12 1.40 1.14 1.00 1.00
FF60 1.22 1.32 1.33 0.93 1.10 1.12 0.93 1.30 1.43 1.10 1.12 1.25 0.95 1.00 1.00
FF70 1.14 1.24 1.20 0.97 1.07 1.10 0.95 1.19 1.30 1.06 1.11 1.20 0.97 1.00 1.00
FF80 1.09 1.15 1.12 0.98 1.05 1.11 0.96 1.13 1.15 1.00 1.08 1.13 0.95 1.00 1.01
FF90 1.01 1.07 1.07 0.98 1.02 1.07 0.95 1.08 1.09 0.97 1.07 1.08 0.94 1.00 1.01
Mean 1.59 1.55 1.48 1.07 1.11 1.12 1.11 1.62 1.43 1.29 1.21 1.36 1.12 1.05 1.00

FFn – Mass based first flush at n% of cumulative runoff volume.
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Fig. 3. Box plots of treatment effectiveness factor [E(v)] for various pollutants at the residential (RES), commercial (COM) and 
 industrial (IND) catchments.
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are higher in runoff with higher concentrations at the initial 
runoff volume. Strecker et al. [44] and Lau and Stenstrom 
[45] found that BMPs are generally more effective in treat-
ing higher concentration than lower concentration storm-
water runoffs (i.e., the removal efficiency of a catch basin 
insert or a sedimentation basin may be close to zero at low 
concentrations, and as high as 70% or more at high concen-
trations) [46,47]. These treatment strategies found in this 
study are basically determined based on normalized cumu-
lative pollutant mass and runoff volumes, thus eliminating 
the factors of catchment area and storm sizes. Therefore, it is 
possible to apply these treatment strategies to other urban 
catchments in the tropical region. The proposed treatment 
strategies will also maximize the benefits of the applied 
BMP as it will provide an estimation of potential treatment 
efficiencies for the BMP designs.

4. Conclusions

This study investigated the first flush magnitude of 
selected stormwater pollutants during 52 storm events at 
residential, commercial and industrial catchments. The 
transport mechanisms of urban stormwater pollutants 
and treatment strategies with respect to first flush pollut-
ant loading in tropical region have been identified. The 
outcomes of this study had provided an essential basis for 
designing the BMP facilities. The important findings are 
concluded as follows:

1. The relative first flush strength of stormwater pollut-
ants based on mass based first flush (MBFF) ratio at 
residential catchment is NH3–N > COD > BOD > TSS 
> TP > O&G = NO3–N = Zn > SRP > NO2–N, while it 
is TSS > SRP > NH3–N > BOD > COD > TP > NO3–N 
> O&G > Zn at the commercial catchment. Mean-
while, the relative first flush strength with regards to 
various pollutants at industrial catchment is TSS > 
NH3–N > SRP = COD > BOD > TP > O&G > NO2–N 
> NO3–N > Zn.

2. Residential and commercial catchments both have 
the highest treatment effectiveness factor for NH3–

N, SRP, TP and Zn at the first 10% of runoff volumes. 
Meanwhile, majority of the stormwater pollutants 
at industrial catchment could only be treated effec-
tively at the first 30%–50% of runoff volumes. The 
study found that treating NH3–N in the first 30% of 
stormwater runoff volume is likely three times more 
effective than treating the later part of runoff at resi-
dential, commercial and industrial catchments in the 
tropical region.
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