
1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2017.20897

80 (2017) 41–52
June

Geostatistical simulation and the health risk assessment of groundwater 
quality in south west of Iran

Mohamad Sakizadeh
Department of Environmental Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran, 
Tel./Fax: +98 2122970005 Ext. 2358; email: msakizadeh@gmail.com

Received 13 October 2016; Accepted 14 May 2017

a b s t r a c t
A study was conducted on the health risk of nitrate in groundwater resources (e.g., wells and springs) 
of an area in south west of Iran using two data records gathered in 2010 and 2011 years. It was 
concluded that at the moment, children are more exposed to higher than normal values of nitrate 
due to consumption of drinking water. In order to estimate the health risk of nitrate, a risk curve 
was constructed indicating that the number of residents exposed to groundwater with higher than 
45 mg/L nitrate level fluctuated between 7,868 and 15,024 people with a mean value of 11,213 people. 
Geostatistical simulation of nitrate was implemented by sequential Gaussian simulation (SGS) and 
collocated co-kriging simulation (CCS) of nitrate in 2011 using the data of 2010 as the secondary infor-
mation. It was concluded that uncertainty in predictions can be reduced using CCS; however, it is less 
exact than its SGS counterpart.
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1. Introduction

Groundwater pollution has become a widespread 
 problem especially in developing countries. Among 
 groundwater contaminants, nitrate is more common in 
areas in which agricultural activity is prevalent [1,2]. 
Nitrate does not bind to soil particles, so, it easily leaches 
through soil  column resulting in groundwater contamina-
tion [3]. The high solubility of this compound also contrib-
utes to its  accumulation in groundwater [4]. Groundwater 
vulnerability to contamination is usually assessed through 
monitoring of nitrate [5] and it is used as an indicator of 
diffuse sources of pollution [6]. Apart from this, it poses 
a high risk to consumers especially where groundwater 
is the main source of drinking water [5]. The well-known 
methaemoglobinaemia disease in infants is the direct 
consequence of consumption of water with high levels of 
nitrate [7]. Moreover, some other symptoms such as gas-
trointestinal illness and abdominal pain in elders have 
also been attributed to higher than threshold values of 
nitrate [8]. Natural sources of nitrate may release values 

up to 10 mg/L NO3
– in groundwater; however, levels higher 

than this have been attributed to anthropogenic sources for 
instance application of fertilizers in agricultural area and 
septic systems [9]. The health risk assessment of nitrate 
is therefore an important issue which should be consid-
ered by environmental managers. In this field, health risk 
assessment of exposure to nitrate has been considered in 
previous researches [10–13]. One of the objectives of the 
current study is to evaluate the health risk of exposure to 
nitrate by consumption of groundwater for adults and chil-
dren in an arid area in south west of Iran.

On the contrary, one of the methods for management of 
contaminated area is to distinguish regions with high risk of 
groundwater pollution. Maps of contaminated areas are a 
way to fulfil this goal. Until now, different geostatistical meth-
ods have been utilized for this purpose. The most applied 
one is the kriging technique [14], but, its shortcomings such 
as smoothing problem (e.g., over estimation of small values 
and underestimation of large values) [15] next to the incapa-
bility to account for incurred uncertainty in predictions have 
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refrained some of researches to use this method for spatial 
assessment of contaminated area. A practical alternative is to 
apply geostatistical simulation for this purpose [16]. One of 
the redeeming features of geostatistical techniques is uncer-
tainty assessment of predicted values through generation of 
different realizations [17]. Moreover, in geostatistical simula-
tions not only data values but spatial continuity of attributes 
(e.g., variogram and semivariograms) is also reproduced 
whereas, kriging methods are only capable to honor data 
values [18].

On the other hand, a negative side of common geostatis-
tical procedures is steady-state assumption as temporal data 
cannot be incorporated into analysis in usual methods because 
they have been designed for handling of spatial attributes 
[19]; however, most of water quality monitoring schemes pro-
duce spatial–temporal data. To use geostatistical methods for 
such systems, attributes have to be averaged over the entire 
time period resulting in loss of a great deal of valuable infor-
mation. Several practical alternatives have been proposed 
by researcher to handle this problem. One of the possible 
solutions rendered by Rouhani and Hall [20] involves three- 
dimensional variogram fitting assuming time as the third 
dimension. Another option for handling temporal data is to 
assume temporal data as random correlated functions and use 
linear model of coregionalization (LMC) [19,21,22] or bilinear 
model of coregionalization in case of multivariate time series 
[23]. In this respect, co-kriging has been applied in previous 
researches on temporal nitrate data to improve the estimation 
of undersampled times using data of more intensely sam-
pled time period [19]. In the latest research, uncertainty in 
the predictions of co-kriging has been significantly reduced 
compared with that of kriging by a data set of 47 samples to 
improve the predictions of undersampled data represented 
by 27 and 28 collected samples in other time periods.

In the current study, a new algorithm known as collo-
cated co-simulation will be utilized to reduce the uncertainty 
of predictions made by an undersampled nitrate data using 
a more densely sampled data record of the previous year. In 
addition, a method for the spatial health risk assessment of 
local residents that are exposed to nitrate contamination is 
also proposed and its uncertainty will be discussed as well. 
As far as the author knows, collocated co-simulation has not 
been used for assessment of contaminated area; however, 
there are few case studies in other fields of environmental sci-
ence. For instance, uncertainty in prediction of soil water con-
tent was compared through sequential Gaussian simulation 
(SGS) and collocated co-kriging simulation (CCS) algorithms 
in northern part of France [24]. It was concluded that in case 
of uncertainty, the predictions made by CCS procedure are 
more reliable than its SGS counterpart.

2. Materials and methods

2.1. Study area, field and laboratory analysis

The study region, with an area of about 1,100 km2, is 
located in south west of Iran and it is characterized by an 
arid area with hot summer and spring seasons. Andimeshk 
and Susa are the main residential areas along with some 
other growing rural areas in the region. The main land use is 
agriculture where it is one of the most important agricultural 

centers of Iran. The application of agricultural fertilizers, 
poorly regulated landfill disposal and septic tanks are the 
main factors contributed to contamination of groundwater in 
recent years [25]. Since drinking needs of local residents in 
villages is totally obtained through groundwater resources, 
so, maintaining the quality of groundwater is of paramount 
importance. The groundwater samples were collected during 
two water quality surveys conducted in 2010 (45 samples) 
and 2011 (21 samples) from wells and springs. Following 
acidification of samples by nitric acid, they were kept cool 
(e.g., at 4°C) and transported to laboratory for nitrate analysis 
by spectrophotometric technique [26]. Given in Fig. 1, a map 
of study area overlaid with values of nitrate in 2010 and 2011 
sampling results. In addition, descriptive statistics of nitrate 
values in 2010 and 2011 have been rendered in Table 1.

2.2. Health risk assessment of nitrate

The non-carcinogenic health risk of long-term exposure 
to nitrate was quantified in term of hazard quotient (HQ) by 
the well-known method developed by USEPA [27] and used 
by many other researchers [9,12] as follows:

HQ CDI
RfD

=
 

(1)

CDI C IR EF ED
BW AT

=
× × ×

×( )  
(2)

Fig. 1. A view of the study area with respect to the levels of 
nitrate in 2010 and 2011.

Table 1
Descriptive statistics of nitrate concentrations (mg/L) in 2010 
and 2011

20112010Year

2145Total samples
0.880.88Minimum

102.9658.96Maximum
27.4415.49Average
27.0514.00SDa

aStandard deviation.
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In which nitrate uptake through drinking sources is cal-
culated by CDI while, RfD is the reference dose of nitrate 
which is equal to 1.6 mg/kg/d. Apart from the concentration 
of nitrate which is shown by C (mg/L) in the above equation, 
IR is the intake rate (1 L/d for children and 2 L/d for adults) 
whereas, the exposure frequency (EF) was 365 (d/year). The 
exposure duration (ED) was 6 years for children and 30 years 
for adults, respectively. The body weight (BW) of children and 
adults were selected as 20 and 60 kg, respectively, and average 
time (AT) of exposure for adults and children were 10,950 and 
2,190 d, respectively. If the level of HQ exceeds one, it indi-
cates a higher than normal health risk to water consumer.

In this study, a new method of risk assessment known 
as risk curve was also utilized to estimate the number of 
 people exposed to higher than normal values of nitrate (e.g., 
45 mg/L) in the study area. For this purpose, in each reali-
zation obtained through SGS (refer to conditional SGS) and 
each node, the predicted value of nitrate was compared with 
that of cut-off value of 45 mg/L. If the value exceeded, the 
number of inhabitants exposed to this level was retained in 
a spatial map otherwise, the number of exposed inhabitants 
was equal to zero. In the next step, the results were multi-
plied by the unit surface of the simulation grid to obtain the 
risk curve. Three different quantiles (including 5, 50 and 95) 
were applied to report the spatial risk of calculations as well.

2.3. Conditional sequential Gaussian simulation

In the current research, as the distribution of sampling 
points was more concentrated in some parts of the study area, 
so, the number of samples was declustered through a moving 
window by which a weight was assigned to each sample [28]. 
This weight was then used for Gaussian anamorphosis mod-
eling by a mathematical function that transformed each vari-
able (Y) to normal score values with a normal distribution (Z) 
(e.g., Z = Φ (Y)). This is accomplished by fitting a polynomial 
expansion [29] through the following equation:

Φ ΣΨ( ) ( )Y H Y= i i  (3)

where Hi is a Hermite polynomial. The back transformation to 
original variable is then obtained by the inverse of this function 
(e.g., Y = Φ–1 (Z)). More details about this modeling procedure 
can be found in Castrignanò et al. [28]. The variogram model 
was then fitted to the experimental semivariogram of normal 
score values. A simulation matrix comprised of 65 × 145 grids 
and a cell size of 1 km2 was superimposed on the sampling sta-
tions to save the results. Each realization of simulated values 
was generated by defining a random path through grid nodes 
conditional on the original data and previously simulated 
values. This process was repeated until all of the nodes were 
visited. The simulated values were then converted to original 
space by the inverse of Gaussian anamorphosis function [30].

2.4. Conditional collocated co-simulation

Despite the SGS, in CCS the primary variable (nitrate of 
2011) was simulated conditional to the both primary and sec-
ondary (nitrate 2010) information. The algorithm is similar 
to that of SGS except that co-kriging method is utilized to 

compensate the problem of insufficient data provided that 
the secondary data is more densely sampled than that of 
the first one and has a high spatial correlation with the first 
attribute. Collocated co-kriging has the redeeming feature of 
being more exact and faster than that of simple co-kriging 
as well [31,32]. The other characteristics of CCS are the same 
as SGS and are not mentioned here for the sake of brevity. 
The advantage of collocated co-kriging over that of simple 
co-kriging is that, in this method, the estimations are per-
formed without the need of fitting a LMC instead, the univar-
iate variogram and collocated correlation between the first 
and secondary data are utilized for this purpose [33].

2.5. Land use map

To link agricultural and residential characteristics (e.g., 
the main contributing factors of nitrate contamination) of the 
study area to the levels of nitrate recorded in the region, it 
was decided to prepare a land use map using remote sensing 
images. For this purpose, two cloud free Landsat TM images 
(path = 166, row = 37 and 38) recorded in the same time in 
the July of 2010 were acquired. These images were obtained at 
level 1 T, meaning that they were geometrically corrected and 
orthorectified; however, the failure of scan line corrector intro-
duced major striping in imagery which was corrected by gap-
fill tool using a triangulation method. The main preprocessing 
step included conversion of digital numbers to radiance using 
gain and offset values for each band followed by the calibration 
of the image to top of the atmosphere reflectance using other 
calibration parameters (e.g., solar irradiance, solar elevation, 
acquisition time). As has been concluded in earlier studies, 
atmospheric correction is unnecessary in many applications 
involving land use classification and change detection as long 
as the training and classified data are in the same relative scale 
[34] while pansharpening plays a much more role than atmo-
spheric correction [35]. Thus, the images were pansharpened 
using panchromatic band of the Landsat TM image through 
which the resolution was increased to 15 m while no atmo-
spheric correction was applied on the images. Image mosa-
icing and extraction of the region of interest were the other 
preprocessings applied on the images. The classification of the 
image was implemented by overlaying seven training samples 
on the image represented as water bodies, vegetation, bare 
soil, residential area, mountainous area, forest and agriculture. 
In addition, separate sampling points were collected from the 
study area for the validation of the derived classification maps. 
The spectral separability of the training samples was assessed 
before classification to consider the extent of their statistical 
separability. The values fluctuate between 0 and 2 where val-
ues greater than 1.9 indicate good separability of pairs. In this 
study, the values ranged from 1.88 to 2 indicating reasonable 
separability of defined classes. Following the selection of train-
ing and validation samples, a supervised classification method 
using maximum likelihood technique [36] was carried out. The 
overall accuracy and kappa coefficient were used as criteria to 
assess the accuracy of the resultant classification image [37].

3. Results and discussion

Descriptive statistics associated with calculated HQs have 
been rendered in Table 2. Considering this table, the HQs 



M. Sakizadeh / Desalination and Water Treatment 80 (2017) 41–5244

varied from 0.01 to 1.2 for adults in 2010, while it fluctuated 
between 0.02 and 1.8 at the same time period for children in 
the study area. On the contrary, local residents experienced 
a higher risk based on the results of HQs worked out in 2011 
in the region. HQs changed from 0.01 to 2.1 for adults and 
from 0.02 to 3.1 for children, respectively. Adults were also 
exposed to a lower risk based on the mean values obtained 
for them which were in turn 3.2 and 0.57 in 2010 and 2011, 
respectively, whereas, the mean values were 0.47 and 0.84 for 
children in 2010 and 2011, respectively.

It can be concluded that on average the health risk of 
nitrate in groundwater for local residents was not higher than 
the cut-off value of one; however, in some parts of the region 
both children and adults are exposed to higher than thresh-
old value which may have some ramifications for them in 
long-term according to the maximum values obtained in this 
study. It should be noted that only 13 sampling stations collo-
cated between 2010 and 2011, so, it cannot be concluded that 
the health risk has augmented during this short-time period 
but as a whole, in the area that was considered in 2011, peo-
ple were exposed to a higher risk than that of 2010.

The spatial maps of HQs in 2010 were produced through 
calculation of experimental variograms for adults and chil-
dren. Experimental isotropic variograms (to simplify the 
problem) were drawn using a lag value of 3,275 m over a dis-
tance of 10 lags for each variogram. Variogram models were 
then fitted to the experimental variograms as have been illus-
trated in Fig. 2.

The best fitted variogram was a cubic model and com-
prised of a range of 8,066.29 m and a sill of 0.07. Since the spa-
tial continuity of HQs for both children and adults were the 
same, so, only the experimental variogram and the model fit-
ted to the variogram of adults have been given in Fig. 2. HQs 
were then converted to normal score values using Gaussian 
anamorphosis functions, given in Fig. 3 as an example for the 
HQ of adults, followed by variogram fitting to normal score 
values.

The simulation of normal score values of HQs was imple-
mented by SGS method. The quality of simulations was tested 
by reproduction of fitted variograms vs. original values as 
well as reproduction of data histograms [38]. Variograms of 
20 realizations were overlaid with the variogram of HQs for 
adults and children, indicating that, the simulation method 
has been able to successfully reproduce the spatial continuity 
of original data (Fig. 4). The histogram of realizations #1, #5, 

#10, #15 and #20 was selected to examine the quality of simu-
lation against that of original values (Fig. 5).

It is obvious that there is no smoothing problem asso-
ciated with generated realizations since the minimum and 
maximum values have been exactly honored because during 

Table 2
Descriptive statistics of calculated HQs in groundwater samples

20112010
HQ (children)HQ (adults)HQ (children)HQ (adults)

0.0268220.0183330.0268220.018333Minimum
3.1381642.1451.7970681.228333Maximum
0.8363170.571640.4719840.322611Average
0.8243390.5634520.426720.291672SDa

21214545Number of samples
7463 Number exceeding thresholdb

aStandard deviation.
bThreshold value is one.

Fig. 2. Isotropic model fitted to experimental semivariogram of 
HQs for adults.

Fig. 3. An example of Gaussian anamorphosis function applied 
for conversion of HQs to normal score values.
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Fig. 4. Variograms of 20 realization superimposed on the variograms of HQs for adults (a) and children (b).

Fig. 5. Histogram of original adult HQ (a) vs. that of simulated HQs for realizations #1 (b), #5 (c), #10 (d), #15 (e) and #20 (f).
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conditional simulation, the estimated values are conditional 
on original data as well as all previously simulated values 
[39]. Among the considered realizations, the best simu-
lated histogram was related to simulation #1. As a whole, 
the data distribution has also been reproduced quit well. 
The mean and standard deviation of realizations for HQ of 
adults and children have been illustrated in Figs. 6(a) and (b). 
Considering the mean of realizations, the highest values of 
HQs are in the central part of the study area and have been 
highlighted using red colors. More specifically, the highest 
values are concentrated in Shahrak Azadi, Koy Lor and Koy 
Shohada districts.

A previous study on the vulnerability of groundwater 
to contamination in Andimeshk part of the study area using 
DRASTIC model (regarding parameters such as depth to 

water table, topography, aquifer media, recharge, vadose 
zone, soil media) concluded that northern part of Andimeshk 
has a lower vulnerability to contamination compared with that 
of southern part [40] which is in agreement with the results of 
nitrate analysis in this study in which the highest nitrate val-
ues were found in the southern part of Andimeshk (Fig. 6).

As concluded earlier, children are more exposed to 
higher than normal values of HQs. The map of standard 
deviation indicates the uncertainty in predictions made 
through the mean of realizations. It is clear that there was 
a high uncertainty associated with the predictions in some 
areas in which the mean of realization was high as well. In 
order to reduce the uncertainty in the predictions, other algo-
rithm was applied in this study and will be discussed later in 
the rest of this paper.

Fig. 6. Mean of realizations for simulated values of HQs for adults (a) and children (b) along with the standard deviation of simulated 
values for adults (c) and children (d).
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The risk assessment was completed through genera-
tion of a risk curve in which the number or residents that 
are exposed to higher than threshold values of nitrate (e.g.,  
45 mg/L in this case) were estimated using the method 
explained earlier. For this purpose, a total number of 258 vil-
lages with a population of 134,817 people have been consid-
ered. The risk curve has been rendered in Fig. 7. With respect 
to this figure, the number of inhabitants exposed to groundwa-
ter with higher than 45 mg/L nitrate fluctuated between 7,868 
and 15,024 people with a mean value of 11,213 people. The 5th, 
50th and 90th quantiles of risk curves were 14,755, 10,984 and 
8,331 people, respectively. In other words, in the worst case, 
about 11% of people and in the best case, about 6% of inhabi-
tants are exposed to higher than normal values of nitrate.

As concluded earlier, there was a high uncertainty asso-
ciated with the predicted values in areas in which the high-
est mean of realizations had been obtained. In this respect, 
Goovaerts [41] indicated that, the prediction errors can be 
reduced if we account for a second ancillary data as long as 
the correlation coefficients between the first and second data 
record is higher than 0.75. In the current study, the spatial cor-
relation between the nitrate values in 2010 and 2011 in collo-
cated stations (e.g., 13 out of 21 stations in 2011) was equal 
to 0.8, so, it was assumed that the prediction errors of nitrate 
in undersampled time frame in 2011 can be decreased by 
including the more comprehensive sampled data of 2010 in 
predictions using collocated co-simulation algorithm. To fulfil 
this goal, the experimental variogram of data of 2011 was first 
constructed. The variogram model was fitted through a cubic 
model with a range of 13,869.65 m and a sill of 526.5 (Fig. 8). 
Then the data were converted to normal score values by ana-
morphosis modeling and following fitting of variogram mod-
els they were simulated using both SGS and CCS algorithms.

The success of predictions was assessed through repro-
duction of experimental variograms, honoring data values 
and Quantile-Quantile (QQ) plots of predicted realizations 
selected at random vs. that of original attribute (e.g., nitrate 
of 2011). The reproduction of variogram was tested by over-
lapping the variograms of 20 realizations against that of orig-
inal variogram for SGS and CCS algorithms (Fig. 9).

As has been shown in Fig. 9, the variogram of data was 
well reproduced through SGS algorithm, whereas, CCS has 

slightly underestimated the variogram of realizations. The 
histogram of data was compared with that of realizations 
generated by SGS and CCS algorithms (Fig. 10) as another cri-
terion for testing the success of simulations. For this purpose, 
realizations #1, #5, #10, #15 and #20 were used. As a whole, 

Fig. 7. Risk curve of population exposure to higher than standard 
levels of nitrate.

Fig. 8. The model fitted to experimental variogram of nitrate in 
2011.

Fig. 9. Experimental variograms of 20 realizations overlaid with 
that of original variograms for SGS and CCS.
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Fig. 10. Histogram of original nitrate in 2011 (a) against the simulated values of nitrate for realizations #1 (b), #5 (c), #10 (d), #15 (e) and 
#20 (f) by CCS algorithm and the simulated values of nitrate for realizations #1 (g), #5 (h), #10 (i), #15 (j) and #20 (k) by SGS algorithm.
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it is clear that realizations produced by SGS have underesti-
mated the mean and standard deviation of data while it has 
been overestimated through CCS algorithm.

In QQ plots if the quantiles of two populations match 
each other, the distribution of data would lay along the 
bisector (e.g., X = Y) line. Regarding the obtained QQ plots, 
it can be concluded that data values have deviated from the 
bisector line in central and high levels in SGS and also low 
levels in CCS indicating that SGS has better reproduced the 
data distribution anyhow (Fig. 11). The standard deviation 
of realizations was generated through both SGS and CCS to 
estimate the uncertainty in prediction made by each method 
(Fig. 12).

It should be noted that in CCS, only collocated second-
ary data are retained to avoid possible instability in predic-
tions caused by redundant secondary data [24]. Taking this 
note into account, the uncertainty in predictions of CCS is 
significantly lower than that of SGS due to extra information 
of secondary data (e.g., nitrate of 2010). Thereby, the greatest 
reduction in the estimated standard deviation was located 
in area with low density of data. Overall, when it comes to 
uncertainty in spatial predictions, CCS outperforms that of 
SGS; however, SGS is roughly more accurate than its CCS 
counterpart in the reproduction of data and their spatial 
continuity. The results of this paper regarding the reduction 
in uncertainty of predictions confirm that of earlier studies 
[24,31]. In this field, Fegh et al. [31] compared SGS and CCS 
for the prediction of permeability of a gas reservoir in Iran 

and concluded that SGS retains original data distribution 
and, it is more noisy and heterogeneous than CCS which 
is in agreement with our results. Moreover, Afshari and 
Shadizadeh [32] emphasized the heterogeneity and exactness 
property of SGS and the fact that SGS is capable to reproduce 
the data distribution; however, there was some uncertainty 
in interpretation of the generated results. In contrast, the ran-
domness of CCS was less than that of SGS.

The land use map produced through imagery analy-
sis has been illustrated in Fig. 13. The overall accuracy of 

Fig. 11. QQ plot of simulated values using SGS and CCS against 
that of original nitrate.

Fig. 12. Standard deviation of simulated values of nitrate 
generated by SGS (a) and CCS (b).
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Andimeshk 

Susa 

Fig. 13. Land use map of the study area produced by Landsat TM images.
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classification results is obtained through division of diagonal 
elements of confusion matrix (e.g., correctly classified pix-
els) by the total number of pixels which is 97.07 in this case 
implying a high level of total accuracy. On the contrary, kappa 
coefficient is a measure of how the classification results com-
pare with values assigned by chance ranging from 0 to 1. The 
resultant kappa coefficient was 0.83 confirming the accuracy 
of the produced land use map. In this case, the main misclas-
sification results belonged to agriculture and bare soil classes 
with commission (e.g., overestimation) values of 18.15% and 
70.48% while the omission (e.g., underestimation) values of 
these classes were low and equal to 2.98% and 4.00%, respec-
tively. Some of the agricultural fields in the area are not cul-
tivated during July, so, it may be a contributing factor for the 
confusion between agricultural areas and bare soil. The high-
est recorded omission value was 14.58% and was associated 
with water class.

Comparison between the produced land use map and the 
levels of nitrate recorded between 2010 and 2011 shows that 
the contribution of residential areas (especially Andimeshk 
as a major city in the region) has been significant; however, 
agricultural fields have also played a noticeable role in this 
respect. There are some high values of nitrate in northern 
part of the study area which can be attributed to some miss-
ing sources such as geological sources that has been recog-
nized as a source of nitrate contamination in other published 
literatures [42,43]. Contribution of bedrock nitrogen to lev-
els of nitrate in surface and groundwater is a phenomenon 
which has a great contribution to the total burden of nitrate 
in some areas. In this field, sedimentary rocks, among other 
geological formations, include nitrogen as a residual organic 
matter or as ammonium minerals [44] and are prevalent in 
the study region, so, the high values of nitrate in this part can 
possibly be attributed to the geological formations.

4. Conclusion

Uncertainty assessment of simulated values of nitrate 
through two geostatistical simulation methods namely SGS 
and CCS was assessed in this study. In summary, when it 
comes to uncertainty in spatial predictions, CCS outper-
forms that of SGS; however, SGS is roughly more accurate 
than its CCS counterpart in reproduction of data and their 
spatial continuity. The uncertainty in predictions of CCS was 
significantly lower than that of SGS due to extra informa-
tion of secondary data (e.g., nitrate of 2010), so, the greatest 
reduction in the estimated standard deviation of predictions 
was located in the area with low density of data. One of the 
shortcomings of this research was related to low number of 
sampling stations in comparison with the area of the study; 
however, in CCS only the collocated sampling stations are 
retained to obviate unwanted uncertainty that may compli-
cate the final analysis of simulation results. Regarding the 
high cost of water quality monitoring, these simulation tech-
niques can be utilized to compensate for the low data records 
in area in which there is not enough data to construct a map 
of contaminated area provided that earlier data set is avail-
able to be used as ancillary information.

Considering the land use map of the study area produced 
by remote sensing imagery, it was concluded that besides 
residential area and agricultural fields (as the main sources 

of nitrate pollution) some geological formations especially 
in northern part of the region have also contributed to the 
values of nitrate in the groundwater.
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