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ab s t r ac t
The hydrothermal carbonisation (HTC) conversion of wet wastes, such as sewage sludge, gener-
ates a carbon-rich material (called ‘hydrochar’), and an aqueous fraction with a small release of gas. 
The liquid fraction is high in soluble chemical oxygen demand, from 10 to 50 g/L, and could not be 
discharged to the natural environment without treatment. This study investigates the anaerobic digest-
ibility of this HTC liquid stream from different HTC temperatures and retention times (140°C–200°C 
for 30–240 min). It is focused on biogas production in order to improve the energy input of the HTC 
process and to improve process sustainability. The results demonstrated that liquid products from 
the lower HTC temperatures gave better biogas production. The biogas yield from the 140°C HTC 
filtrate digestion was 0.45–0.86 L/L reactor/d, while 0.33 L/L reactor/d was obtained from 170°C and 
0.31–0.45 L/L reactor/d from 180°C HTC filtrates. The lowest anaerobic digestion (AD) efficiency was 
recorded for the treatment from 200°C with biogas yield of 0.07 L/L reactor/d. The data also show 
that low AD hydraulic retention time (HRT), typical of high rate fixed biomass digesters can be used 
to treat the HTC filtrate. Halving the AD HRT to 0.9 d resulted in 1.8–6.8 times greater biogas yield.
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1. Introduction

There has been renewed interest in thermal sewage sludge 
treatment due to the commercialisation of hydrothermal car-
bonisation (HTC), both to increase biogas yields in anaerobic 
digestion (AD) but also to generate a carbon-enriched char 
at temperatures above 160°C [1–3]. The higher temperature 
applied in HTC, compared with non-thermal traditional 
sludge and sewage treatment, sanitised and stabilised the 
products. Most studies on sewage sludge HTC have focused 
on the energy value of the hydrochar that is the main product 
[4,5]. The potential of its use for soil improvement [6,7] or 
as an adsorbent for soil remediation has been also reported 

[8,9]. However, to produce hydrochar with improved energy 
characteristics (higher heating value), a higher temperature 
range is required [2]. This generates a high concentration of 
soluble organic compounds as leachate (a by-product), which 
requires further treatment (chemical oxygen demand [COD] 
>20 g/L) and limited work has been carried out on this. Water 
plays an important role in HTC reaction as a solvent and 
depending on the reaction temperature, about 13%–66% of 
the carbon remains in the liquid fraction, which increases 
with increasing temperature [2,10]. 

Recent work on thermal pre-treatment of sewage sludge 
followed by AD confirms that dewaterability and soluble 
organic matter increase as the HTC temperature increases 
(above 150°C) [11]. The increase in solubilisation of organic 
solids, carbohydrates, proteins [12] and COD [13] leads to the 
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increase in methane production during AD. Thus, hydrother-
mal treatment has been implemented successfully as a pre-
step to sewage treatment (Cambi, Biothelys™) [14,15] as well 
as municipal solid waste treatments (Suzhou Food Waste 
Treatment Plant, Changchun Food Waste Treatment Plant, 
and Shenzhen Municipal Organic Waste Treatment Plant) 
[16]. Some literature, also suggests concurrent formation of 
refractory COD [17] at higher temperatures, mainly through 
Maillard reactions, reducing digestibility. Compounds such 
as furans, phenols, acetic acid, levulinic acid, and other 
persistent coloured soluble organic compounds have been 
reported in previous works [2,6,18–20]. 

The liquid fraction is completely sterilised, but application 
of this organic-rich by-product has received comparatively 
little attention. AD of the HTC wastewater for methane pro-
duction seems to be an ideal process to reduce the organic 
load, which could contribute to the energy sustainabil-
ity of the HTC process for sewage sludge treatment [1,10]. 
However, studies on AD of the liquid product following 
HTC of sewage sludge for biogas or methane production are 
limited. Danso-Boateng et al. [2] reported potential methane 
yields from the liquid phase resulting from sewage sludge 
HTC, and suggested methane yield to decrease at higher 
HTC temperatures. However, in their study the liquid phase 
was not subjected to AD; instead, the total organic carbon 
(TOC) and COD concentrations of the liquid were used to 
estimate the theoretical yields of methane. Wirth et al. [3] 
conducted AD of the liquid product (called ‘liquor’) from 
sewage sludge HTC at mesophilic and thermophilic condi-
tions in two identical continuously fed-batch reactors for 20 
weeks. They found no significant difference between biogas 
production from mesophilic (37°C) and thermophilic (55°C) 
digestion of the HTC liquor. However, in their study the HTC 
conditions were constant (220°C for 6 h), therefore, the effect 
of HTC temperature and reaction time on AD performance 
and methane yields were not investigated. 

This study investigates the anaerobic treatment of the 
liquid phase generated from faecal sludge HTC at different 
temperatures ranging from 140°C to 200°C and retention 
times between 30 and 240 min. The effect of HTC reaction 
conditions on biodegradability of the HTC liquid products 
and biogas yields after AD are studied. In addition, the effect 
of different AD hydraulic retention times (HRTs) on the per-
formance was investigated.

2. Materials and methods

2.1. Faecal sludge

The faecal sludge used in this study was formulated 
according to the recipe of Wignarajah et al. [21], which 
comprised of 37.5% cellulose, 37.5% yeast, 20% peanut oil, 
4% KCl and 1% Ca(H2PO4) in a suspension of 90% moisture 
(i.e., 10% solids).

2.2. HTC process

A workshop designed and built rig was used for the 
HTC process. Approximately 4.5 L of faecal simulant was 
pumped into the reactor (5 L total reactor volume) and 
heated to temperatures between 140°C and 200°C (via an oil 

heater unit) under self-increasing pressure and maintained 
for residence times ranging from 30 to 240 min. Following 
the hydrothermal treatment, the slurry was transferred into 
a flash tank where the pressure was reduced and the mate-
rial was allowed to cool to room temperature. The carbonised 
material was then filtered using a 60-µm slotted pore, stain-
less steel, filter under a slight residual pressure. This filtrate 
was used for the AD experiments. The operation cycles were 
pre-programmed using Lab View®.

2.3. Anaerobic digestion

Two identical anaerobic fixed-film digesters (9 L working 
volume) were operated continuously at standard tempera-
ture (37°C). An initial experiment with direct feeding of the 
raw waste led to digester instability, low conversion of COD 
to gas and finally acidic inhibition. Dilution by recycling was 
successfully used as a method to cope with the strong HTC 
filtrate. It was shown that a dilution ratio of (10:1) provided 
optimum buffering and recycling of nutrients. This was 
achieved by recycling part of the effluent from each digester 
back into the feed tank (as shown in Fig. 1). Recycle ratios of 
between 2 and 10:1 are widely used in higher rate digesters to 
buffer strong feeds and recycle trace nutrients. Bulk batches 
of feedstock including the recycle were prepared every 3 d 
(to include week-end running). 

2.4. Analytical methods

The influent and effluent of the anaerobic reactors were 
analysed according to the APHA standard methods [22]. 
COD, total and soluble, was measured using a COD Analyser 
(Palintest 8000, Palintest Ltd, UK) at a wavelength of 570 nm, 
following the procedure of Standard Methods 5220 D – closed 
reflux colorimetric method. TOC was determined using a 
TOC Analyser (DC-190, Rosemount Dohrmann, USA), in 
line with Standard Methods 5310 B – high temperature com-
bustion. Total solids were determined according to Standard 
Methods 2540 B – total solids dried at 103°C–105°C. According 
to Standard Methods 2540 E, volatile solids were determined 
by igniting the residue from the dry weight test to constant 
weight at 550°C. Biochemical oxygen demand (BOD5) was 
measured respirometrically using a BOD analyser (BODTrak 
II, HACH, USA) by the HACH Standard Method procedure. 

Fig. 1. Schematic of the anaerobic digestion process operated in 
a warm room (37°C).
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Volatile fatty acids (VFA) were analysed using a spectropho-
tometer (DR3900, HACH LANGE, Germany) at a wavelength 
of 497 nm, by following the HACH Method 10240 (LCK 365). 
pH was measured using a pH meter (METTLER DELTA 340, 
Mettler Toledo, The Netherlands). Ripley’s ratio was deter-
mined using the partial to alkalinity ratio method [23]. The 
volume and composition of the biogas produced were mon-
itored using a FLO CELL™ flow meter and a GMF 400 series 
infrared, respectively.

3. Results and discussion

3.1. Analytical characteristics of the HTC filtrates 

The filtrate characteristics following HTC at different 
reaction temperatures and times are presented in Table 1. 
In order to investigate the increase of the biodegradabil-
ity at lower temperatures, 140°C was chosen as the lowest 
temperature to ensure sterilised hydrochar and the filtrate 
(>130°C recommended autoclave temperature).

3.2. Effect of HTC reaction conditions on AD performance

Fig. 2 illustrates the COD removal and biogas production 
for filtrates processed at 140°C and 180°C for 30–240 min, 
as averages from 40 d of continuous AD operation. Ripley’s 
ratio was measured daily and during the whole duration 
of the experiments and it was monitored below 0.3, which 
indicates a stable AD operation. Increasing the HTC reaction 
time, increased the solubilisation of COD, increased the AD 
load, and gave better conversions of COD to biogas from 
HTC filtrates for up to 120 min at 140°C and up to 90 min 
at 180°C. Further increased in the reaction time reduced the 
AD performance. TOC on the other hand was less affected by 
HTC conditions (Fig. 4).

The data in Fig. 2 indicate a lower performance at the 
higher temperature and additional experiments were con-
ducted over a wider temperature range of 140°C–200°C and 
reaction times between 30 and 240 min. These results are 
shown in Table 2 and Fig. 3. Fig. 3 suggests that the sever-
ity of conditions (temperature and reactor retention) affects 
biodegradability. Charing or blackening of the HTC solids 
was not observed at 140°C at any retention time tested but 

occurred at 180°C and above, after 30 min, confirming the 
previous study that concluded the extent of carbonisation 
influenced treatability [2]. 

Methane percentage in the biogas yield was stable 
throughout the experiment ranging from 63.5% to 77.7%. 
Typical percentage of methane after AD of organic solids 
and liquid waste is around 60%. Stoichiometrically, 1 kg of 
COD releases about 15,625 mol of methane gas. Thus, 1 kg 
of COD produces 0.35 m3 or 0.25 kg of methane at standard 

Table 1
Overview of the analytical characteristics of the HTC filtrate (<60 µm) processed at 140°C–200°C for 30–240 min

HTC operating 
conditions

Filtrate characteristics

COD soluble (g/L) COD total (g/L) TOC (g/L) TS (g/L) TS (%) VS (g/L) VS (%) pH VFA (g/L)

200°C, 30 min 30.19 54.52 10.38 44.07 4.06 34.83 80.21 4.41 4.55
180°C, 30 min 27.19 47.53 8.70 18.65 1.88 15.11 20.98 5.06 2.14
180°C, 90 min 25.90 41.52 7.98 22.53 2.64 17.93 80.36 4.58 3.61
180°C, 120 min 30.07 43.27 10.89 24.52 1.94 20.10 82.01 4.59 3.89
170°C, 60 min 20.07 36.45 5.90 25.04 2.47 18.75 74.88 4.92 2.78
140°C, 30 min 19.95 33.67 6.78 26.60 2.66 20.89 78.28 6.91 3.23
140°C, 60 min 24.57 26.6 9.11 27.03 2.70 19.66 72.80 7.79 3.38
140°C, 120 mi 30.99 97.63 8.92 24.85 2.49 18.78 75.60 5.06 2.96
140°C, 240 min 38.39 85.02 10.18 26.77 2.68 20.73 77.44 3.83 2.39

Fig. 2. Percentage of COD removed and the biogas produced for 
digestion of (a) 140°C and (b) 180°C HTC filtrate.
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temperature and pressure (STP) regarding an ideal substrate 
as acetate [24]. STP corrected yields from the 140°C HTC fil-
trate digestion were between 0.132 and 0.269 L CH4/g COD 
removed and 0.094–0.118 L CH4/g COD removed for the fil-
trate at 180°C. The lowest AD efficiency was recorded from 

HTC treatment at 200°C with the biogas yield of 0.045 L CH4/g 
COD removed. Thus, it can be suggested that HTC treatment 
at lower temperatures affects positively the production of 
biogas during the AD of the liquor. The lower biogas yields 
obtained at higher temperatures could be attributed to the 
formation of refractory COD [17] and less degradable organic 
compounds through Maillard reaction product in the liquid 
fraction [2] at these conditions.

Wirth et al. [3] conducted AD experiments of liquid 
product (liquor) produced from HTC sewage sludge treated 
at 200°C for 6 h and reported methane yields in the range 
of 0.144–0.178 L CH4/g COD for different organic loading 
rates (OLRs) between 1 and 5 g/L. However, in their study 
the HTC conditions did not vary. Also, the feedstock in this 
study reported was a simulant; hence, the performance dif-
ferences are expected. 

The reduction in biodegradability with increased HTC 
temperature was supported by both BOD and respiration 
rate measurements shown in Figs. 5(a) and (b). These two 
indicators show the same tendency as biogas yields. With the 
increase in HTC temperature a decreased in the respiration 

Fig. 3. Results of (a) COD removal and (b) biogas yield, during AD treatment of HTC effluent carbonised at 140°C–200°C for 30–240 min.

Table 2
Overview of AD performance for HTC filtrates processed at different temperatures and reaction times

HTC temperature 140°C 170°C 180°C 200°C

HTC time (min) 30 60 120 240 60 30 90 120 30
OLR (g COD/L/d) 2.217 2.730 3.674 4.755 1.115 3.223 3.646 1.842 1.813

COD removal (%) 77.3 
(±0.979)

64.0 
(±6.383)

85.9 
(±3.517)

88.4 
(±4.115)

58.2 
(±12.942)

76.3 
(±2.315)

78.0 
(±3.844)

75.8 
(±2.377)

62.0 
(±6.066)

Biogas yield 
(L gas/L reactor/d)

0.453 
(±0.148)

0.599 
(±0.319)

0.861 
(±0.155)

0.744 
(±0.256)

0.326 
(±0.231)

0.311 
(±0.183)

0.449 
(±0.264)

0.451 
(±0.246)

0.07 
(±0.079)

CH4 (L/g COD 
removed)

0.197 
(±0.015)

0.269 
(±0.015)

0.203 
(±0.016)

0.132 
(±0.012)

0.376 
(±0.0.17)

0.094 
(±0.008)

0.118 
(±0.007)

0.118 
(±0.015)

0.045 
(±0.001)

COD effluent (g/L) 4.52 9.60 4.56 4.89 8.41 6.88 7.20 7.27 11.83

Note: Numbers in parenthesis represent the standard deviations.
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rate and the BOD occurs. Standard biological methane poten-
tial tests were also used but gave poor reproducibility com-
pared with respiration rates and were abandoned.

Methanogenesis is the rate limiting step of AD of solu-
ble substrates by the previous research using similar kind 
of feedstock [3]. The Chapman model [25] was used to 
determine the kinetic constants for the methane production 
(Eq. (1), Table 3).

Y CH4 = Y CH4 max × (1 – exp1–km×t)c (1)

As the treating HTC temperature rises the methanogen-
esis became slower except for the filtrate from HTC at 180°C 
for 30 min which showed a much higher constant compared 
with that of 170°C filtrate and those from longer HTC treat-
ment at the same temperature. Writh et al. [3] reported a 
kinetic constant of 0.044 whereas an ideal substrate as the ace-
tate is expected to produce methanogenesis constants in the 
range of 0.2–0.7 [26]. Moestedt et al. [27], however, reported 
methanogenesis constants between 0.02 and 0.09 during AD 
of food, slaughterhouse waste and glycerin considered as 
high biodegradable substrate.

The COD concentrations in the effluent of the digesters 
range between 4.52 and 11.83 g COD/L according to the dif-
ferent filtrates. The percentage of COD removed was typical 
of AD and stable throughout the operation as judged by the 
standard deviations (Table 2). However, the organic load in 
the final effluent was still high and further treatment would 
be needed if disposal to the environment is to be consid-
ered. Recycling the effluent back to the head of the treatment 
works has been commonly used but may cause problems if 
the refractory COD was to accumulate.

The COD removal equivalent to the methane production 
was calculated using the theoretical relation (for a perfect 
substrate) mentioned previously (1 g COD consumed pro-
duces 0.35 L of methane) and this was compared with the 
percentage of COD removed calculated based on the solu-
ble effluent in Table 2. Only 19.5%–47.2% of the COD was 
converted to methane (Fig. 6) although the COD conversion 
based on the soluble effluent was a lot higher (58.2%–88.4%). 
This can be referred to the microbial growth and the accu-
mulation of solids in the AF digesters. It can be suggested 
that some COD removal may be from coagulation with the 
biofilms but this need more extensive data. The low biogas 
measurements reported (most in the range of 1–3 L) were 
at the accuracy limits of the instrumentation, but other 
non-analysed components, e.g., hydrogen and VOC could 
have contributed to the overall mass balance. 

3.3. Effect of the hydraulic retention time on the efficiency of  
the anaerobic digestion

Two AD HRTs of 1.8 and 0.9 d were tested. The main 
difference was observed for the biogas production (Table 4). 
Decreasing the HRT by increasing the flow rate and OLR 
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HTC treatment at 140°C–200°C and 30–240 min.

Table 3
Methanogenesis constants for each HTC filtrate

HTC temperature 
(°C)

HTC time 
(min)

Methane production 
constant (km)

140 30 6.96 × 10–4

60 1.01 × 10–2

120 9.46 × 10–3

240 6.70 × 10–2

170 60 1.59 × 10–4

180 30 3.27 × 10–2

90 2.35 × 10–7

120 1.37 × 10–7

200 30 8.92 × 10–8
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improves the performance. The yield was more than double 
for the lower retention time (0.9 d) in all the experiments. 
Specifically, when the lower HRT was applied the biogas 
produced was 1.8–6.8 times greater. This is supported by 
the literature on biomass retaining reactors which have 
a typical retention time of 5–10 h and loading rates up to 
40 kg COD/m3/d for the highly treatable wastes [28]. Further 
work is needed to identify the maximum load. 

Additional AD HRT experiments were carried out on fil-
trate from the HTC run at 180°C for 90 min, since obvious 
char was produced at this temperature but not at 140°C. The 
data are shown in Fig. 7. Gas yields at 0.45 d are similar to 
those achieved at 140°C and suggest that char production 
without prejudicing the treatability of the filtrate could be 
possible.

4. Conclusions

The liquid products following HTC of sewage sludge 
can be digested anaerobically to produce biogas. The results 
demonstrated that liquids generated from HTC at lower tem-
peratures produced higher biogas yields, with HTC at 140°C 
and a shorter HRT of 0.9 d resulting in maximum yields. 
Liquids obtained from HTC at 180°C for 30 min also resulted 
in high biogas yield when the HRT was shorter (0.9 d), which 
could be considered as the optimal conditions as dewater-
ing of the products was easier at these HTC conditions 
than lower temperatures. For liquids from HTC at 140°C 
up 120 min residence time and 180°C for 90 min, increas-
ing the HTC reaction time resulted in an increased in COD 
solubilisation, increased in AD load and a better conversion 

of COD to biogas. The results show that low AD HRT, typi-
cal of high rate fixed biomass digesters can be used to treat 
the HTC liquid from sewage sludge. Levels of COD in the 
digester effluent were still high, indicating further treatment 
is required if the option is to dispose it to the environment. 
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