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a b s t r a c t
Fuzzy logic is applied in many problems that contain uncertainty. Specifically, fuzzy regression anal-
ysis can supply useful information about the validity of measured quantities. This article examines 
the variation of certain quality characteristics of groundwater in boreholes using fuzzy methodology. 
Traditionally, classical correlation analysis was used to depict the relation between the dependent 
variable and the independent variables. Classical regression is considered to be probabilistic and has 
many uses but can be problematic: (a) if the data set is small, (b) if the error distribution is not normal, 
(c) if there is uncertainty between dependent and independent variables or if linearity acceptance is 
not proper. For the previous reasons fuzzy regression analysis is preferable. Water was sampled from 
these boreholes by Institute of Geology and Mineral Exploration from 2005 to 2008 and the concentra-
tion spread of Ca, K and Mg ions was examined. Using fuzzy regression, the range of these concen-
trations was calculated during the period under consideration with inclusion equations and results 
are presented in graphic form. All the measured values were taken into account in order to obtain an 
estimation of future measurement accuracy with a confidence level according to historical values and 
similar regional conditions.
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1. Introduction

Water is a renewable natural resource, which is necessary 
for every activity on earth, and also for the ecological balance. 
It is used not only in covering the needs of urban and tourist 
areas, agriculture, industry and crafts but also in maintaining 
a sustainable operation of wetlands.

Traditional methods of water quality assessment, based 
solely on the comparison of analytical parametric values or 
calculation of molar ratios [1,2], can be very helpful, but in 
most cases they do not provide a convenient supervisory cor-
relation between the examined samples. Furthermore, such 
an analysis requires comprehensive knowledge of water 
science to understand and may not provide a composite 

measure of water quality [3]. Therefore appropriate analysis 
and knowledge translation tools are required to bridge the 
communication gaps among scientists, policy makers and 
public [4].

In all physical problems, there is a relationship between 
precision and uncertainty. The more uncertainty that exists 
in a problem, the less precise the understanding of that prob-
lem is. The more complex a system is, the more imprecise or 
inexact is the information that is available to characterize that 
system. It is reasonable to dedicate a certain level of uncer-
tainty within problems, such that an appropriate level of pre-
cision can be expressed. Today fuzzy systems are shown to 
be universal approximators to algebraic functions. Classical 
correlation analysis was used to depict the relation between 
the dependent variable and the independent variables. 
According to this, classical regression is considered to be 



C. Evangelides et al. / Desalination and Water Treatment 95 (2017) 45–5046

probabilistic and has many uses, but can be rendered prob-
lematic: (a) if the data set is small, (b) if it is hard to prove that 
error distribution is normal, (c) if there is fuzziness between 
dependent and independent variables or if linearity accep-
tance is not proper [5].

Nowadays, new regression models have been introduced 
based on fuzzy logic [6–14]. In fuzzy regression, the differ-
ence between measurement values and estimated values is 
attributed to the inherent fuzziness of the system as well as 
to the fuzziness of input and output data. In contrast with 
classical regression analysis, fuzzy regression analysis uses 
fuzzy functions for the regression factors. The above problem 
[9,15] usually meets one of the three cases, described below: 
(a) crisp input values xij and crisp output values yj, (b) crisp 
input values xij and fuzzy output values yi  and (c) fuzzy 
input values xij  and fuzzy output values yi .

In all the above cases, estimated values Yi  are fuzzy. 
The adjustment of a fuzzy regression model can be achieved 
through two general methods:

The possibilistic model [5–7,15]: fuzzy regression is con-
sidered possibilistic when the membership function µ F

 of a 
fuzzy number F  is considered equal to the possibility dis-
tribution function πx(x). The fuzziness of the model is min-
imized by taking into account the minimum of the spreads 
around the center of the fuzzy parameters, while considering 
that the values of every sample are within a specific interval 
of possible values.

The least squares model [16–18]: the distance between the 
estimated output value of the model Yi  and the observed out-
put value yi  is minimized. This method of Diamond [16] is 
considered to be an extension of the classical linear regres-
sion method, based on the notion of model efficiency optimi-
zation depending on data.

This article examines the irrigation water quality, derived 
from surface and groundwater reservoirs. Especially, the 
variation of certain quality characteristics of groundwater 
is examined in two boreholes at SE Pinios’ basin in Greece. 
Water was sampled from these boreholes by Institute of 
Geology and Mineral Exploration (IGME) from 2005 to 2008 
[19]. Chemical analyses were taken place at the laboratory 
of IGME and this article examines the concentrations spread 
of Ca, K and Mg ions. Using fuzzy correlation, the range of 
these concentrations was calculated during the period under 
consideration. Knowing the confidence limits of these ions in 
a specific period of time and assuming that the management 
of land and water does not have significant variations then 
conclusions about the accuracy of future measurements can 
be obtained utilizing the methodology, which was developed 
and presented in this article.

2. Mathematical problem

A possibilistic model, where membership functions are 
trapezoidal, measured input values are crisp and measured 
output values are triangular fuzzy, is described. The need to 
use trapezoidal functions is a result of the following reasons 
[20–22]:

• need to optimize the fuzziness of the model
• need to restrict data inside the estimated value range.

In order to achieve the restriction, a-cuts are used and 
we aim to restrict for a level of confidence h = α0 that is high 
enough. However, that could lead to highly inaccurate param-
eters. According to Moskowitz and Kim [23], the h parameter 
is referred to as the fitness degree of the estimated fuzzy lin-
ear model to the given data. A physical interpretation of h is 
that an observation yi  is contained in the support interval of 
the corresponding fuzzy estimate Yi , which has a degree of 
membership ≥hi. Moreover, solution optimization for level h 
does not guarantee the same for another level ′ ≠h h . Tanaka 
and Watada [8] provided the equations for this scenario, but 
they can only be applied when data is crisp. Thus, restric-
tions of high confidence levels interfere with model preci-
sion. Moreover, constraint for confidence level h = 1 and data 
with triangular membership functions is impossible with the 
exception of the special case of collinear data.

Using trapezoidal membership functions for estimated 
values [20–22] allows us to achieve inclusion for output mea-
sured data with triangular membership functions yi (x) and 
estimated values with trapezoidal membership functions 
Yi  (x), for confidence level h = 1, for which the kernel is not 

minimized in a point: [ ] [ ] y Yi h i h= =⊆1 1. In addition, for a level 
of confidence h = 0, inclusion is achieved: [ ] [ ] y Yi h i h= =⊆0 0. 
Due to the linearity of the membership function, inclusion for 
those levels of confidence allows us to ensure that inclusion is 
possible for every level of confidence: [ ] [ ] , , y Y hi h i h⊆ ∀ ∈ 0 1 .

In this article, a possibilistic model is described [14] dif-
ferent from Bisserier model, where membership functions 
are trapezoidal, measured input values are crisp and mea-
sured output values are fuzzy and triangular, divided in two 
steps. In the general case of trapezoidal membership func-
tions, the estimated value is given as follows:

     



Y A A x A x A x A x

A

i j j n nj i ij
i

n

= + + + + =

=

=
∑0 1 1 2 2

0
... , x =1

where

0j

(([ , ],[ , ]),
( ) [ , ]

sup (~

K K S S
K A K K

S p A

A A A A

A A A

A

− + − +

− += =

=






kernel

)) ,=  
− +S SA A

 

(1)

Based on the above, median (M) and radius (R) are:
Kernel:

M K K R K KK A A K A AA A 
= + = −− + + −( ) / , ( ) /2 2  

Supports:

M S S R S SS A A S A AA A 
= + = −− + + −( ) / , ( ) /2 2  

In the case of triangular membership function, the fol-
lowing apply:

Kernel: k. In case of symmetry k = kA
Supports: 

M S S k R S SS A A A S A AA A 
= + = = −− + + −( ) / , ( ) /2 2  

The problem can now be divided into the following two 
steps: 

Step 1: Kernel inclusion:

k K Ky j y j y j
  
∈





− +,  (2)
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Namely the kernel of measured values is included in the 
kernel of estimated values. According to Shapiro et al. [24], 
for the case of crisp output values only measured values are 
included in the kernel. According to Tanaka’s method [7], the 

range Y Y
h− + =

 ,
0

 encircles the kernels of measured values. 
In this stage, only triangular functions  A r c A r c0 0 0 1 1 1, , ,( ) ( )  
are applied for the method of Tanaka and the possibilistic 
model is:   Y A A xi j= +0 1 1

 The elements r,c are the mean and 
the spread of the parameter A , respectively. Thus, the prob-
lem of determining the estimated values becomes:
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where i is the number of variables 0,1 and j is the number of 
measured values 1,2,….,m.

Through the solution of this system the surroundings 
Y Y Y

h
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0
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As long as they meet the same constraint, these sur-
roundings coincide with the kernel of trapezoidal functions, 
resulting to the relations below:
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Step 2: Support inclusion is applied:

[ , ] [ , ],S S S Sy y Y Yj j j j   
− + − +⊆  (7)

where space S Sy yj j 
− +,  is given as follows:
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Based on relations (4) and (8):
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where K Yj

+
  and K Yj

−
  are known since they have been calcu-

lated during step 1.
The problem now becomes:
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3. Materials and methods

Water samples were selected from two boreholes (ΥΓ3 
and ΥΓ6) at SE Pinios’ basin in Greece during the period 
2005–2008. Both boreholes belong to the same aquifer. The 
samples were analyzed for concentrations of Ca, K and Mg 
ions in the laboratory. Representative values of the specific 
ions from both boreholes were recorded for the above time 
period. The collection of the samples was not carried out at 
the same time intervals and samples for K were collected 
more times, but were representative. The exact location of 
the boreholes is given by their coordinates, where ΥΓ3 has 
longitude 22°41′10.8588′′Ε and latitude 39°14′26.7138′′Ν 
and ΥΓ6 has longitude 22°44′15.6793′′Ε and latitude 
39°12′33.3763′′Ν. The transport of water samples and the 
conservation at the laboratory were done under special 
conditions in order to preserve sample validity. The con-
centrations of Ca, K and Mg for ΥΓ3 and ΥΓ6 are presented 
in Table 1.

In this application measurements were available for two 
boreholes that belonged to the same aquifer and so the val-
ues from one borehole are considered as input values (x) 
and the values of the other borehole as output values (y). 
Triangular membership functions are used in order to con-
vert crisp measured values to fuzzy values. An assumption 
is made that measurements of (y) output values contain a 
20% error, since this contains the total error of the whole 
procedure from sampling to final laboratory results, as 
shown in Table 1. Furthermore fuzzy regression analysis 
was carried out using trapezoidal membership functions. 
All the sample values were taken into account in order to 
obtain an estimation of future measurement accuracy with 
a confidence level according to historical values and similar 
conditions.

4. Results and discussion

Fuzzy logic regression analysis was carried out using the 
available data of the two boreholes, as described above. Input 
data is converted into fuzzy using triangular membership 
functions. Afterwards assuming a percentage error (e), out-
put values are calculated utilizing trapezoidal membership 
functions. The equations and the results for all three element 
concentration are presented.

Utilizing the measured values from Table 1, the process 
described previously was applied to the elements of the table 
and the application with the results is shown with the corre-
sponding figures below.

Application 1 for Ca
Step 1

According to Tanaka’s model, considering that output 
data is crisp and for h = 0, the model is described by the 
following equations:
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Solving the above system of equations, kernel equations 
are obtained (Fig. 1):

y x
y x

−

+

= +

= +

16 8448 0 6819
40 1268 0 6819
. . ,
. .

 (14)

Step 2
In step 2, the kernel is considered to be known from the 

previous step and the model takes the form:

min{ ( ) . ( )}
. .

. .
.

11 822 44

105 81 12 04

0 0 1 1

0 1

c c c c

c c

− + − +

− −

+ + +

− − ≤ −

s t

................................................
.− −−c0 69 70cc

c c
1

0 1

8 61
105 81 3 15

−

+ +

≤ −

+ ≥

.
. .

................................................
. .c c0 169 70 4 02+ ++ ≥ −

 (15)

Finally, solving the above system of equations, support 
equations are obtained (Fig. 1):

y x
y x

−

+

= +

= +

16 8448 0 5004
40 1268 0 9700
. . ,
. .

 (16)

Fig. 1 shows the measured data as x axis, output data as 
y axis, the kernel and also the support. In Fig. 2, the trian-
gular fuzzy number for the crisp value Ca = 56.91 mg/L of is 
shown for the range of the confidence interval (h = 0–1) and 
also the output value interval using trapezoidal membership 
function.

Application 2 for K
Step 1

Kernel equations:

y x
y x

−

+

= +

= +

0 0186 0 9767
0 9093 0 9767
. . ,
. .

 (17)

Step 2
Support equations:

y x
y x

−

+

=

= +

0 799
1 09 1 171
. ,
. .

 (18)

Table 1
Concentrations of Ca (mg/L), K (mg/L) and Mg (mg/L) for the boreholes ΥΓ3 and ΥΓ6

Ca (mg/L) K (mg/L) Mg (mg/L)
ΥΓ3 ΥΓ6 e = 0.2*ΥΓ6 ΥΓ3 ΥΓ6 e = 0.2*ΥΓ6 ΥΓ6 ΥΓ3 e = 0.2*ΥΓ3
x1,j yj ej x1,j yj ej x1,j yj ej

105.81 96.19 19.2 0.78 1.56 0.31 13.25 14.95 3.0
101.00 109.00 21.8 0.78 1.56 0.31 25.29 16.54 3.3
59.32 70.54 14.1 0.80 0.80 0.16 28.70 23.10 4.6
64.13 64.13 12.8 0.78 1.56 0.31 14.59 16.54 3.3
84.97 80.16 16.0 0.43 0.87 0.17 24.32 16.54 3.3
74.63 67.74 13.5 0.87 1.30 0.26 17.51 13.13 2.6
56.91 73.35 14.7 0.43 0.87 0.17 20.43 15.08 3.0
83.37 94.59 18.9 0.87 1.74 0.35 21.40 17.30 3.5
52.90 76.20 15.2 1.74 2.61 0.52 15.10 13.10 2.6
69.70 83.40 16.7 1.00 1.30 0.26 30.60 30.60 6.1
69.70 69.70 13.9 0.40 1.30 0.26 9.20 13.60 2.7

0.90 0.90 0.18
0.90 1.30 0.26
0.90 1.30 0.26
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yu =40.1268+0.9700x

yu =40.1268+0.6819x

Kernel

yl =16.8448+0.5004x

yl =16.8448+0.6819x

X(Ca.ΥΓ3),mg/L

Fig. 1. Kernel and support for Ca. Input data is on x axis and output data on y axis. 
Fig. 1. Kernel and support for Ca. Input data is on x axis and 
output data on y axis.
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Fig. 3 shows the measured data as x axis, output data as y 
axis, the kernel and also the support. In Fig. 4, the triangular 
fuzzy number for the crisp value K = 0.434 mg/L is shown for 
the range of the confidence interval (h = 0–1) and also the out-
put value interval using trapezoidal membership function.

Application 3 for Mg
Step 1

Kernel equations:

y x
y x

−

+

= +

= +

5 472 0 4375
6 2916 0 7944
. . ,
. .

 (19)

Step 2
Support equations:

y x
y x

−

+

= +

= +

5 4720 0 2875
7 5499 0 9532
. . ,
. .

 (20)

Fig. 5 shows the measured data as x axis, output data as y 
axis, the kernel and also the support. In Fig. 6, the triangular 
fuzzy number for the crisp value Mg = 14.6 mg/L is shown for 
the range of the confidence interval (h = 0–1) and also the out-
put value interval using trapezoidal membership function.

5. Conclusions

Knowledge of the underground water quality is very 
important for agricultural and human activities. The spread 

of the measured irrigation water ions due to inherent mea-
surements errors is significant in evaluating water quality. 
Introducing uncertainty and fuzzy logic analysis to the mea-
sured values can supply results with certain confidence level.

The trapezoidal model has the advantage of inclusion 
of measured data for every level of confidence and has the 
following property: data kernels are included into estimated 
kernels and data supports are also included into estimated 
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Fig. 3. Kernel and support for K. Input data is on x axis and out-
put data on y axis.
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Fig. 2. Kernel and support for Ca = 59.91 mg/L.
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Fig. 4. Kernel and support for K = 0.434 mg/L.
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Fig. 6. Kernel and support for Mg = 14.6 mg/L.
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supports. Besides, the new two-phase model has the advan-
tage of using only four unknown quantities during each 
phase, in contrast with Bisserier model that uses eight. 
Arithmetic results of the Bisserier and the suggested model 
converge and the difference between quantitative error 
indicators is close to 0.0002. In the case of measurement 
observations, station association is achieved, even for small 
samples and it can be extended for the shorter time series, 
due to fuzzy correlation of the two measurement points.
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