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a b s t r a c t
Soil moisture is important for its role in the soil surface energy balance, since it can control the avail-
ability of latent heat flux, the crop development and yield production. Assessing soil moisture, even 
with the recent wide-spread application of the dielectric devices is a time consuming and laborious 
endeavor. Thus, this study evaluates the capability of soil water content predicted from remote sens-
ing to indicate the soil/canopy water content at short time and space scale, through comparisons with 
daily soil moisture data determined in situ, using dielectric devices. Daily aqua moderate resolution 
imaging spectroradiometer normalized difference vegetation index (NDVI) and the diurnal (daytime 
and nighttime) land surface temperature (DLST) difference are employed to retrieving daily volumet-
ric soil moisture content (θ) at Sparta experimental field, during the growing season (May–October), of 
the years 2010, 2011, 2012 and 2014. The concept of apparent thermal inertia (ATI), based on the DLST 
data, is used for estimating the remotely sensed top soil moisture saturation index (SMSI). Daily soil 
moisture content (θSMSI) is then obtained from ATI maximum- and minimum-value and the volumetric 
saturated and residual soil moisture content, θsat and θres, respectively, and is compared with the exper-
imental values of volumetric soil moisture content (SM) measured at various depths (10, 20, 30, 40, 60, 
80 and 100 cm). Simple relationships are also calibrated between SM and DLST or ATI or NDVI during 
the years 2010, 2011 and 2014. These are tested for predicting θ (θDLST or θATI or θNDVI, respectively) 
during the year 2012. First, θSMSI, as well as, θATI or θDLST or θNDVI predict θ satisfactorily, as compared 
with the measured SM. Hence, they can offer a considerable guidance toward applying a rational 
and sustainable irrigated agriculture and other related fields. The predictions of θ are also especially 
tested, during the summer period (June–August) and the obtained results are equally satisfactory. 
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1. Introduction

Soil moisture is an important parameter in hydrolog-
ical modeling that influences the energy transfer between 
the land surface and the atmosphere by controlling the par-
tition of available energy, further affecting the climate. Soil 

moisture determination is of paramount importance for a 
rational application of irrigated agriculture, especially in arid 
or semi-arid regions, where water scarcity and low quality 
waters may seriously affect crop development and produc-
tivity. Despite their reliability, conventional point measure-
ments are complex, labor-demanding, time-consuming and 
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hence expensive. The recent development and wide-spread 
application of the so-called dielectric sensors which exploit 
the amazing feature of water’s dielectric constant to be excep-
tionally high (~80), while all other soil’s constituents expose 
dielectric constant values not larger than 5, made the whole 
process of SM determination much easier. However, even 
this methodology cannot be used in large areas, since the 
spatial and temporal variations of soil properties, terrain and 
vegetation cover, make the selection of representative field 
sites difficult. It is in this sense, that remote sensing method-
ologies are nowadays moving fast to fill this gap. In contrast 
with the field methods, remote sensing is an effective tool 
for estimating soil moisture and drought monitoring at vari-
ous scales, because of large coverage, and multispectral and 
multitemporal observations from satellite sensors. Although 
the physical principles upon which the remote sensing pre-
diction of SM values is obtained are well posed, nonetheless 
there is always the need for their calibration and verification 
by comparisons with SM values obtained directly from in 
situ measurements. 

Estimating soil moisture from remotely sensed data has 
covered a wide spectrum ranging from visible to microwave 
bands. The basis of retrieving soil moisture from microwave 
remote sensing data is the correlation between soil moisture 
and dielectric characteristics of the target and radar back-
scatters [1]. The method can be used either at day or at night 
and even under cloudy skies due to its penetration capability 
[2]. Recently, the soil moisture active–passive L-band micro-
wave radiometer has been designed to measure soil moisture 
with 4% volumetric accuracy at 40 km spatial resolution [3]. 
Despite the benefits of microwave methods, optical and ther-
mal methods are also fundamental in remote sensing of soil 
moisture, because of their capability for providing high spa-
tial resolution maps, in particular when compared with spa-
tial resolution (>10 km) available from microwave sensors. 

Soil temperature is a key variable in the land surface pro-
cess, since it affects the energy and water cycle of the land–
atmosphere system and it is depended on the soil moisture 
and vegetation cover. Inversely, a lot of studies have indi-
cated that soil moisture is depended on soil temperature 
and vegetation status. Thus, at optical and thermal infrared 
domains, land surface temperature (LST), vegetation index 
(i.e., NDVI) and albedo could provide information about the 
condition of soil moisture content. Thermal inertia (TI) is a 
physical variable describing the impedance of the medium 
(the soil in this case) to variations of temperature and is 
defined as TI = ρKc , where K is soil thermal conductivity 
(W m–1 K–1), ρ is soil bulk density (kg m–3) and c is soil heat 
capacity (J kg–1 K–1). When TI values are high, the variation of 
temperature is small for a given transfer of heat, while when 
TI values are low, the variation of temperature is high for the 
same transfer of heat. In addition, the specific heat capacity 
of water being equal to 4.18 kJ kg–1 K–1 is much higher than of 
dry soil (e.g., 0.8 kJ kg–1 K–1) and as a consequence, high soil 
moisture values lead to high TI values of soil, which result 
in lower diurnal temperature fluctuation. The research for 
modeling TI is still an ongoing challenge, focusing mainly in 
the improvement of its analytical expressions [4–9] or its rou-
tinely use, for estimating SM in bare soil and sparsely vege-
tated areas [4,8,10–12]. Due to the difficulty of measuring ρ, K 

and c, TI has been approached from the estimations of appar-
ent thermal inertia (ATI), by using remote sensing data, as 
proposed by Price [4]. Various methods have been referred to 
estimating SM either based upon ATI [8,13,14] or based upon 
DLST or NDVI or their combination in the ‘triangle method’ 
(developed first by Price [15]) [9,16–18]. 

This study evaluates the capability of volumetric soil 
water content predicted from various remote sensing data 
to indicate the soil/canopy water content at short time and 
space scale through comparisons with actually measured 
in situ (by dielectric devices) soil moisture data. Thus, 
daily aqua moderate resolution imaging spectroradiometer 
(MODIS) normalized difference vegetation index (NDVI) 
and the diurnal (daytime and nighttime) land surface tem-
perature (DLST) difference are used to estimating daily volu-
metric soil moisture content (θ) in an olive orchard at Sparta, 
during the growing period (May–October), of the years 2010, 
2011, 2012 and 2014. Daily θ, based on the concept of TI, is 
estimated from DLST and the soil moisture saturation index 
(SMSI) and is compared with the experimental values of 
volumetric soil moisture content (SM) measured at various 
depths (10, 20, 30, 40, 60, 80 and 100 cm). Simple relationships 
between SM and DLST or ATI or NDVI are also calibrated, 
during the years 2010, 2011 and 2014 and they are tested for 
predicting θ, during the year 2012.

2. Data and methods

2.1. Data

In this study, soil volumetric water content measurements 
(SM) taken from an olive orchard at the rural area of Sparta (lat-
itude 37°04′N, longitude 22°05′E and altitude 0.212 km), during 
the growing season (May–October), of the years 2010, 2011, 
2012 and 2014 were used. Soil moisture monitoring tubes had 
been properly installed, in order to measure SM at 10, 20, 30, 
40, 60, 80 and 100 cm depths (SM10, SM20, SM30, SM40, SM60, SM80 
and SM100, respectively) using the ML2 dielectric device. More 
details about the collection and monitoring of soil moisture 
and other soil attributes, as well as information about the irri-
gation regime and the irrigation water quality being used, can 
be found in Bourazanis and Kerkides [19,20]. The ML2 theta 
probe is an impedance sensor with an operating frequency of 
100 MHz. It consists of an input–output cable, probe body and 
a sensing head. The sensing head has an array of four cylindri-
cal rods, 60 mm long and 3 mm in diameter. Three outer rods 
form a triangle, with the fourth in the center. The outer rods 
are connected to the instrument ground and form an electri-
cal shield around the central rod, which transmits the signal in 
continuation from the probe body. The sensing head is inserted 
into the soil and behaves as an additional section of the internal 
transmission line of the entire probe body. The ML2 measures 
the difference in voltage amplitude between the sensor body 
and the section in the soil, which is dependent on the imped-
ance of the medium between the sensing rods. This single volt-
age is then related to the soil dielectric constant (εs) as:

εs V V V= + − +1 07 6 4 6 4 4 72 3. . . .  (1)

where V is the measured voltage with values between 0 and 
1 V (Delta-T Devices Ltd., Cambridge, UK, 2007). This V range 
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corresponds to an approximate water content between 0 to 
0.5 m3 m–3 and to a maximum value of εs equal to 33 [21,22]. 
The volumetric soil moisture (θ) is determined from εs by a 
simple calibration relationship of the form:

θ ε= +c ds  (2) 

where c and d are soil-specific fitting parameters. Detailed 
descriptions on dielectric sensors calibration and other 
related issues can be found in Kargas and Kerkides [23,24].

Remotely sensed data obtained by the MODIS, during 
the growing period of the years 2010, 2011, 2012 and 2014 
were also used in this study. The MODIS sensors with spa-
tial resolutions of 250, 500 and 1,000 m, depending on the 
spectral band, provide 1 day and 1 night image under clear 
sky conditions. MODIS LST ‘represents the radiometric tem-
perature related to the thermal infrared radiation emitted 
from the land surface observed by an instantaneous MODIS 
observation’ [25,26]. Aqua passes from south to north over 
the equator at about 1:30 am and 1:30 pm (local solar time) 
at each day and thus, the daytime and the nighttime LST 
records represent measurements corresponding to around 
1:30 am and 1:30 pm (local solar time). The MYD11A1 MODIS 
Aqua land product (version 5), was used, which offers daily 
daytime (LSTday) and nighttime (LSTnight) LST data stored on 
a 1-km spatial resolution and gridded in the sinusoidal pro-
jection [27]. 

The MODIS product (MYD09GA) data, with band 1 
(red wavelength) and band 2 (near-infrared wavelength), 
were used to calculate daily NDVI at 500 m resolution in 
the selected station of Sparta, during growing periods of the 
years 2010, 2011, 2012 and 2014. NDVI represents the com-
bination of its normalized difference formulation and use of 
the highest absorption and reflectance regions of chlorophyll 
and was estimated by the following equation [28]: 

NDVI NIR RED
NIR RED

=
−
+

 (3)

where RED and NIR represent the spectral reflectance mea-
surements in the red and near infrared regions, respectively.

2.2. Methods 

This study focuses on the estimation of daily soil mois-
ture content from various remote sensing data and the evalu-
ation of the resulting estimates by their comparisons with SM 
experimental data averaged, as daily means for each depth. 
In all analyses, the data of 2010, 2011 and 2014 are used for 
the calibration procedure, while 2012 data are kept for the 
validation procedure. In the analysis, soil moisture content 
is estimated, either from the SMSI, expressed as a function 
of maximum and minimum ATI (based upon DLST), or 
from DLST or ATI or NDVI by using calibrated predicting 
equations. 

2.2.1. Apparent thermal inertia

TI can be approached from the estimation of ATI, when 
using remote sensing data. ‘Since the Apparent Thermal 
Inertia (ATI) presents the temporal and spatial variability of 

soil moisture’ [7], the estimation of soil water content in this 
analysis is based on the reason that high (low) ATI values cor-
respond to maximum (minimum) soil water content. The ATI 
is estimated according to the following equation [29]:

ATI = 
1
DLST

0C
a−

 (4)

where ATI is apparent thermal inertia (K–1), a0 is the surface 
albedo, DLST is the diurnal land surface temperature differ-
ence (K) estimated as: DLST = LSTd – LSTn (LSTd is daytime 
land surface temperature (K), LSTn is nighttime land surface 
temperature (K)) and C is solar correction factor estimated as:

C = sinJ sinj (1 – tan2J tan2j) + cosJ cosj arcos (–tanJ tanj) (5)

where J is latitude and j is the solar declination.
In this study, the surface albedo a0 over the olive trees is 

taken equal to 0.17 [30].

2.2.2. Estimation of soil moisture content based on apparent 
thermal inertia and soil moisture saturation index 

SMSI is determined as:

SMSI = res

sat res

θ θ
θ θ
−
−

 (6) 

where θ is the volumetric soil moisture (m3 m–3) (i.e., θ = Vw/Vo, 
where Vw represents the volume of water and Vo represents 
the volume of the soil sample, in which Vw is retained), θres 
is the residual volumetric soil moisture (m3 m–3) and θsat is 
the volumetric soil moisture (m3 m–3) at saturation. These val-
ues are commonly used in empirical, analytical expressions 
[31,32] of the soil moisture retention curve (SMRC) θ = f(H), 
which relates θ with the soil water pressure head, H, and 
appears to be a fundamental soil hydraulic property. The val-
ues of the SMSI curve, as a function of H, which ranges from 
minus infinity, where θ = θres, to zero, where θ = θsat, that is, 
in the interval [0,1] and can be considered as a cumulative 
probability density function, and its derivative d(SMSI)/dH 
reveals the soil pore size distribution, directly related to the 
other fundamental soil hydraulic property, the hydraulic 
conductivity. SMRCs are usually determined in the labora-
tory, in disturbed or undisturbed soil samples, using Haines 
apparatuses or Richards’ pressure cells and exhibit the hys-
teresis phenomenon, where for the same value of H/or θ, an 
infinite number of θ/or H values are possible, depending on 
the wetting–drying processes’ initiation and evolution [33]. 
A schematic representation of a typical SMRC is shown in 
Fig. 1, where the values θ = θsat and θ = θres are shown and the 
phenomenon of hysteresis is also exhibited.

Based on the rationale that the maximum and minimum 
value of ATI, derived from remote sensing, correspond to the 
residual and saturated soil moisture content (θres and θsat, 
respectively), the SMSI0 can be determined as: 

SMSI = 
ATI ATI

ATI ATI
 0

min

max min

−
−

 (7)



E. Taktikou et al. / Desalination and Water Treatment 99 (2017) 59–7162

Considering that SMSI0 equals to SMSI and combining 
Eqs. (6) and (7), the soil moisture content θSMSI is estimated as 
a linear function of SMSI0:

θSMSI = SMSI0 × (θsat – θres) + θres (8)

In this study, ATImax and ATImin are estimated from all the 
data of the calibration years (2010, 2011 and 2014) and the 
saturated (θsat) or the residual (θres) soil moisture content is 
determined under laboratory conditions, as equal to 0.415 or 
0.119 m3 m–3, respectively.

2.2.3. Calibration of predicting expressions for soil moisture 
content based on diurnal land surface temperature difference or 
normalized difference vegetation index or apparent thermal inertia 

A lot of studies have indicated that soil moisture is 
depended on soil temperature and vegetation status. 
Therefore, NDVI and LST could provide information about 
the condition of soil moisture content. Especially, soil mois-
ture and NDVI have been reported as well correlated, during 
growing periods [34]. 

Thus, in this study, daily experimental values of SM for 
each depth and the average value from all depths are linearly 
regressed with the corresponding DLST or NDVI or ATI. The 
results from the linear regressions of the form y = ax (determi-
nation coefficient (R2) and slope (a)) are taken into account to 
form predicting expressions for soil moisture content, as a lin-
ear function with zero intercept of ATI or DLST or NDVI (for 
each depth or the average value from all depths). The predicting 
expressions are obtained from the data during the growing sea-
son (May–October) of the calibration years 2010, 2011 and 2014.

2.2.4. Validation of soil moisture content predictions 

The calibrated predicting equations of soil moisture, as 
a function of DLST or ATI or NDVI, are used for estimating 

soil moisture (θDLST, θATI and θNDVI, respectively) for each 
depth and the average value from all depths, during the year 
2012 (validation year). In addition, θSMSI (based on ATImin and 
ATImax calculated from the data of the calibration period) is 
estimated during the year 2012. The estimated soil moisture 
values (θSMSI, θDLST, θNDVI and θATI) are compared with the cor-
responding values of SM measured at various depths and the 
average value from all depths. This validation procedure is 
also extended to the summer period.

The comparisons are evaluated by the results of linear 
regressions (determination coefficient (R2) and slope (a)) and 
‘difference measures’ (root mean square error [RMSE], mean 
bias error [MBE], mean absolute error [MAE] and the new 
refined index of agreement [RIA]). The indices which mea-
sure ‘differences’ are employed for evaluating the predicting 
methods, since ‘they are trying to identify and quantify the 
errors, while the determination coefficient represents only 
the quality of model’ [35]. ‘The refined index of agreement 
(RIA) is in general, more rationally related to model accuracy 
than are other existing indices’ [35]. RIA is dimensionless, 
bounded by –1.0 and 1.0 and is a reformulation of Willmott’s 
index of agreement (IA), which was developed in 1980s. It 
must be also noticed that ‘the average-error measures based 
on absolute values of differences (like MAE) are, in general, 
preferable to those based on squared differences, like the 
RMSE’ [36]. The ‘difference measures’ are determined as: 

MAE = −
=∑1 1n
P Oi ii

n  (9)

MBE = −( )=∑1 1n
P Oi ii

n  (10)

RMSE = −( )=∑1 1
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where Pi is the estimated value by the model and Oi is the 
observed one.

3. Results

Fig. 2 shows the time evolution of the predicted volu-
metric soil moisture content (θSMSI) and the volumetric soil 
moisture content measured at the depth of 10 cm (SM10) or 
its average value from all depths (SMAv), during the growing 
season (May–October) of the calibration years. It is evident 
that the best agreement exists between θSMSI and the surface 
volumetric soil moisture. 

Similarly, the time evolution of the DLST difference or 
the ATI or the NDVI and the experimental values of SM10 
and SMAv are apparent in Fig. 3 or 4 or 5, respectively, during 

Fig. 1. Schematic representation of the soil moisture retention 
curve in which the values of θres and θsat are shown. The phe-
nomenon of hysteresis, where for the same value of H, an infinite 
number of θ values are possible depending on the drying– 
wetting procedure initiation and evolution is also exhibited.
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the period May–October of the calibration years. In general, 
the time evolution of SM10 or SMAv presents a rather similar 
pattern with the time evolution of DLST and ATI, while the 
values of NDVI seem to show a time lag, when they are com-
pared with the corresponding SM10 or SMAv.

As a consequence, predicting expressions of soil mois-
ture content for each depth and the average value from 
all depths are calibrated through the corresponding lin-
ear regressions between SM10 (or SM20 or SM30 or SM40 or 
SM60 or SM80 or SM100 or SMAv) and DLST (or ATI or NDVI). 

Fig. 3. Time evolution of diurnal land surface temperature (DLST) difference and values of volumetric soil moisture content measured 
at depths of either 10 cm (SM10) or its average value from all depths (SMAv), during the calibration years 2010, 2011 and 2014.

Fig. 2. Time evolution of predicted (by SMSI) volumetric soil moisture content (θSMSI) and values of volumetric soil moisture content 
measured at the depth of 10 cm (SM10) or its average value from all depths (SMAv), during the calibration years 2010, 2011 and 2014.
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The results of the linear regressions with zero intercept of 
the form y = ax (determination coefficient (R2) and slope 
(α)) between SM in various depths and DLST or ATI and 
NDVI, during the growing period are shown in Table 1. All 
slopes are found statistically significant (at 99.9% confidence 

level) and the R2 are quite high in all regressions, including 
even the ones with NDVI. For example, the linear regres-
sions between SM10 and DLST (or ATI or NDVI) resulted in 
slopes equal to 0.866 (or 253.478 or 0.302, respectively) and 
R2 equal to 0.851 (or 0.898 or 0.888, respectively). The linear 

Fig. 4. Time evolution of apparent thermal inertia (ATI) and values of soil moisture content measured at depths of 10 cm (SM10), or its 
average value from all depths (SMAv), during the calibration years 2010, 2011 and 2014.

Fig. 5. Time evolution of normalized difference vegetation index (NDVI) and values of soil moisture content measured at depths of 
10 cm (SM10), or its average value from all depths (SMAv), during the calibration years 2010, 2011 and 2014.
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regressions between SMAv and DLST (or ATI or NDVI) have 
shown slopes equal to 1.004 (or 290.539 or 0.346, respec-
tively) and R2 equal to 0.910 (or 0.937 or 0.928, respectively). 
All the slopes found for the growing period are almost simi-
lar, with the ones obtained from the calibrations based upon 
data of the summer period [37].

All predicted (either by SMSI or by the previously referred 
predicting equations based on DLST, or ATI or NDVI) soil 
moisture contents (θSMSI, θDLST, θATI, θNDVI, respectively) are 
compared with the values of SM, measured at various depths 
and the average value from all depths, during the validation 
year. The results of their linear regressions (R2 and a) and 
their ‘difference measures’ (RMSE, MBE, RIA and MAE) are 
shown for the growing period in Table 2. Considering the 
special interest for predicting θ during the summer period, 
the methods (as calibrated during the growing period) are 
also evaluated for the period June–August and the results are 
presented in Table 3.

During the growing period, the comparisons between 
θSMSI or θDLST or θATI or θNDVI and measured SM in various 
depths show very high values of R2 (0.92 to 0.97) and very 
small values of MAE (<4.0% or <5.0% or <4.4% and <4.5%, 
respectively), at all depths (Table 2). On the contrary, RIA 
reveals quite large variation at different depths, with the 
greater values (0.396 or 0.328 or 0.341 and 0.325, respectively) 
achieved at the depth of 10 cm. Negative RIAs are observed 
in the comparisons of SM against θDLST at all depths greater 
than 20 cm, while they are limited (starting from the depth of 
60 cm) in the rest of the comparisons. Thus, focusing on the 
comparisons revealing important positive RIAs, it seems that 
MBE is smaller than 6% only when θSMSI or θDLST are compared 
with SM10 or SM20, while higher MBEs are observed from the 
comparisons between θATI (or θNDVI), either with SM10 (19% or 
20%, respectively) or SM20 (12% or 13%, respectively). RMSEs 
are high, when comparing θSMSI or θDLST or θATI or θNDVI either 
with SM10 (28% or 30% or 32% or 34%, respectively) or with 
SM20 (23% or 27% or 24% or 26%, respectively). The mea-
sured soil moisture content estimated as average value from 
all depths (SMAv), seems to be predicted from θSMSI with a 
high R2 (0.963) and small errors (MAE, MBE and RMSE are 
equal to 2.79%, –1.64% and 19.30%, respectively), although 
RIA appears to be very small (0.02). SMAv is predicted from 
θDLST or θATI or θNDVI with slightly worse R2 (0.956, 0.963, 0.961, 

respectively) and slightly greater MAE (4.16%, 3.00%, 2.64%, 
respectively), MBE (10.73%, –8.17%, –10.17%, respectively) 
and RMSE (25.36%, 20.15%, 21.17%, respectively). The RIAs 
are found small, as well. Generally, according to the results of 
comparisons of θSMSI, θDLST, θNDVI and θATI with SM at different 
depths, an appreciable approximation of experimental val-
ues of soil moisture at depth of 10 cm is apparent, while the 
predictions by θSMSI are more accurate than θDLST, θNDVI, θATI. 
SMAv is roughly predicted by θSMSI or θDLST or θATI or θNDVI, 
with θSMSI, being the best predictor.

During the summer period, the comparisons between 
θSMSI or θDLST or θATI or θNDVI and measured SM in various 
depths show very high values of R2 ranging from 0.91 to 0.98 
(Table 3). The MAEs are found small (less than 3.7% or 5.0% 
or 3.5% or 4.7%, respectively). RIAs are quite different for 
each depth, being positive only in the comparisons with SM10 
(0.38 or 0.31 or 0.41 or 0.29), respectively. For the 10 cm depth, 
the MBEs are equal to 5.7%, or 6.2% or –13.9% or –18.2% and 
the RMSEs are equal to 26.1%, or 26.7% or 27.6% or 34.1%, 
respectively. Overall, the values of θSMSI or θATI or θDLST may 
predict SM for the 10 cm depth, with θNDVI being the worst 
predictor. Additionally, SMAv is roughly predicted from θSMSI, 
during summer.

Fig. 6 shows the time evolution of SM10, and the predicted 
θSMSI and θATI (a) or θDLST and θNDVI (b), during the year 2012. 
Similarly, Fig. 7 shows the time evolution of SMAv, and the 
predicted θSMSI and θATI (a), θDLST and θNDVI (b), during the 
year 2012. It is evident that θSMSI and θATI have a rather more 
similar time evolution with SM10, as compared with θDLST and 
θNDVI. The time evolution of SMAv is somehow approached by 
θSMSI, but less satisfactorily by θATI or θDLST or θNDVI. Generally, 
it is evident that θSMSI is in a better agreement with SM as 
compared with θATI or θDLST or θNDVI and all predictions of θ 
are in a better agreement with SM10. 

4. Discussion 

This study evaluates the comparisons of daily soil mois-
ture content estimated from various MODIS remote sensing 
data (DLST and NDVI) with SM measured at 10, 20, 30, 40, 60, 
80 and 100 cm depths and the average value from all depths, 
at a small temporal and spatial scale. The study focuses on 
the growing- (or summer-) period, since the best results for 

Table 1
Results of the linear regressions (determination coefficient [R2] and slope [α]) between soil moisture (SM) in various depths and diur-
nal land surface temperature (DLST) difference or apparent thermal inertia (ATI) a normalized difference vegetation index (NDVI), 
during the growing period

Depth (cm) R2 α R2 α R2 α

SM against DLST SM against ATI SM against NDVI

10 0.851 0.866 ± 0.020 0.898 253.478 ± 4.839 0.888 0.302 ± 0.006
20 0.889 0.920 ± 0.018 0.918 266.503 ± 4.487 0.920 0.319 ± 0.005
30 0.893 1.064 ± 0.021 0.925 308.825 ± 4.960 0.917 0.368 ± 0.006
40 0.890 1.003 ± 0.020 0.917 290.304 ± 4.919 0.904 0.345 ± 0.006
60 0.931 1.112 ± 0.017 0.943 319.207 ± 4.447 0.935 0.380 ± 0.006
80 0.909 0.976 ± 0.018 0.931 298.690 ± 4.327 0.914 0.334 ± 0.006
100 0.910 1.089 ± 0.020 0.929 313.754 ± 4.912 0.916 0.373 ± 0.007
Average 0.910 1.004 ± 0.018 0.937 290.539 ± 4.255 0.928 0.346 ± 0.006
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predicting SM from remote sensing data have been referred 
generally, during this period [34]. Furthermore, the olive 
orchard at Sparta has been selected, as a representative sam-
ple of bare soil and sparsely vegetated region, for applying 
the ATI concept [4,8,11,12]. 

The evaluation of the resulting predictions based upon 
θSMSI indicates that there is a reasonably good agreement of 
the experimental values of soil moisture averaged, as daily 
means for the depth of 10 cm (Tables 2 and 3). Especially, 

SM10 is predicted quite accurately, either during the grow-
ing period (RIA = 0.40, MAE = 4.04%, MBE = –0.12%, 
RMSE = 27.70% and R2 = 0.93), or the summer period 
(RIA = 0.38, MAE = 3.64%, MBE = 5.72%, RMSE = 26.10% 
and R2 = 0.94). θSMSI may also predict SM20, rather satisfac-
torily (as compared with SMs at the other depths), during 
the growing season (RIA = 0.27, MAE = 3.08%, MBE = 2.74%, 
RMSE = 22.94% and R2 = 0.95). The measured soil moisture 
content estimated as average value from all depths seems 

Table 2
Results of the linear regressions (determination coefficient [R2] and slope [α]) and ‘difference measures’ (root mean square error 
[RMSE], mean bias error [MBE], refined index of agreement [RIA] and mean absolute error [MAE]) between predicted (by SMSI or 
ATI, or DLST or NDVI) soil moisture contents (θSMSI, θATI, θDLST, θNDVI, respectively) and values of volumetric soil moisture content 
(SM) measured at various depths, during the growing period of the validation year

Depth (cm) R2 α RMSE (%) MBE (%) RIA MAE (%)

θSMSI against SM

10 0.928 0.952 ± 0.025 27.700 –0.118 0.396 4.041
20 0.952 1.002 ± 0.021 22.935 2.743 0.269 3.076
30 0.956 0.938 ± 0.019 21.196 –4.566 0.097 3.082
40 0.957 1.025 ± 0.020 21.497 4.213 0.013 2.497
60 0.967 0.888 ± 0.015 19.939 –10.618 –0.515 3.409
80 0.961 1.064 ± 0.020 22.609 7.811 –0.167 2.877
100 0.963 0.908 ± 0.017 20.249 –8.122 0.080 3.196
Average 0.963 0.973 ± 0.018 19.292 –1.639 0.018 2.787

θDLST against SM
10 0.916 0.919 ± 0.026 29.783 –3.013 0.328 4.490
20 0.936 1.025 ± 0.025 27.309 5.990 0.021 4.116
30 0.946 1.113 ± 0.025 29.242 13.855 –0.304 4.908
40 0.947 1.147 ± 0.025 31.241 17.201 –0.388 4.877
60 0.967 1.108 ± 0.019 23.286 11.446 –0.605 4.180
80 0.960 1.164 ± 0.022 29.156 17.986 –0.455 4.399
100 0.960 1.107 ± 0.021 25.262 12.189 –0.210 4.397
Average 0.956 1.091 ± 0.022 25.360 10.728 –0.318 4.159

θATI against SM
10 0.927 0.776 ± 0.020 31.990 –18.646 0.341 4.406
20 0.951 0.857 ± 0.018 24.415 –12.016 0.216 3.298
30 0.956 0.931 ± 0.019 21.360 –5.298 0.085 3.124
40 0.957 0.956 ± 0.019 20.899 –2.781 0.062 2.801
60 0.967 0.911 ± 0.016 19.200 –8.322 –0.487 3.224
80 0.960 0.990 ± 0.019 20.297 0.350 –0.067 2.570
100 0.962 0.915 ± 0.017 20.141 –7.369 0.089 3.166
Average 0.963 0.909 ± 0.017 20.147 –8.170 –0.054 2.998

θNDVI against SM
10 0.921 0.760 ± 0.021 33.565 –20.380 0.325 4.511
20 0.944 0.844 ± 0.019 26.113 –13.490 0.250 3.152
30 0.957 0.916 ± 0.018 21.284 –7.298 0.181 2.796
40 0.958 0.939 ± 0.018 20.801 –5.096 0.140 2.567
60 0.964 0.894 ± 0.016 20.248 –10.348 –0.399 2.749
80 0.960 0.942 ± 0.018 20.143 –4.951 0.054 2.267
100 0.960 0.897 ± 0.017 21.223 –9.543 0.182 2.841
Average 0.961 0.892 ± 0.017 21.168 –10.168 0.070 2.638
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to be roughly predicted from θSMSI, during the growing sea-
son. The R2 is high (0.96), the errors are small (MAE = 2.79%, 
MBE = –1.64%) or reasonable (RMSE = 19.29%), but the esti-
mated RIA is quite small (0.02). These results are similar and 
rather slightly better, as compared with the results obtained 
for 10 sites in Europe [13] (R2 or RMSE range in the interval 
[0.54, 0.88] or [3.9%, 35.7%], respectively) or for 8 sites in 
China [14] (R2 ranges from 0.17 to 0.85). The prediction of 
SM20 and SMAv from θSMSI seems to be slightly worse, during 
summer (Table 3). 

The evaluation of all predictions shows that θSMSI is the 
best predictor, but θDLST, θATI and θNDVI may also predict SM10, 
rather satisfactorily, during the growing season (Table 2). The 
estimated RIA, MAE and R2 are of the same order, as the ones 
obtained for the θSMSI predictions, but RMSE is higher (29.78%, 
31.99% and 33.57%, respectively) and MBE is higher in θATI 
and θNDVI predictions (–18.65% and –20.38%). It seems that 
the experimental values of SM10 may be approached quite 
satisfactorily by simple parameters such as the DLST and the 
ATI (which incorporates as extra parameter, only the surface 

Table 3 
Results of the linear regressions (determination coefficient [R2] and slope [α]) and ‘difference measures’ (root mean square error 
[RMSE], mean bias error [MBE], refined index of agreement [RIA] and mean absolute error [MAE]) between predicted (by SMSI or 
ATI, or DLST or NDVI) soil moisture contents (θSMSI, θATI, θDLST, θNDVI, respectively) and values of volumetric soil moisture content 
(SM) measured at various depths, during the summer period of the validation year

Depth (cm) R2 α RMSE (%) MBE (%) RIA MAE (%)

θSMSI against SM
10 0.941 1.016 ± 0.031 26.100 5.719 0.384 3.638
20 0.965 1.060 ± 0.024 21.248 7.446 –0.041 2.709
30 0.972 1.005 ± 0.021 17.152 0.923 –0.425 2.361
40 0.973 1.101 ± 0.022 20.853 10.403 –0.652 2.518
60 0.977 0.922 ± 0.017 16.235 –7.834 –0.800 2.866
80 0.961 1.057 ± 0.026 21.740 12.976 –0.789 2.519
100 0.964 0.898 ± 0.021 15.698 –3.254 –0.577 2.508
Average 0.966 0.992 ± 0.022 16.858 3.290 –0.436 2.329

θDLST against SM
10 0.938 1.017 ± 0.031 26.675 6.237 0.316 4.036
20 0.968 1.130 ± 0.025 24.588 14.708 –0.304 3.733
30 0.981 1.243 ± 0.021 29.806 24.604 –0.721 4.867
40 0.982 1.283 ± 0.021 33.204 28.494 –0.828 5.081
60 0.983 1.189 ± 0.019 24.621 18.928 –0.868 4.357
80 0.961 1.157 ± 0.028 32.686 27.952 –0.892 4.907
100 0.962 1.095 ± 0.026 27.596 22.254 –0.775 4.713
Average 0.967 1.117 ± 0.028 26.333 20.333 –0.688 4.213

θATI against SM
10 0.940 0.827 ± 0.025 27.635 –13.917 0.415 3.455
20 0.965 0.907 ± 0.021 19.864 –8.018 0.004 2.588
30 0.971 0.997 ± 0.021 17.179 0.121 –0.431 2.387
40 0.972 1.027 ± 0.021 17.142 2.966 –0.599 2.186
60 0.976 0.945 ± 0.018 15.737 –5.494 –0.787 2.690
80 0.961 0.984 ± 0.024 17.126 5.124 –0.742 2.059
100 0.964 0.905 ± 0.021 15.844 –2.491 –0.577 2.508
Average 0.966 0.926 ± 0.021 16.092 –3.599 –0.441 2.348

θNDVI against SM
10 0.907 0.778 ± 0.030 34.102 –18.221 0.292 4.718
20 0.945 0.863 ± 0.025 25.183 –12.208 –0.058 2.757
30 0.962 0.950 ± 0.023 19.637 –4.867 –0.404 2.275
40 0.962 0.975 ± 0.023 19.545 –2.436 –0.592 2.145
60 0.963 0.898 ± 0.021 20.307 –10.290 –0.777 2.569
80 0.962 0.915 ± 0.022 19.109 –3.346 –0.723 1.916
100 0.962 0.866 ± 0.021 19.330 –7.571 –0.529 2.253
Average 0.960 0.885 ± 0.022 20.921 –8.458 –0.442 2.352
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albedo), although the latent heat, the sensible heat and other 
atmospheric parameters on the surface, are not considered. It 
must be mentioned that Zhenhua and Yingshi [9] reported pre-
dictions by ATI worse than the ones estimated by their model 
of TI, which was improved by taking into account the effect of 
vegetation. They also suggested the depth of 20 cm, as the most 
appropriate for estimating SM, although most of researchers 
consider calibrations at each depth. A possible prediction of 
SM by DLST and ATI was already apparent from the high val-
ues of the determination coefficients estimated from the linear 

regressions between SM at each depth and either DLST or ATI, 
during the calibration years (Table 1). High R2 (ranging from 
0.89 to 0.94) were also obtained from the linear regressions 
between SM and NDVI at each depth, although a time lag of 
NDVI was apparent, as compared with SM time evolution 
(Fig. 5). The latter can be attributed on one hand to increasing 
NDVI when SM is increasing, during the growing period and 
on the other hand to the 16-d composition of the daily NDVI 
(i.e., the 16-d average is the average of the current day and the 
following 15 d). It has already been reported by Wang and Xie 

(a)

(b)

Fig. 6. Time evolution of the experimental values of volumetric soil moisture content measured at depth of 10 cm (SM10) and predicted 
by SMSI and ATI (a), or DLST and NDVI (b), soil moisture contents (θSMSI and θATI or θDLST and θNDVI, respectively), during the valida-
tion year 2012.
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[16] that ‘R between NDVI and soil moisture peaks when NDVI 
has 0–5 day time lag over measured soil moisture in a semi-arid 
climate’. The results from the evaluation of NDVI employed 
to predicting SM are quite reasonable (Table 2), as compared 
with the results (R2 ranging from 0.33 to 0.77) referred in 
Schnur et al. [38] when using ‘deseasonalized time series of soil 
moisture and deseasonalized time series of NDVI with a 5-day 
time lag’. The results are also better than those estimated from 
the correlations between SWAT simulated soil moisture and 

NDVI, during the leaf falling period of three kinds of forest (R2 
varied from 0.55 to 0.62). Moreover, θDLST, θATI and θNDVI verify 
roughly the experimental values of SM20 and less satisfactorily 
the values of SMAv, during the growing or summer period. 

5. Conclusions

This study focuses on the estimation of daily soil mois-
ture content from MODIS remote sensing data, during the 

(a)

(b)

Fig. 7. Time evolution of the experimental values of volumetric soil moisture content as its average value from all depths (SMAv) and 
predicted by SMSI and ATI (a), or DLST and NDVI (b), soil moisture contents (θSMSI and θATI or θDLST and θNDVI, respectively), during 
the validation year 2012.
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growing- (or summer-) period. The evaluation of all resulting 
predictions, indicate that there is an appreciable proximity of 
the experimental values of soil moisture averaged, as daily 
means for the depth of 10 cm. 

More analytically, θSMSI seems to predict quite accurately 
SM10, either during the growing period, or the summer 
period, as compared with θDLST, θATI and θNDVI. θSMSI may also 
predict SM20, rather satisfactorily, during the growing season. 
SMAv seems to be roughly predicted from θSMSI, during the 
growing season. The prediction of SM20 and SMAv from θSMSI 
is rather slightly worse, during summer.

The evaluation of all predictions shows that θSMSI is the 
best predictor, but θDLST, θATI and θNDVI may also predict 
SM10, rather satisfactorily, during the growing- (or summer-) 
period. Moreover, θDLST, θATI and θNDVI verify roughly the 
experimental values of SM20 and less satisfactorily the values 
of SMAv, during the growing- (or summer-) period.
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