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ab s t r ac t
Membrane distillation (MD) is an emerging alternative to conventional desalination technologies 
such as reverse osmosis and distillation. However, the critical problem of membrane fouling must 
be resolved if MD technology is to find widespread applications. Such fouling reduces the flux and 
increases energy consumption. In this study, we investigated the colloidal silica fouling characteristics 
of a direct-contact membrane distillation system and the use of mathematical models and an artificial 
neural network (ANN) to predict the rate of fouling. The results showed that the flux was affected 
by the silica concentration, NaCl concentration, and feed temperature. A cake formation model was 
found to most accurately describe the colloidal silica fouling in MD under experimental conditions, 
with R2 values between 0.93 and 0.99. This suggests that the main factor in colloidal silica fouling is 
the buildup of a cake layer at the membrane surface. The results from the ANN model indicated high 
correlation (R2 = 0.99) between the experimentally measured and predicted output variables. This con-
firmed the ability of the ANN model to accurately predict the rate of silica fouling in an MD system.
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1. Introduction

Water scarcity is becoming one of the main problems 
faced by many countries around the world [1,2]. The avail-
ability of clean water is crucial to the development of human 
society [3], and countries are therefore seeking alternative 
sources. Among these, seawater desalination has been shown 
to be a reliable and economically sustainable source [4].

An emerging approach to seawater desalination is the 
use of membrane distillation (MD). MD is a thermal process 
in which separation is driven by the vapor pressure resulting 
from a temperature gradient created across a microporous 
hydrophobic membrane. This causes the water and volatile 
compounds on the hot side to evaporate and migrate through 
the pores, finally condensing on the permeate side [5]. MD 
has several advantages over reverse osmosis (RO) and other 

desalination methods. MD can completely remove the ions, 
dissolved non-volatile organics, colloids, and pathogenic 
microorganisms that may be present in the feed solution 
[6–8]. More importantly, owing to the discontinuity of the 
liquid phase across the membrane, MD can be used to treat 
highly saline water [7].

However, MD is still in the early stage of commercial 
development [9]. A major challenge is membrane fouling, 
which decreases the separation efficiency and increases the 
energy demand, and therefore the cost [10]. Fouling in MD 
is less understood than that in RO. Because of differences in 
membrane structure and operating conditions, the fouling 
mechanisms in MD are expected to be different from those 
encountered in RO or nanofiltration [11]. Few studies have 
addressed the effects of temperature, pH, flow rate, and other 
factors such as ionic strength and the co-existence of certain 
ions on the silica fouling found in MD [12–15].
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Colloidal particulates are ubiquitous in natural waters 
and range in size from 1 to 1,000 nm [16]. Removal of parti-
cles smaller than 1,000 nm has been reported to be ineffective 
in avoiding fouling [17]. In the neutral-pH range typical of 
natural water bodies, the surface of most colloids has a neg-
ative charge, reflecting the surface chemical properties and 
chemical composition of natural waters [18]. In membrane 
fouling, opposite charges cause these colloids to accumulate 
on the membrane surface or within the membrane pores, 
adversely affecting the permeate flux and solute concentra-
tion of the output water [19].

This study investigated colloidal silica fouling in a 
direct-contact MD (DCMD) system. A cake formation model 
was developed to predict the rate of fouling, and an artificial 
neural network (ANN) was constructed. The role of the col-
loidal silica concentration, feed temperature, and NaCl con-
centration on fouling was also clarified.

2. Theoretical background

2.1. Mathematical model

Since microporous membranes are used in MD, silica 
fouling may occur due to formation of a cake layer on the 
membrane surface as well as due to the deposition of silica 
particles within the pore/support layer. Mathematical models 
are therefore needed to identify the principal mechanisms of 
silica fouling and to predict the rate of fouling. In this study, 
three membrane-fouling models were developed based on 
the blocking filtration laws modified for application to the 
crossflow filtration mode [20]: a pore blocking model, a pore 
constriction model, and a cake formation model (Table 1). 
Pore blocking and constriction are fouling mechanisms inter-
nal to the membrane, whereas cake formation occurs on the 
surface and is therefore defined as external fouling. The pre-
dictions made by the models were tested by applying the R2 
criterion. Using experimental data, the minimum R2 values 
from the three models were compared to determine the prin-
cipal fouling mechanism.

2.2. ANN model

While mathematical models can be used to analyze 
fouling characteristics, they are of limited use in predicting 
the progress of fouling, given the complexity of the factors 
involved. An ANN model was therefore used to understand 
and predict the course of fouling. An ANN is a computational 

model that can simulate the processing and learning func-
tions of the human brain [21]. It comprises a group of paral-
lel processing elements called neurons organized as units of 
knots [21]. Neurons in each layer of the ANN are connected 
to those in the adjoining layer by a number of weighted con-
nections. An extra weight, called bias, is added to the other 
input weights [21]. An ANN is trained to learn a particular 
function by adjusting the weights applied to the connections 
until the network output matches the target. This allows 
the network to predict the correct outputs from a given 
set of inputs. The basic component of an ANN is the node 
(or neuron). Fig. 1 shows a single node of an ANN. Inputs 
are labeled x1, x2, and xi, and the output is labeled yj. Each 
node may receive multiple input signals. The node manip-
ulates the inputs to produce a single output. The strength of 
each connection, referred to as its connection weight, reflects 
adaptive coefficients within the network that determine the 
intensity of the input signal. Input data are presented to the 
network through the input layer, the values of which are 
denoted by xi. Each input is multiplied by its corresponding 
weight and the node uses the sum of these weighted inputs 
(Wij × x1) to produce an output signal, by applying a trans-
fer function. These weighted inputs are then summed and 
added to a threshold value (θj) to produce the net node input 
(Ij). This is done using the following equation:

I W xj i
n

ij i j= × +=Σ 1( ) θ
 (1)

The output of a node is determined by performing a 
mathematical operation on the net input to the node. This 
is called the transfer function, and it can transform the net 
input in a linear or non-linear manner. Three types of transfer 
functions are commonly used.

The sigmoid transfer function:
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Table 1
Fouling models 

Fouling type Equation
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Fig. 1. Schematic diagram of a single node structure.
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The linear transfer function:

f I I f Ij( ) ( ( ) )= −∞ < < ∞
 (4)

The net node input (Ij) is then passed through an activa-
tion function to produce the node output, yj, which is then 
used to compute the inputs to the nodes in the higher layer, 
until the final output is derived [22].

In this study, a multilayer feedforward neural network 
trained by a back-propagation algorithm was used. Fig. 2 
shows a fully connected multilayer perceptron (MLP). An 
MLP has three or more layers of nodes: an input layer, an 
output layer, and one or more hidden layers. MLPs are 
widely used in research owing to their ability to solve prob-
lems stochastically, which often enables obtaining approxi-
mate solutions for highly complex problems such as fitness 
approximation.

3. Materials and methods

3.1. Colloidal silica

Colloidal silica (SNOWTEX, Nissan Chemical (Tokyo, 
Japan)) with an average diameter of 70–100 nm was used 
as a model colloidal foulant. Spherical and mono-disperse 
colloidal suspensions were created in water. The particles 
were supplied as a stable concentrated aqueous suspension 
at an alkaline pH of between 8.5 and 9.5. The concentrated 
stock suspension was stored at 4°C. Prior to use, it was hand-
shaken and then sonicated for at least 30 min to thoroughly 
disperse the silica particles. Silica concentrations of 3,000 and 
7,000 mg/L and NaCl concentrations of 15,000 and 30,000 
mg/L were used. To allow the effect on MD fouling of the col-
loidal silica concentration, NaCl concentration, and feed tem-
perature to be disaggregated, four different test conditions 
were used (listed in Table 2). All fouling tests were conducted 
for 9 h using 2 L of feedwater in each case.

3.2. Experimental setup

Fig. 3 shows a schematic diagram of the MD filtration 
device used in this study. This was a DCMD system with 
a plate and frame module. In this system, a hydrophobic 

porous membrane separated the hot feed from the cold dis-
tillate. At the membrane interface, the water evaporated on 
the hot side, diffused through the membrane pores, and con-
densed at the membrane interface on the cold side. A com-
mercially available flat sheet MD membrane with a nominal 
pore size of 0.22 µm (Merck Millipore, Billerica, USA) was 
used. Table 3 gives the specifications of the membrane. The 
flow rates of the feed and permeate were, respectively, set at 
0.6 and 0.4 L/min using a gear pump. The feed temperatures 
were 60°C and 70°C, while a temperature control unit main-
tained the cold permeate water at 20°C.

4. Results and discussion

4.1. Effect of colloidal silica concentration

First, the effect of colloidal silica concentration on MD 
fouling was investigated. The results are shown in Fig. 4. 
Silica concentrations of 3,000 mg/L (Case 1) and 7,000 mg/L 
(Case 2) were used, and all other experimental conditions 
including feed/distillate temperature, feed salt concentration, 
and feed/distillate flow rate were held constant. As expected, 
a relationship was found between the colloidal silica concen-
tration and the rate of fouling. Although the initial flux was 

Fig. 2. Schematic diagram of a multilayer feedforward neural 
network.

Table 2
Experimental conditions

Silica 
concentration 
(mg/L)

NaCl 
concentration 
(mg/L)

Feed 
temperature 
(°C)

Case 1 3,000 30,000 60
Case 2 7,000 30,000 60
Case 3 7,000 15,000 60
Case 4 7,000 30,000 70

Fig. 3. Schematic diagram of MD experimental setup.

Table 3
Specifications of the MD membrane

Material type PVDF

Area of module 12 cm2

Porosity 75%
Thickness 125 µm
Pore size 0.22 µm
Contact angle 130°
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not affected by the silica concentration, the rate at which it 
declined was higher at the higher concentration. After 9 h of 
MD operation, the flux value reduced to 59% of its initial rate 
at a silica concentration of 3,000 mg/L and to 43% at a concen-
tration of 7,000 mg/L.

4.2. Effect of NaCl concentration

Next, the effect of the NaCl concentration on MD sil-
ica fouling was investigated using a silica concentration of 
7,000 mg/L and NaCl concentrations of 30,000 mg/L (Case 
2) and 15,000 mg/L (Case 3). The results are shown in Fig. 5. 
The NaCl concentration had little effect on the initial flux. 

This is because MD is less sensitive than RO to the salt con-
centration in the feed. However, the rate of decline in flux 
was higher in Case 2 than Case 3. This suggested that while 
NaCl is not itself a foulant, it accelerated the colloidal foul-
ing in the MD membrane. After 9 h of MD operation, the 
flux value reduced to 69% of its initial rate at an NaCl con-
centration of 15,000 mg/L and to 43% at a concentration of 
30,000 mg/L.

4.3. Effect of feed temperature

The effect of the feed temperature on MD fouling is 
shown in Fig. 6. The feed temperatures were 60°C (Case 2) 
and 70°C (Case 4), with all other experimental conditions 
including silica concentration, permeate temperature, 
feed salt concentration, and feed/distillate flow rate held 
constant. The decline in flux was linear at 60°C, but a 
much faster initial rate of decline was observed at 70°C. 
The initial flux was higher at 70°C than at 60°C, because 
the driving force of MD is temperature-dependent. 
However, after 110 min, the flux at 70°C converged to that 
at 60°C, suggesting that initial fouling was more rapid at 
the higher temperature. After 9 h of MD operation, the 
flux value reduced to 43% of its initial rate at 60°C and to 
27% at 70°C.
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Fig. 4. MD flux levels for different colloidal silica concentrations 
with respect to time. Case 1: silica concentration 3,000 mg/L; 
NaCl concentration 30,000 mg/L; temperature 60°C. Case 2: 
silica concentration 7,000 mg/L; NaCl concentration 30,000 mg/L; 
temperature 60°C.
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Fig. 5. MD flux levels for different NaCl concentrations with 
respect to time. Case 2: silica concentration 7,000 mg/L; NaCl 
concentration 30,000 mg/L; temperature 60°C. Case 3: silica 
concentration 7,000 mg/L; NaCl concentration 15,000 mg/L; 
temperature 60°C.
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Fig. 6. MD flux levels for different feed temperatures with respect 
to time. Case 2: silica concentration 7,000 mg/L; NaCl concentra-
tion 30,000 mg/L; temperature 60°C. Case 4: silica concentration 
7,000 mg/L; NaCl concentration 30,000 mg/L; temperature 70°C.

Table 4
Comparison of model parameters for each filtration model

Case Pore constriction 
model

Pore blocking 
model

Cake formation 
model

K R2 K R2 K R2

Case 1 0.00065 0.91 0.00116 0.88 0.00381 0.96
Case 2 0.00108 0.94 0.00180 0.90 0.00796 0.97
Case 3 0.00039 0.98 0.00073 0.97 0.00201 0.99
Case 4 0.00188 0.81 0.00283 0.90 0.02076 0.93
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c) Cake formation model 

Fig. 7. Comparison of model fit and experimental data. (a) Pore constriction model; (b) pore blocking model; and (c) cake formation 
model.
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4.4. Model fitting using Hermia models

To further investigate the silica fouling characteristics 
of MD, three simple mathematical models (for pore block-
age, pore constriction, and cake formation) were applied to 
the experimental data. The model fits of the different mod-
els are shown in Table 4. As can be seen from this table and 
Fig. 7, the cake formation model showed the highest level of 
agreement in all cases. This suggested that the main cause 
of colloidal silica fouling was the buildup of a cake layer 
at the membrane surface. The model parameter of the cake 
formation model, K, was calculated to fall between 0.00381 
and 0.00210 h−1, with an R2 value of between 0.93 and 0.99.

Case 4 had the highest K value. This was attributed to 
the high initial flux produced by the high feed temperature, 
which accelerated the concentration polarization and pro-
duced an accumulation of colloidal silica in a mass transfer 
boundary layer adjacent to the membrane surface. The con-
centration polarization generally increases the level of foul-
ing by increasing the concentration of contaminants near the 
membrane surface, which consequently aggravates the fac-
tors that cause fouling. This suggested that a denser cake layer 
was formed, increasing the K value. The lowest K value was 
recorded in Case 3. This can be explained by the effect of the 
cake layer on the vapor pressure near the membrane surface. 
A cake layer of colloidal silica can increase the concentration 
polarization by reducing the back-diffusion of salts near the 
membrane surface. The salt concentration is therefore higher 
in the cake layer than in the bulk solution, leading to a lower 
vapor pressure within the layer and at the membrane surface. 
The resulting reduction in the effective vapor pressure differ-
ence between the feed and distillate reduces the flux. This is 
similar to cake-enhanced osmotic pressure (CEOP) and can 
be referred to as cake-reduced vapor pressure (CRVP).

4.5. Model fitting using the ANN model

The ANN model was designed to simulate silica fouling 
in an MD system. The ANN model used in this study was 
created via MATLAB, as a platform for the simulation. The 
Network/Data Manager window in the MATLAB Toolbox 
allows the user to import, create, run, and export neural net-
works and data. The properties of the ANN model are shown 
in Table 5.

The application randomly divided the input vectors and 
target vectors into three sets: 70% for training, 15% for use 

in confirming that the network was generalizing and that 
training halted before over-fitting arose, and 15% to provide 
a completely independent test of network generalization. 
Fig. 8 compares the predicted flux levels and the experimen-
tal results as a function of the filtration time. The values pre-
dicted by the model matched the experimental values closely. 
The correlation coefficient (R) and mean squared error (MSE) 
were used to evaluate the performance of the ANN model.

Fig. 9 is a plot of the MSE against the number of itera-
tions. A sharp drop in the MSE in the first few iterations (fast 
training) can be seen. The training cycle stopped after 33 iter-
ations, and the smallest MSE value of 0.004 was recorded at 
38 iterations.

Table 5
The properties of the ANN model

Network inputs Filtration time, silica 
concentration, NaCl 
concentration, feed temperature

Network outputs Permeate flux
Network type Feed-forward back propagation
Training function Levenberg–Marquardt
Performance function Mean squared error
Number of hidden layers 1
Number of neurons in 
hidden layer

12
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Fig. 8. Comparison of fit between the ANN model and the 
experimental data.

Fig. 9. MSE as a function of the number of iterations.
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The ANN model showed high strength, and a linear rela-
tionship was observed between the predicted results and the 
experimental data. The output tracked the targets very well 
for training (R value = 0.999), validation (R value = 0.999), and 
testing (R value = 0.999), as shown in Fig. 10. These values 
are equivalent to a total-response R value of 0.999, suggest-
ing that the ANN model was able to predict all experimental 
cases simultaneously with very high accuracy.

5. Conclusions

In this study, colloidal silica fouling in an MD membrane 
was investigated using three simple mathematical fouling 
models and an ANN model. The following conclusions were 
drawn:

• The rate of permeate-flux decline due to silica fouling 
was influenced by the silica concentration, NaCl concen-
tration, and feed temperature.

• A high concentration of salt accelerates colloidal fouling 
and flux decline. We attribute this to a reduction in the 
effective vapor pressure difference between feed and dis-
tillate and refer to this effect as CRVP.

• The cake formation model was found to give the most 
effective explanation of colloidal silica fouling. This sug-
gests that cake formation is the dominant mechanism of 
fouling in an MD membrane by colloidal silica.

• When applying the ANN model, correlation coefficients 
of up to 0.99 were found between the measured and pre-
dicted output variables. Therefore, the ANN model accu-
rately replicated the experimental data, suggesting that it 
can be used to predict silica fouling in a DCMD.
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