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a b s t r a c t

Frequent disposal of effluent in rivers or streams in vicinity where the inhabitants rely majorly 
on it for domestic and agricultural purposes is dangerous, and that makes it relevant for precise 
modelling of dispersion coefficient or dispersion number. This will reduce under-estimation and 
over-estimation of this parameter as well as reduce frequent pollution assessment which have 
proven not to be sustainable. However, obtaining a model that will include all required parameter 
is still in process. This study considered the effect of varying roughness—which is the true nature 
of streams and rivers and its effects on the estimation of dispersion coefficient. It revealed that when 
varying roughness is increased by 1-unit, there will be an increase in dispersion number by 0.693 
(t-statistics = 4.278; p < 0.05. In addition, an increase in 1-unit in the dispersion number value will 
require a decrease of both DO (t – ratio = –7.802; p < 0.05) and velocity (t – ratio = –4.992; p < 0.05) 
by 0.316 and 0.687 respectively. Sensitivity analysis further showed that roughness (K), dissolved 
oxygen (DO) are pertinent variables to be considered when dispersion co-efficient is to be modelled 
and have been previously left out. Furthermore, the ECM model generated, with R2 = 0.98, prob(F–
statistics) < 0.005 and Durbin-Watson t-statistics of 2.107 respectively shows statistical significance of 
the model. Hence, it is suggested that varying roughness or roughness and DO should be introduced 
in dispersion coefficient or dispersion number models to improve its accuracy.

Keywords:  Dispersion number; Dissolved Oxygen; Error correction method (ECM); Pollution; Tracer 
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1. Introduction

Surface water—streams and rivers, are susceptible to 
constant pollution if not controlled as it is perceived by 
some people as a conduit for the transport of waste, and 
that it cleanses itself as dilution and dispersion takes place 
downstream. However, most people are ignorant on the 
possible harm these pollutants present in the river can 
cause to the users downstream as it is utilized for irrigation 
and domestic purpose among other uses [1]. This indicates 
that obtaining water of good quality for our basic and daily 
needs could be difficult thereby making water an at-risk 
commodity [2]. To circumvent this, there is a need for river 
or stream monitoring to help reduce local pollution. This 

will help to quickly identify if there are any significant 
changes in the current river ecosystem characteristics 
when threatened adversely, also to improve the general 
health status of the river and to come up with auspicious 
policies for proper river management—as in the case of 
the Water Framework Directive in 2000 [3]. For laboratory 
[4,5] or field study [3,6,7] purposes, trace studies (TS) 
using common salt as pollutants have been relatively and 
effectively used to mimic its transport in streams or rivers. 
Generally, it is understood that when tracers—irrespective 
of the type are released, the tracer is first diluted, 
thereafter, mixing occurring within the length and breadth 
of the channel or river and finally, the tracer transport 
process is completed by longitudinal dispersion [3,8,9]. 
The proper measurement of this parameter will provide a 
proper understanding—estimating and predicting, in the 
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transport pattern of pollutants [10,11], intake and outfall 
structures designs [12], improve general water quality and 
pollution control related issues [1]. However, to achieved 
this, there is a need to engage in a tool that can accurately 
measure and predict the concentration and spread of 
pollutants [9]. This maybe involving, even as there exist 
quite a number of models for this purpose yet significant 
differences among the various results obtained [13–15]. 
Likewise, this disparity may be due to the inability of 
the models to capture all the model parameters in the 
existing equations found in the literature and among 
other reason yet unknown. But if the parameters in the 
model are carefully selected, it could reduce the time 
and cost of sampling [4,16,17], erase to a large extent, 
overestimation and underestimation of dispersion 
coefficient and minimise the rigorous process associated 
with practical experimental processes [18]. On the other 
hand, various factors have been reported in the literature 
to have influence on the dispersion coefficient, and which 
includes but not limited to pond walls characteristics, the 
value of Reynolds number, velocity of the flowing liquid 
[19] and aspect ratio [5,20]. In his study, it showed that 
the presence of roughness in channels could have effect on 
the dispersion coefficient value. This was expressed using 
a simple regression model. However, in the study, the 
values of R2 reported showed the overall performance of 
the model and not the individual contribution of the model 
parameters. This may be important as some parameters 
may not be good contributors or statistically significant. 
In addition, the multiple regression used was not able to 
show the contribution of individual parameters present in 
the model. Also, the roughness expressed was not varied as 
that may not represent the real characteristics of a natural 
river or stream conditions which may affect the decisions 
of the model generated and limiting its applicability in 
that regard.

In the literature, the importance and type of sensitivity 
analysis used have been well reported [21–25] and it 
is necessary therefore, that performing it in a model 
generated is necessary. Therefore, the aim of this study 
is to model the effect of varying roughness on dispersion 
coefficient and perform a sensitivity analysis on the model 
parameters using Error Correction Method (ECM) as a 
statistical approach. Experimental data are likely to vary 
because of equipment and environmental conditions 
among others. The use of ECM technique will help take 
care of such variability. In addition, time series data and 
variables need to be tested for both cointegration and 
stationarity with the unit root test and cointegration test 
for short-run and long-run stability of the coefficients 
of the variables [26]. The stationarity of the variables is 
achieved by using augmented dickey fuller (ADF) while 
cointegration is achieved using the CUSUM and CUSUM 
squared test.

2. Data analysis

The arrangement of the dataset used for sensitivity and 
modelling was achieved using Microsoft excel 2013. Also, 
eViews version 8.0 was used to conduct the descriptive 
statistics, modelling and sensitivity analysis. Jarque-bera 

test was used to determine skewness of the data, which is 
a measure of the deviation of datasets from their respective 
distribution [27]. In addition, augmented dicky fuller (ADF) 
test was employed for stationarity nature of the dataset. 
This tells us at what point are the variables simultaneously 
stationary and if the time series variables typical have a 
drift or deviation. Cumulative sum of recursive residual 
(CUSUM) and cumulative sum of squares of recursive 
residual (CUSUM squared) test was used to determine 
the structural stability of the coefficients of the variables. 
This structural stability is used to determine if a break 
will occur during the short and long run behaviour of 
the model to be generated. Furthermore, the Johansen 
cointegration test was also employed to ascertain the long 
run relationship of all the explanatory variables used in 
the development of the model while HAC (Newey-West) 
and Durbin Watson (DW) statistic was used to control for 
heteroscedasticity and auto-correlation respectively of the 
generated model.

3. Materials and methods

3.1. Pebbles as a rough material

Varying sizes of pebbles were sourced locally in 
Ota, Ogun State Nigeria. The pebbles were gathered and 
collected in a black polythene bags and transported to the 
Geotechnical laboratory in Covenant University where it 
was washed thrice with distilled water to expunged dirt’s 
serving as contaminants. In addition, the pebbles were air 
dried and sieved into various particles size. The sieved 
pebbles were glued on a thick hard material and attached 
to the channel walls and the roughness coefficient were 
obtained using Eqs. (1) and (2), respectively [5]:
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2
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3.2. Experimental measurement process for Tracer studies (TS)
and dissolved oxygen (DO) measurements

Tracer Studies was achieved using common salt as 
the tracer. It is very affordable and non-toxic. This tracer 
act as a pollutant which is discharged into water bodies 
intentionally or accidentally, and the TS procedure used: 
variable distance-variable time method, is captured 
extensively in the literature by [4] and [1]. 0.03 kg of the 
common salt was initially mixed in 100 ml of water in a 
beaker and then turned into a volumetric flask for proper 
mixing and dilution. Furthermore, DO measurements 
were taken with Hanna Instrument Edge multi-meter 
(HI 2030) using a sensitive probe attached to the portable 
meter. Dissolved Oxygen measurement were monitored 
at the inlet and outlet respectively of the laboratory 
channel at the same time and the difference was used 
for modelling. Finally, regular probe calibration using 
the 1413 µS/cm and 12.33 mS/cm calibration standard 



I.T. Tenebe et al. / Desalination and Water Treatment 87 (2017) 209–215 211

solution manufactured by Hanna instruments was used 
for data accuracy.

3.3. Laboratory set-up

This experiment was carried out in the hydraulics 
laboratory situated in the Department of Civil Engineering, 
Covenant University, Ota, Ogun State. A flow channel 
with dimensions 4.0 m x 0.15 m x 0.175 m was used. 
The channel was fed with water from a source and was 
regulated manually to the desired flow conditions. The 
velocity of flow was obtained using a velocity meter and 
was altered three times. The side walls of the channel were 
coated with roughness of different sizes and arrangement 
(Table 1 and Plate 1) and clipped to make the materials 
stationary. The variables which were measured included: 
dispersion number, DO, velocity, depth—this was used 
to obtain Froude number and roughness coefficients—all 
measurement were obtained in duplicates for accuracy of 
datasets.

4. Results and discussion

Table 2 shows the descriptive statistics carried out 
on datasets. It showed that Dispersion number (δ), 
dissolved oxygen (DO), velocity (V), Froude number (Fr), 
Roughness (K) with mean values of 0.107 ± 0.05, 0.466 ± 
0.065 mg/L, 0.241 ± 0.210 m/s, 0.025 ± 0.005 and 0.148 ± 
0.119, respectively. Also, the normality of the variables—
which shows the degree of deviation of the datasets, was 
conducted using Jarque-Bera test. The test indicated that 
all the dataset or observation with the exception of Froude 
number is symmetrical.

In addition, to determine inter-variable relationship 
and to identify any multi-collinear dataset that exist 
among the variables, correlation matrix was conducted. 
Table 3 shows that there is a strong positive relationship 
between velocity–roughness, (r = 0.875) while a strong 
relationship exist between Froude number–velocity and 
Froude number-roughness (k) having values of r = 0.69 
and –0.94 respectively. For velocity-roughness relation, it 
is observed that as the roughness of the particle increased, 

Table 1
Pebble sizes and their roughness coefficients

Sizes (mm) K

Control 0.9312
6.3 1.0768
9.5 1.1064
12.5 1.1233
13.2 1.1167
13.2, 12.5, 9.5 1.1685
12.5, 13.2, 9.5 1.2024
9.5, 12.5, 6.3 1.1873
6.3, 9.5, 12.5 1.182

Table 2
Descriptive statistics of the explanatory variables

Dispersion number (δ) Roughness (K) Froude number (Fr) Dissolved oxygen (DO) Velocity (V)

Mean 0.107 1.147 0.025 0.241 0.466
Median 0.117 1.123 0.026 0.210 0.460
Maximum 0.228 1.378 0.042 0.850 0.550
Minimum 0.007 0.931 0.017 –0.120 0.390
Std. Dev. 0.052 0.119 0.005 0.211 0.066
Skewness –0.066 0.139 1.007 0.810 0.167
Kurtosis 2.770 2.005 4.505 3.100 1.564
Jarque-Bera 0.073 1.112 6.586 3.767 2.265
Probability 0.964 0.573 0.037 0.152 0.322
Sum 2.675 28.680 0.627 6.020 11.660
Sum Sq. Dev. 0.064 0.342 0.001 1.066 0.103
Observations 25 25 25 25 25

*null hypothesis: reject when p < 0.05 that the variable is normally distributed.

Fig. 1. Distribution of pebbles of varying sizes in the early ex-
perimental stage.
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the velocity increased by 0.875. This value also reveals 
a strong presence of multi-collinearity in the model to be 
generated. Multi-collinearity implies that there is an exact 
relationship between parameters in our model i.e., since 
the inter-variable relationship is above 0.8, which reduces 
the trust placed on the R2 values obtained from a typical 
regression model. In the same vein, a similar conclusion can 
be drawn from the Froude number-roughness relationship, 
except that the relationship is inverse.

From Table 5, it revealed that the relationship between 
dispersion number and velocity is strong and negative. This 
corroborates with the findings of [5] and [24] which also 
revealed an inverse relationship between the two parameter, 
i.e., an increase in velocity will bring about a decrease in 
dispersion coefficient. For example, when there is high 
velocity-peculiar in elevated gradient channels, the spread 

of pollutant will be reduced thereby producing pollutants 
of high concentration, which imply that the pollutants 
may not be degraded. Specifically, from this study, a 1-unit 
increase in velocity will result to a reduction in Dispersion 
coefficient by 0.687-unit. Likewise, this is supported by 
the t-statistics (t = –4.992; p < 0.05) which affirms that 
velocity is an important variable to be considered when 
issues on dispersion coefficient or dispersion number is 
to be modelled. The importance of velocity as a parameter 
to be measured has also been incorporated properly in 
the various method: variable distance constant time and 
variable distance variable time, used during tracer studies 
whereby tracer data are collected at different distances along 
the channel or river reach rather than only at the outlet [1].

Also, the co-efficient of Froude number was 2.53. 
This implies that there is a direct strong relationship 

Table 3
Correlation statistics of all variables

Velocity (V) Roughness (K) Froude number (Fr) Dissolved oxygen (DO) Dispersion number (d)

Velocity (V) 1.000 0.876 –0.687 –0.093 0.248
Roughness (K) 0.876 1.000 –0.942 0.113 0.170
Froude (Fr) –0.687 –0.942 1.000 –0.251 –0.092
Dissolved Oxygen (DO) –0.093 0.113 –0.251 1.000 –0.367

Dispersion number (δ) 0.248 0.170 –0.092 –0.367 1.000

Source: Author’s computation achieved with e-Views 8.0 statistical software.

Table 4
Augmented Dickey Fuller summary test statistics of all variables

Variables ADF test statistics ADF critical values Remark Order of integration

1% level 5% level

Dispersion –7.619 –3.753 –2.998 Stationary I(1)
Velocity –4.636 –3.753 –2.998 Stationary I(1)
Froude –6.004 –3.753 –2.998 Stationary I(1)
DDO –9.733 –3.753 –2.998 Stationary I(1)
DK –5.142 –3.753 –2.998 Stationary I(1)

Source: Author’s computation achieved with e-Views 8.0 statistical software.

Table 5
Model and sensitivity analysis using error correction method dependent variable: dispersion number

Variable Coefficients Standard 
error (S.E)

t-ratio Probability R2 Adj. R2 Durbin-Watson 
stat(DW)

C –0.036 0.004 –8.729 0.000
VELOCITY –0.687 0.138 –4.992 0.000 0.977 0.960 2.106729
FROUDE 2.530 4.896 0.517 0.618
DDO –0.316 0.040 –7.802 0.000
DK 0.694 0.162 4.278 0.002
ECM –0.465 0.060 –7.793 0.000
AR(7) –0.430 0.050 –8.679 0.000
MA(6) 0.946 0.030 32.664 0.000

Source: Author’s computation achieved with e-Views 8.0 statistical software.
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between Froude and dispersion number. For every 
1-unit increase in Froude number, there will be a 2.79-
unit increase in dispersion coefficient. However, from the 
sensitivity analysis conducted with the aid of the t-value 
(t = –0.516; p > 0.05), it reveals that Froude number is not 
an important variable to be considered when modelling 
for dispersion co-efficient. On the other hand, with 
varying wall roughness, the co-efficient is 0.694. This 
connotes that there exists a positive relationship between 
dispersion coefficient and varying wall roughness. This 
may be due to the delay of tracers caused by roughness 
effect. When pollutants are retarded or stationary, the 
particles are held bound thereby promoting its spread. 
This is also in line with the study of [5], even though in 
that study the roughness assumptions irrespective of the 
materials considered during the experimental process 
were homogeneous. Furthermore, this study revealed that 
for every 1-unit decrease in wall roughness, there will 
be a corresponding decrease in the value of dispersion 
number by 0.694. Additionally, the t-ratio (t = –4.278; p < 
0.05) further indicates the importance of the parameter. It 
reveals that there is a need to include varying roughness as 
a pertinent variable when addressing dispersion number 
or its coefficient when modelling in channels and rivers. 
For dissolved oxygen (DO) as a variable, the co-efficient 
obtained is, –0.3156. This means that there is a low negative 
relationship between DO and dispersion co-efficient. 
Specifically, a 1-unit increase in dispersion co-efficient will 
cause DO to reduce by 0.3156. For instance, when pollutant 
are properly disperse, degradation by microorganism will 
increase owing to increase in surface area of pollutant, 
which in turn affect DO value. Furthermore, a decrease in 
the DO in streams or rivers may also result when there 
is high organic content, and this prevents oxygen-water 
interaction and decreases micro-organism degradation.

In the same vein, the t-statistics (t = –7.802; p < 
0.05) reveals that DO is a very important variable to be 
considered also during dispersion modelling. To mention, 
the model was adjusted with the error correction method 
(ECM), auto-regression (AR) and moving average (MA) 
catering for data heteroscedasticity. From the analysis, 
the ECM reveals that a period lag in ECM, i.e., (ECM (–1)) 
from the model generated shows a correction of short-run 
discrepancies of 46.5%. This is very significant as revealed 
by the t-ratio (t = –7.793; p < 0.05) . Interestingly, the R2 
= 0.98 and the probability-F statistics is 0.00001 which is 
less than 0.05. This implies that the combined influence of 
the variables featured in the model regarding predicting 
of dispersion co-efficient is well explained by the model.

The Durbin-Watson statistics reveals the auto-
correlation of the error term, and it exists when its value 
lies outside the limits 1.8–2.2. Therefore, from the analysis, 
the Durbin-Watson statistics was found to be 2.1 which is 
an indication of the absence of auto correlation, and giving 
further confidence to the regression model generated. 
Likewise, to ascertain the stability of the variables, 
parameter stability test was conducted (see Figs. 2 and 3) 
using the CUSUM and the CUSUM square test. The graphs 
reveal that over time, the co-efficient used as well as the 
parameters are stable. This is concluded as the blue lines 
remained within the boundaries of the red lines thereby 
supporting the validity of the coefficients-parameter 

relationship. The equation representing the variables used 
in the analyses is shown in Eq. (3):
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where i = 1, 2, 3…n. Also,

βo = constant or intercept
β1i = coefficient of velocity (m/s)
β2i = coefficient of Frounde number
β3i = coefficient of DO (mg/l)
β4i = coefficient of roughness (K)

Also, cointegration test of the dataset was conducted 
using the Johansen cointegration test to determine the long 
run relationship. It indicated that there are 5 cointegration 
variables significant at the 1% level, therefore, the variables 
over time will not generate contrary interpretation. This is 
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shown in Table 6a and 6b. Lastly, heteroscedasticity and 
auto-correlation test was carried out using the Breusch-
Pagan-Godfrey (Table 8) and Breusch-Godfrey Serial 
Correlation LM test (Table 7). The value from both test 

showed that there are no heteroscedasticity and auto-
correlation in the generated model, i.e., p > 0.05 , and 
bolsters the auto-correlation result previously obtained 
from the Durbin-Watson statistics value (Table 5) and 
conclude that there is no heteroscedasticity and auto-
correlation present in the model generated.

5. Conclusion

In a bid to improve the accuracy of dispersion coefficient 
estimation in channels or rivers, the possible effect of 
varying roughness on dispersion coefficient was considered. 
Modelling and sensitivity analysis were carried out 
statistically to determine the relationships of the independent 
variables—velocity, Froude, dissolved oxygen and roughness 
coefficient on the dispersion coefficient, and their statistical 
significance. This will assist researchers and experts to better 
understand the factors affecting the spread of pollutants. 
From the study, apart from velocity, which have been hitherto 
established, DO and roughness coefficient have shown to be 
important factors in the estimation of dispersion coefficient 
with coefficient, t-values and probability of –0.3156; t = –7.802; 
p = 0.0000 and 0.694; t = 4.278; p = 0.0021 hitherto have not 
been included as essential parameters for the modelling of 

Table 6a
Johansen cointegration test result

Sample (adjusted): 3 24

Included observations: 22 after adjustments
Trend assumption: Linear deterministic trend
Series: Dispersion velocity Froude DDO DK
Lags interval (in first differences): 1 to 1
Unrestricted cointegration rank test (Trace)

Hypothesized No. of CE (s) Eigen value Trace statistic 0.05 Critical value Prob.**

None*  0.850613  116.7855  69.81889  0.0000
At most 1*  0.807780  74.95877  47.85613  0.0000
At most 2*  0.572869  38.67827  29.79707  0.0037
At most 3*  0.381441  19.96367  15.49471  0.0099
At most 4*  0.347586  9.395678  3.841466  0.0022

Trace test indicates 5 cointegrating Eqn(s) at the 0.05 level; * denotes rejection of the hypothesis at the 0.05 level;

*MacKinnon-Haug-Michelis (1999) p-values.

Table 6b
Johansen cointegration test result

Unrestricted cointegration rank test (Maximum Eigen value)

Hypothesized No. of CE (s) Eigen value Max-Eigen statistic 0.05 Critical value Prob.*

None*  0.850613  41.82672  33.87687  0.0046
At most 1*  0.807780  36.28050  27.58434  0.0030
At most 2  0.572869  18.71461  21.13162  0.1054
At most 3  0.381441  10.56799  14.26460  0.1772
At most 4*  0.347586  9.395678  3.841466  0.0022

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level;* denotes rejection of the hypothesis at the 0.05 level;
*MacKinnon-Haug-Michelis (1999) p-values.

Table 7
Breusch-Godfrey serial correlation LM test

F-statistic 0.132984 Prob. F(1,8) 0.7248

Obs*R-squared 0.248150 Prob. Chi-Square(1) 0.6184

*null hypothesis: accept when p > 0.05 and conclude that no 
auto-correlation.

Table 8
Heteroscedasticity test: Breusch-Pagan-Godfrey

F-statistic 0.109970 Prob. F(5,11) 0.9877

Obs*R-squared 0.809316 Prob. Chi-Square(5) 0.9764
Scaled explained SS 0.165171 Prob. Chi-Square(5) 0.9994

*null hypothesis: accept when p > 0.05 and conclude that there is 
no Heteroscedasticity.
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dispersion coefficient. Finally, the R2 = 0.977 confirms that 
the explanatory variables considered in this study, for the 
estimation of the dispersion coefficient are appropriate. Future 
work should include wall and bottom roughness and how 
dispersion coefficient is affected using other tracer studies 
techniques to demonstrate the consistency of this findings.
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Symbols

ADF  — Augmented Dickey Fuller
AR — Auto-regression
C.E — Cointegration equation
CUSUM — Cumulative sum of recursive residual
CUSUM SQD —  Cumulative Sum of  Squared Recursive 

Residual
DW — Durbin-Watson statistics
D(Velocity) — Differential of velocity coefficients
D(Froude) —  Differential of Froude number 

coefficients
D(DO) —  Differential of dissolved oxygen 

coefficients
D(K) — Differential of roughness coefficients
ECM — Error correction methodology or model
I(1)  — Integration order (first order)
MA — Moving average
r — Coefficient of correlation 
R2 — Coefficient of determination
S.D. — Standard deviation
S.E. — Standard error
t — t-statistics
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