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a b s t r a c t
Effluent treatment for food industry wastewater is a subject of growing concern among the scientific 
community. Synthetic dyes are a major case and their presence can disturb aquatic environments 
and introduce highly toxic potentials to the ecosystem, even at low concentrations. In this study, the 
chemical kinetics of a degradation process was studied for the treatment of a Tartrazine (E102) and 
Brilliant Blue (E133) solution by different methods. First, the efficiency of eight advanced oxidative 
processes systems was investigated in their treatment. The most efficient result was obtained in a 
UV-solar/H2O2/TiO2 system, which reached a degradation percentage of 99.36% in 180 min. Second, a 
23 factorial planning was used to enhance quantitative degradation in this system and a similar result 
(99.21%) was reached in 90 min with the optimal conditions. The kinetics of this experiment was fitted 
in a pseudo-first-order model and the rate constant (k) estimated as 0.0541 min–1. An artificial neural 
network was developed for the experiment to describe the degradation behaviour over time with a 
minimum error. Chemical oxygen demand and conductivity were estimated in order to assure the 
environmental quality of the samples. A Lactuca sativa bioassay revealed an upturn in LC50, the concen-
tration to inhibit 50% of the organism growth, from 39.31% (v/v) to 87.73% (v/v). The result indicates 
a highly favourable reduction in acute phytotoxicity, that coupled with quantitative efficiency, makes 
the proposed use of solar light as radiation source and improvements in water quality parameters a 
suitable tool for large-scale synthetic dye treatment.
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1. Introduction

Dyes are largely applied in the food industry in order 
to improve the visual quality of the products, which is an 

important factor for consumers [1]. Synthetic dyes are 
favoured due to their high stability to light, oxygen, heat and 
pH variation and also providing homogeneous colouration 
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when applied [2]. The concern relies on the fact that around 
10%–20% of these substances are released during the manu-
facturing process and are easily incorporated into water bod-
ies [3,4], compromising watercolour, light penetration and 
oxygen dissolution, consequently affecting the maintenance 
of aquatic life [1,5]. Some even represent a threat to human 
health [6] suspected of presenting carcinogenic, neurotoxic 
and genotoxic potential [1,5,7]. Many countries have already 
banned the use of some synthetic food dyes [7,8] such as 
Brilliant Blue (BB) and Tartrazine (TT), which have been pro-
hibited in many European countries and regulated in many 
others around the world [9].

TT or E102 (Fig. 1(a)) is an azo anionic dye highly solu-
ble in water used to apply a lemon-yellow colour to cakes, 
jams, bubble gums, cookies, ice cream, sauces and sweets in 
general and in the soft drink industries [10–13]. TT is pointed 
out to be the most allergenic azo dye to human [2,11] and 
the acceptable daily intake for TT is 7.5 mg per kg of body 
weight [13]. BB or E133 (Fig. 1(b)) is a weak organic acid, 
highly ionic from the triphenyl methane group [14]. For 
many years, BB has been applied to jams, syrups, dairy and 
bakery products, sports drinks and it is also largely used in 
the formulation of drugs [15,16]. The mixture of TT and BB 
can produce different shades of green for drinks, candies and 
chewing gums [17]. 

Food dyes are high absorbents of light in the visible 
region of spectra, which makes them suitable to be detected 
by UV–visible spectroscopy, a simple and low-cost tech-
nique [7,17]. TT presents maximum absorbance peak at 
425 nm while BB at 630 nm [6,17], thus there is no spectral 
overlay. However, Antakli et al. [17] noted an interference in 
the absorbance peaks of TT and BB when mixed in solution, 
explaining a slight difference between the referenced values 
of wavelength and the wavelength at the highest absorbance 
peaks.

Due to complexity, high molecular weight and chem-
ical stability, the removal of these molecules represents a 
challenge which requires alternative treatment technolo-
gies [11,18]. Synthetic dyes removal has been explored by 
different technologies, such as adsorption, chemical coagu-
lation, membrane separation, electrochemical degradation 
and advanced oxidative processes (AOPs) [18,19]. AOPs are 
chemical oxidation processes based on free radicals gener-
ation, mainly hydroxyl (•OH) and peroxyl (•OOR) radicals, 
that can attack non-selective organic molecules oxidising 
them to CO2, water and other by-products. The most studied 

systems include potent oxidising agents such as H2O2, O3 and 
semiconductors such as TiO2 and ZrO2 associated with UV 
radiation, sound radiation and transition metals [20,21]. The 
oxidising agent absorbs energy from light decomposing in 
free radicals through diverse mechanisms [22]. Nevertheless, 
the association of oxidising species can promote a synergistic 
effect speeding up the generation of radicals [23]. 

Many studies have suggested that AOPs can enhance the 
toxicity of treated effluents due to the generation of more 
harmful intermediate species, characterising the treatment 
as ineffective [24,25]. Ecotoxicity tests represent an alterna-
tive tool to evaluate the potential risks associated with free 
radicals and partially oxidised species generated along the 
process [24,26], relating the side effects of the development 
of the organisms with the presence of harmful species [27]. 
Phytotoxicity is the study of the potential inhibition of chem-
ical pollutants on seeds germination and plants growth [28]. 
Lactuca sativa L. (lettuce) is among the most used vegetables 
in phytotoxicity assays with a good reproducibility and low-
cost resource [29].

Oxidising photochemical processes involve a complexity 
of reactions that is often difficult to be described by simple 
linear correlations, requiring more sophisticated techniques 
to achieve fitter kinetic models. Artificial neural networks 
(ANNs) are computer-based systems able to learn from the 
set of data and map input–output relationship. Recently, 
they have been increasingly applied to simulate kinetics of 
complex AOP systems in water treatment and even in dec-
olourisation of samples [30–32], as ANNs do not require 
the physical and mathematical description of the phenom-
ena involved in the process, solving the proposed problems 
by machine learning techniques [33]. They are pointed out 
as a great solution for complex non-linear problems which 
involve several inputs, helping to understand the interaction 
among the parameters and providing models where ANNs 
are able to predict effectively the statistical and mathematical 
behaviour of the systems. 

In this study, UV-solar and UV-C based AOP systems 
were tested in the degradation of TT and BB samples. A facto-
rial planning was performed in order to improve degradation 
time in the best of the AOP systems studied. Statistical studies 
were also carried out to study the influence of the variables 
in the process. A kinetic study was conducted with regression 
analysis of the data and compared with a mechanistic model 
developed for the process. Additionally, an ANN model was 
generated to describe the dyes degradation since it adjusts 

Fig. 1. Molecular structure of Tartrazine (a) and Brilliant Blue (b).
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itself to face several variations on the response, maintaining 
precision as much as possible. Environmental quality param-
eters and phytotoxicity bioassays were analysed in order to 
guarantee the treatment efficiency. 

2. Materials and methods

The treatment of the samples was conducted in 300 mL 
cylindrical glass recipients with 5.5 cm in height and 9.0 cm 
in diameter. The samples were prepared with 20 mg L–1 of TT 
and 20 mg L–1 of BB (F. Trajano Aromas e Ingredientes Ltda, 
Brazil) with distilled water. For each recipient, 250 mL of 
dyes solution was used. All the analyses were carried out in a 
UV–Vis spectrophotometer Spectroquant Pharo 300, and the 
absorbance peaks were read at wavelengths of 257, 411 and 
627 nm for aromatics, TT and BB, respectively. Total degra-
dation percentage of both dyes (%) was used as the response 
in the discussions.

During the treatments, the samples were subjected to 
magnetic stirring and carried out simultaneously to be col-
lected alternately in order to not interfere in the system 
volumes. All the samples containing TiO2 were decanted 
for 24 h in the dark and centrifuged at 3,500 rpm for 20 min 
before being analysed to ensure the absence of suspended 
TiO2. Solar experiments were conducted at the same day 
time (9 am to 3 pm) and location (Recife, Brazil; 8°04′03″ S; 
34°55′00″ W), during cloudless days to minimise variations 
in sunlight intensity. The temperature ranged from 30°C to 
38°C in the solar treatments, measured after 30 min intervals 
until the end of the experiments. The UV-C light experiments 
were conducted in a bench photocatalytic reactor as shown in 
Fig. 2, preheated for 20 min to stabilise the UV-C emissions. 

The reactors contained one germicide lamp (Ecolume 
30W) and were internally coated with reflective material and 
supplied with air circulation to regulate internal temperature. 
Global light intensity was estimated to be about 6 W m–2. The 
temperature of the samples was monitored during the treat-
ments. In the solar radiation set of experiments, they ranged 
between 35.0°C and 41.3°C during the process. In the reactor 
set of experiments, the temperature ranged from 22.1°C to 
26.7°C. According to Borges et al. [34], the continuous inci-
dence of radiation can heat the system and disfavour radi-
cal global rates, reducing the rate-limiting step. The heat 

promoted in the reactor systems was not excessive due to 
outdoor room cooling. 

2.1. Preliminary tests

Preliminary tests were carried out during 360 min under 
solar radiation and a germicide lamp (UV-C radiation) in a pho-
tocatalytic reactor, analysing two variables: the presence of H2O2 
and TiO2, as shown in Table 1. The time set for the experiments 
was based on previous tests in similar systems. Experiments 
with no radiation source (dark chamber) and direct photolysis 
were also conducted as blanks to evaluate the influence of the 
radiation source and the presence of oxidant and photocatalyst 
in order to find the system with the best performance. 

In all the experiments, 404 mg L–1 of AEROXIDE© TiO2 
P25 (Evonik Degussa Brasil Ltda, São Paulo, Brazil) in sus-
pension and 9.2 mmol L–1 of H2O2 (Coremal | Pochteca©, 
Recife, Brazil) were used for 250 mL of the sample. TiO2 
amount was based on previous tests, while the H2O2 amount 
was calculated by the degradation reaction stoichiometry of 
the two dyes mixture (total 53 μL of H2O2 50% v/v) and it had 
the value duplicated. 53 μL were added at the beginning of 
the treatment and again 53 μL were added after 180 min in 
all cases. TiO2 was applied as a catalyst and it was recovered 
at the end by centrifugation. The samples were collected after 
1, 5, 10, 15, 20, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 
and 360 min. 

2.2. Factorial experimental design to the UV-solar/H2O2/TiO2 
system

A 23 factorial planning was made for the best degradation 
performance system obtained in the preliminary tests. The 
studied parameters were H2O2, TiO2 and time as shown in 
Table 2. 

A complete factorial planning was carried out with 11 
experiments. The central point (0, 0, 0) was run in triplicate to 
estimate the experimental error. The samples were collected 
before and after the treatments. 

The statistical treatment of the data was run in Statistic 
Experimental Design 6.0 for the factorial planning experi-
ments. The statistical significance of the variables from the 

Fig. 2. Bench photocatalytic reactor.

Table 1
AOP investigated systems for the preliminary tests

No radiation source Solar radiation UV-C radiation

H2O2 H2O2 H2O2

TiO2 TiO2 TiO2

H2O2/TiO2 H2O2/TiO2 H2O2/TiO2

– Photolysis Photolysis

Table 2
Variable codes for the 23 factorial planning

Code H2O2 (mmol L–1) TiO2 (mg L–1) Time (min)

–1 9.2 404 60
0 18.4 606 90

+1 27.6 808 120
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factorial planning and a linear model was investigated, based 
on the variables adjusted to the experimental points. The 
response surface (RS) analysis was also conducted in order 
to verify the relation between the variables and the observed 
results. An empirical equation was obtained by the software.

2.3. Statistical and kinetic modelling study

2.3.1. Regression analysis of dyes degradation

The data of the best performance experiment from the 
factorial planning were adjusted to kinetic models of zero 
order, pseudo-first-order and pseudo-second-order through 
Microsoft Excel 2010© and a kinetic constant (Eq. (1)) and 
half-life time (Eq. (2)) were estimated for the best fitting the 
pseudo-first-order model.
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2.3.2. Mechanistic modelling of dyes degradation

A mechanistic model was developed for the reaction 
based on the known steps and the kinetic constants obtained, 
best fit on a pseudo-first-order model could be compared 
with the previous one obtained by regression analysis 
methodology. 

2.3.3. Kinetic modelling using ANNs

The model used to describe the degradation behaviour 
of the best experiment obtained from the factorial planning 
was developed in Unity 3D©, using C# language. The method 
applied was a 1:4:1 network type (one input, four hidden lay-
ers and one output) in which the variable time of degradation 
was used as the input data. The training method is based on 
particle swarm optimization, where a small disturbance is 
induced in the weights and bias to verify if the resulting net-
work fits well with the experimental data. All trainings were 
performed on a regular desktop computer.

2.4. Environmental quality parameters 

The best degradation performance experiment obtained 
from the factorial planning was repeated under the same 
conditions in 10 vessels (2.5 L of dye solution). The samples 
were collected at intervals of 1, 5, 10, 15, 20, 30, 45, 60, 75, 90, 
105, 120, 135 and 150 min.

Chemical oxygen demand (COD) and conductivity were 
determined for the samples before and after 120 min of treat-
ment. The pH of the samples was also measured. 

2.5. Acute phytotoxicity bioassay

Solutions of 100%, 75%, 50% and 25% (v/v) of the sam-
ples before and after the best performance treatment were 
prepared in quintuplicate with distilled water. 4 mL of each 

solution was used to wet filter papers containing 15 Lactuca 
sativa L. seeds in Petri plates. The plates were stored for 120 h 
at 22°C in a laboratory incubator. The positive control was 
carried out under the same conditions with distilled water 
and the negative control with mercurial sulphate (Hg2SO4) 
at 5 mmol L–1. After incubation, the germinated seeds were 
quantified and length of their roots measured. Lethal con-
centration for 50% of the population (LC50) was determined 
according to Dutka [35] and Greene et al. [36] methodologies.

3. Results and discussion

3.1. Preliminary tests

The experiments conducted in the absence of a radiation 
source did not reach significant degradation after 6 h in any 
of the systems studied as expected. Since there was no radi-
ation source, the radicals could not be formed at significant 
rates and complex organic dyes, such as TT and BB, pre-
sented high resistance and stability [37].

3.1.1. UV-C experiments

The results for UV-C preliminary experiments are in 
Fig. 3.

Direct photolysis with UV-C radiation presented 14.13% 
and 1.45% of degradation for dyes and aromatics, respectively, 
after 360 min of treatment. UV-C/H2O2 system presented 
99.96% for dyes degradation and 70.44% for aromatics after 
360 min. UV-C/TiO2 system exhibited 89.90% and 81.29% 
of dye and aromatics degradation each and UV-C/H2O2/
TiO2 system was the most efficient in the reactors providing 
99.71% and 97.82% of degradation in 330 min for dyes and 
aromatics, respectively. The results for UV-C/H2O2 were not 
satisfactory for the aromatic compounds degradation and the 
UV-C/TiO2 did not reach more than 90% of degradation after 
the proposed time for the tests. 

3.1.2. UV-solar experiments

The results for the tests settled under solar radiation are 
presented in Fig. 4.
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Fig. 3. Preliminary tests for the UV-C based experiments in the 
bench reactor.
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No degradation was obtained with photolysis. According 
to Teixeira and Jardim [38], the photolysis process is expected 
to be less efficient in comparison with the other systems, as 
there is no generation of high oxidising radicals, taking the 
oxidising pathway of the targeted compounds much more 
energetic and less prone to occur. In addition, UV-solar/H2O2 
system exhibited only 8.03% and 1.06% of dyes and aro-
matics degradation percentage after 360 min. This result, as 
expected, was less expressive than the UV-C system, because 
the solar light that reaches the Earth surface is composed 
mainly by UV-A (400–320 nm) and UV-B (320–280 nm), 
which has less energetic radiations than UV-C and H2O2 has 
an extension almost null in λ > 290 nm, 99% of solar radiation 
[39,40]. This subsequently explains the low efficiency of H2O2 
in forming radical species under UV-solar radiation. 

TiO2 systems’ performance under solar radiation pre-
sented better results than under UV-C radiation in general. 
The UV-solar/TiO2 system exhibited a degradation percentage 
of 99.59% and 99.63% for dyes and aromatics, respectively, in 
240 min while the UV-solar/TiO2/H2O2 system reached 99.36% 
and 99.69% in only 180 min, half of the time proposed for the 
tests. The enhancement in degradation activity of UV-solar/
TiO2/H2O2 systems, when compared with UV-solar/TiO2 is in 
accordance with previous reports in the literature. H2O2 has a 
synergistic effect in TiO2 activity, improving the generation of 
radicals by absorbing UV-light in a wider wavelength range 
[41]. TiO2 has a wider band gap energy extension, being pho-
to-activated at λ < 390 nm [42], taking much more advantage 
of solar radiation than H2O2 alone being more efficient in the 
UV-A and UV-B range (UV-solar systems) than in the UV-C 
(reactor chamber systems). 

Optimal results were expected for the reactor exper-
iments due to UV-C radiation being more energetic than 
UV-solar radiation, however, the solar experiments are char-
acterised by a higher spreading of light than in the designed 
reactor. In addition, the potency of the lamp is well-known 
for decreasing along with time and the reactor design is 
another point to be taken into consideration when explain-
ing lower efficiency in UV-C experiments. After 360 min, the 
emissions were much weaker than in the beginning of the 
test, while solar emissions were continuous and less intermit-
tent in a short time if not affected by external factors, despite 
being less energetic. Abeledo-Lameiro et al. [41] have also 
reported similar results which refer to the higher exposition 

surface for AOPs in outdoor experiments, providing higher 
efficiency of solar experiments when compared with germi-
cide lamps. 

The criteria for choosing the best performance system 
was reaching a high degradation percentage of compounds 
(>99%) in the shortest possible time. According to that crite-
ria, UV-solar/H2O2/TiO2 brought up the best results (99.36% 
of dyes degradation and 99.69% of aromatics in 180 min) and 
also represents a great cost of operation saving when com-
pared with the UV-C/H2O2/TiO2 (99.71% of dyes and 97.82% 
of aromatics in 330 min), since the radiation source is natu-
ral solar light. The limiting conditions of the chosen system 
are the dependence on the hour of the day and the weather, 
therefore, all of the experiments were carried out on sunny 
days.

3.2. Factorial experimental design to the UV-solar/H2O2/TiO2 
system

A 23 factorial planning was conducted for the best perfor-
mance system, UV-solar/H2O2/TiO2. Table 3 summarises the 
results of the factorial planning according to pre-established 
assays. 

The largest degradation percentage was obtained in assay 
8, when the greater amounts of H2O2 and TiO2 were used, 
reaching high degradation percentage of dyes in 120 min.

The results for the degradation of assay 8 sampled at dif-
ferent times are exposed in Table 4.

As reported by the table, the system reached high deg-
radation percentage after 90 min, by which time the samples 
were visually colourless. As expected, since there is a signif-
icant rate of radical generation due to the presence of TiO2, 
the aromatics continued to be removed after the dyes have 
reached a high degradation percentage as it is observed due 
to the presence of remaining TiO2 and radiation. 
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Fig. 4. Preliminary tests for the UV-solar based experiments.

Table 3
Degradation results for the 23 factorial planning in the UV-solar/
H2O2/TiO2 system

Assay H2O2 

(μL)
TiO2 

(mg)
Time 
(min)

Aromatics 
degradation 
(%)

TT and BB 
degradation 
(%)

1 – – – 61.93 61.67
2 + – – 63.95 77.38

3 – + – 76.25 82.63

4 + + – 78.01 94.21

5 – – + 80.56 86.61

6 + – + 86.95 98.34

7 – + + 89.88 99.31

8 + + + 96.70 99.80

9 0 0 0 82.69 98.01

10 0 0 0 85.73 98.07

11 0 0 0 81.36 97.85

Note: Bold values represent the best results for the factorial planning 
experiment.
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3.3. Statistical and kinetic modelling study

3.3.1. Empirical statistical model

An analysis of the variables significance is demonstrated 
in a Pareto chart (Fig. 5). 

According to the chart, it is possible to conclude that all 
the variables have statistical significance when considering 
them both individually and the interactions among them. 
Time was the most significant variable followed by TiO2 and 
H2O2 each individually. 

Fig. 6 shows the RS analysis for the degradation of dyes 
combining the variables effect in pairs. 

In all the charts, it is possible to observe the increase in vari-
able amounts causing a subsequent increase in the degradation 
percentage of dyes, reflecting the statistical significance and 
assuring they were not in excess for the process. The excess of 
H2O2 could diminish the efficiency of the process by modifying 
selectivity and promoting undesired reactions [43]. It could also 
lead to quenching the hydroxyl radicals and the excess of TiO2 
in suspension could compromise the light harvesting and con-
sequently, the global generation rate of radicals [44]. According 
to Figs. 5 and 6, time was the most significant variable in the 
process and it was not in excess since the degradation continues 
to be promoted over time as shown in the RS analysis. 

From Statistic Experimental Design 6.0, a linear model 
was used to describe the degradation obtained in the experi-
ment according to the statistical significance of the variables, 
as shown in Eq. (3). 

D X X X X X= + + + −90 4842 8 5212 6 4938 4 6272 2 9538
2 2 2 2

. . . . .time TiO H O TiO ttime

H O TiO O time H O TiO t− − −1 9212 1 8838 0 8888
2 2 2 2 2 2 2 2

. . .X X X X X X XH iime

 (3)

The chart for the residual analysis is represented in Fig. 7 
by a red line along the experimental data obtained in the fac-
torial planning. The residual model presented a reasonable 
adjustment for the experiment executed.

3.3.2. Regression analysis of dyes degradation

Regression analyses were conducted under the conditions of 
assay 8. The data were adjusted to kinetic models of zero-order, 
pseudo-first-order and pseudo-second-order through Microsoft 
Excel 2010© and the rate constants were estimated. The R2 cor-
relation coefficient used to opt for an adequate fitting model 
was more suitable for pseudo-first-order kinetics (R2 = 0.943). In 
accordance with other reports, the kinetics of AOP degradation 
systems are more complex and could not be described by zero- 
order kinetic model due to dependence on different reaction 
steps, such as radical generation rates, radiant energy balance, 
mass transfer and distribution area of absorbed radiation [30,31]. 
Since the concentrations of radiation cannot be measured and 
considering (a) the reaction limiting step is the formation of rad-
icals and (b) TiO2 and H2O2 concentrations are in excess during 
most of the reaction time, the rate reaction follows the pseu-
do-first-order kinetics [45]. R2 for zero-order and second-order 
models were 0.684 and 0.917, respectively. Fig. 8(a) displays the 
adjustment made with regression analysis for a pseudo-first-or-
der model during the degradation experiment and Fig. 8(b) dis-
plays an adjustment reducing the time to satisfy condition (b). 

It can be observed that the 90 min model provides a 
better fitting (R2 = 0.998) for the kinetic model since the 
adjustment considers the time interval where H2O2 and TiO2 
could be considered in excess. The rate constant was esti-
mated at k = 0.0541 min–1 and the half-life reaction time was 
t1/2 = 12.81 min. 

3.3.3. Mechanistic modelling of dyes degradation

The reactions based on AOP photo-oxidation pathways 
are exhibited in Eqs. (4)–(7) each of them with their respective 
rate constants (k0, k1, k2 and k3) are as follows:

Table 4
Degradation results for the best result experiment from 23 
factorial planning in the UV-solar/H2O2/TiO2 system

Time (min) Aromatics 
degradation (%)

TT and BB 
degradation (%)

1 5.74 5.35

5 17.10 26.54

10 28.53 35.65

15 41.18 49.40

20 52.54 61.61

30 61.43 77.14

45 71.04 90.84

60 80.20 95.25

75 85.65 98.35

90 83.71 99.21

105 92.83 99.26

120 95.31 99.37

135 98.33 99.37

150 99.89 99.57

Note: Bold values present the first result where colour was completely 
removed.

Fig. 5. Pareto chart of the 23 factorial planning experiments.
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H O OHUV
2 2 02 → ( )• k   (4)

H O HO H O H O2 2 2 2 1+ → + ( )• • k  (5)

• → ( )OH + dyes degradation products 2k  (6)

TiO + dyes degradation products  2 adsorbed
UV → ( )k3  (7)

Since the degradation of dyes is described by Eqs. (6) 
and (7), the following assumptions can be made:

d
d
C
t

r r= − −1 2  (8)

Fig. 6. Response surfaces for the degradation of dyes according to the variables TiO2 and H2O2 (a), time and H2O2 (b) and time and 
TiO2 (c).

Fig. 7. Residual analysis obtained for TT and BB.
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d
d

OH dyes dyesC
t

k k= −     −  
•

1 2  (9)

where [TiO2] is 1 since it is in the solid state. 
Thus, in order to get results one expression must be 

found for [•OH]:

d OH

d
OH H O H O

•

•
  = −     −  t

k k3 2 2 0 2 2
 (10)

Rearranging the differential equation, we obtain:

d OH

d
OH H O H O

•

•
  +     = −  t

k k3 2 2 0 2 2
 (11)

Since H2O2 is in excess over the time, then the coeffi-
cients of the differential equation are constants providing the 
solution:
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where C0 is he initial value for [•OH]. Finally, it is obtained 
that:
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Substituting in Eq. (9):
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Grouping the terms, we obtain a simple final expression 
for the AOP system dependant on each step of reaction.

d
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As it can be observed by the mechanistic analysis, Eq. (18) 
describes a first-order reaction and the rate constants can be 
compared with regression analysis results. The application 
of this simple model was based on more complex principles, 
corroborates with the kinetic principles known for AOP.

k k
k

k k1 0

3
2

10 0398−








 = = −. min  (19)

where k represents the global rate constant.
The model did not present a considerable fitting for the 

experimental data with a relative error of 26.4% compared 
with the value obtained in the regression analysis. As stated by 
Teixeira and Jardim [38], the degradation of large organic mol-
ecules with different functional groups in AOPs systems can 
be more commonly associated with pseudo-first-order models. 
Bibak and Aliaabadi [46] studied the removal of Malachite Green 
by photolysis and photocatalysis with TiO2 and the experiments 
were better adjusted for pseudo-first-order kinetics as well as 
Vianna and Tôrres [47], which also points the degradation of 
other synthetic food dyes to be of pseudo-first-order kinetics by 
photo-oxidation methods. Since the adjustment does not pres-
ent very accurate results for a large range of the experiments, 
ANNs were used in order to achieve an optimised adjustment. 

3.3.4. Kinetic modelling using ANNs

To guarantee the reliability and fastness of the ANN anal-
ysis, the core and the axon values were normalised and the 

(a) (b)

Fig. 8. Pseudo-first-order model for TT and BB degradation during the whole experiment (a) and adjusted to 90 min to improve the 
correlation with experimental data (b).
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input and output adjusted between –1 and 1 for all set of data. 
The characteristics of the training for input and output data 
are described in Table 5. [C/C0] represents the decolourisation 
efficiency as the result of the training when the time is varied. 

Several topologies were tested and the training took 
around 3 h to be finished. The optimised result was defined 
by the lower mean absolute error obtained for UV-solar/TiO2/
H2O2. The ANN model for the degradation data of dyes is in 
Fig. 9.

It is possible to observe the input (time of degradation), 
the weight values (above the connection lines between the 
neurons) and the bias (the arrows pointing to the neurons). 
The weight represents the values which multiply the output 
values of a neuron before the value gets to the next neuron 
and the bias, the values added to the neuron inputs. The lower 
mean absolute error obtained by the data were 0.013554697. 
This model is able to predict the degradation response for the 
solar AOP process under the given conditions.

Fig. 10 shows the training result for the dyes degradation 
in comparison with the experimental data. 

It is possible to observe that the adjustment was reached 
with low absolute mean error representing accurately the 
experiment. A good generalisation could be achieved by the 
training to predict the removal of TT and BB and more than 
121,000 interactions were necessary. The ANN model can 
detect subtle change on experimental conditions since all the 
experimental points fit considerably with the network. Then, 
the model generalises the set of data well.

3.4. Environmental quality parameters 

Additional analyses to enforce the purposes of the treat-
ment were carried out to investigate the by-products of the 
AOP system. Table 6 shows the results of environmental 
quality parameters tested. 

COD, which represents the total organic matter degraded 
by a chemical oxidant, is reduced by at least 91.35% from the 
raw sample indicating an improvement in water quality since 
the number of oxidisable pollutants is reduced. The COD of 
the sample after the treatment could not be quantified due 
to the detection limit of the analysis method (10.00 mg L–1 
minimum). AOPs reaction pathway leads to the formation of 
ionic species from the functional groups of organic molecules 
[20] such as sulphate ion and nitrogen oxides. The conduc-
tivity analysis confirms the generation of ionic species after 
the degradation, exhibiting an approximate four times rise in 
sample conductivity. The pH of the sample before the treat-
ment was estimated at 6.34 and after the treatment at 6.12. 
The smooth reduction in the pH after the treatment can be 
explained by the generation of ionic species and CO2 during 
the radicals attack to organic molecules of dyes [20,21].

3.5. Acute phytotoxicity bioassay

The LC50 was calculated from the assay with samples 
before and after the treatment and Q tests were applied to 
statistical outliers in data. The stalk percentage growth of the 
Lactuca sativa in the samples was compared with the growth 
obtained in the positive control with distilled water. LC50 values 

Table 5
Range of input and output parameters

Variable Range

Input layer
Time (min) 0–150
[C0] (mg L–1) 39.41

Output layer
[C/C0] (mg L–1) –0.0114 to 0.9691

Fig. 9. Artificial neural network model for TT and BB degradation.

Fig. 10. Resulting neural network training for TT and BB 
degradation.

Table 6
Analysis of the environmental quality parameters for the samples 
before and after the treatment

Sample COD (mg L–1) Conductivity (μS cm–1) pH

Before AOP 115.6 20.71 6.34
After AOP BDLa 85.50 6.12

aBDL, below detection limits (~10 mg L–1).
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obtained were 39.31% ± 2.57% and 87.73% ± 7.95% for the non-
treated and treated samples, respectively. These results indi-
cate a concentration of 39.31% (v/v) of the non-treated sam-
ple to inhibit 50% of stalk growth would be required, while 
87.73% (v/v) of treated sample would cause the same effect. 
The treatment is efficient not only to degrade the compounds 
but also to reduce acute phytotoxicity of water solutions and 
more phytotoxic by-products were not formed.

4. Conclusions

It was possible to study different systems and set the 
best performance system among them for the removal of 
TT and BB samples and note the synergistic effect of H2O2 
and TiO2 association. UV-solar/H2O2/TiO2 system also rep-
resents a minimisation of costs and a cleaner alternative to 
effluent treatment. The factorial planning could enhance the 
performance of the experiments shortening the total time 
under different amounts. An appropriate adjustment could 
be made by ANN modelling to predict the degradation of the 
system under fixed conditions along with time. The phyto-
toxicity tests assured the efficiency of the treatment in reduc-
ing the toxic potential of the sample, enhancing the LC50 for 
the treated samples in comparison with the raw solution and 
further analyses corroborate the improvement in the sample 
water quality. From these results, the UV-solar/H2O2/TiO2 
system is proved to be a suitable tool in the removal of TT 
and BB from aqueous solutions.
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