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a b s t r a c t
Water distribution networks design belongs to a class of large combinatorial nonlinear optimization 
problems, involving complex implicit constraints, such as conservation of mass and energy equations, 
which are commonly satisfied by using hydraulic simulation solvers. Recently, many researchers have 
shifted the focus of traditional optimization methods to the use of metaheuristic approaches for han-
dling this complexity. Particle swarm optimization (PSO) is one of the evolutionary algorithms which 
was developed for optimization problems with continuous variables. Also it has been adapted success-
fully in other problems contexts with discrete variables. In this research, a simple modified particle 
swarm optimization (SMPSO) was applied to minimize water distribution networks cost. The SMPSO 
was used as novel factor to decrease inertia weight linearly with time for each iteration to facilitate 
the balance of global and local researches. The SMPSO algorithm was linked to a hydraulic simulator, 
EPANET 2.0. This approach was applied to three benchmark in water distribution network optimi-
zation problems. The results indicate that a significant improvement in performance of PSO could be 
achieved by decreasing inertia weight over the iterations.
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1. Introduction

The efficiency is one of the main elements in designing 
new water distribution networks (WDNs). The optimal 
design of WDNs has been studied comprehensively over 
the past few decades due to its computational and engi-
neering complexity. Most of these studies focused on 
the least-cost optimization. However, it is necessary to 
investigate the reliability of network design to ensure the 
sufficient head. Moreover the existence nonlinear relation 
between flow, head-loss, and discrete variables such as 
pipe diameter in optimal design of WDNs is a highly 
challenging problem.

In the last decade, several new nontraditional optimiza-
tion methods for such non-deterministic polynomial-time 
(NP)-hard problems, which contain nonlinear, constrained, 
non-smooth, non-convex, and multimodal functions, have 
been explored [1]. At first, most of the optimization tech-
niques made some initial solution, then using deterministic 
search methods, until no more reduction in cost took place. 
Therefore, the final solution depended on the initial solution.

Yates et al. [2] stated that either explicit enumeration or 
an implicit enumeration technique such as dynamic pro-
gramming could guarantee the optimal solution to NP-hard 
WDN design problem. For example, in a WDN with 20 num-
ber of pipes and 10 commercially available pipe sizes, the 
total number of solutions is 1020, giving a very wide search 
space. Therefore, the complete enumeration method for real 
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size WDN problems becomes stubborn. Gessler [3] proposed 
a partial enumeration technique in which certain inferior 
solutions were rejected from being evaluated by the hydrau-
lic simulation model. In addition, partial enumeration tech-
niques are difficult to use for the optimal design in large size 
realistic WDNs.

Many studies in literature have focused on minimizing 
the costs of the objective function in optimization of WDNs 
such as linear programming, nonlinear programming (NLP), 
enumeration techniques, heuristic methods, and evolution-
ary techniques. Alperovits and Shamir [4] applied the linear 
programming gradient method that is a linearization model. 
Many researchers [5–7] have developed approaches for 
obtaining the global optimum and dominated by lineariza-
tion technique limitations. Moreover, many researchers [8–13] 
have applied the NLP optimization approach to pipe network 
problems due to the nonlinear nature of these problems. The 
NLP techniques do not guarantee the identification of global 
optimal solution because they depend on the initial solution 
and practice of discrete variables, such as commercial pipe 
diameters, reduces the quality of optimal solution [14].

Additionally, the research applied the stochastic optimi-
zation models such as genetic algorithms (GAs), simulated 
annealing (SA), harmony search optimization (HS), shuf-
fled frog leaping algorithm (SFLA), ant colony optimization 
(ACO), differential evolution (DE), and shuffled complex 
evolution (SCE) in optimal design of WDNs. The search strat-
egy in most of these models is based on the objective function 
values to move to a better solution in successive iterations 
and efficient in handling discrete variables. Some research-
ers [15–24] applied GAs for solving network design prob-
lems. Simulated annealing used by Loganathan et al. [25] 
and Cunha and Sousa [26]. Geem et al. [27], Geem [28], Yazdi 
[29], and Eusuff and Lansey [30] developed the HS method 
and the SFLA. Maier et al. [31] used the ACO approach and 
outperformed GAs both in terms of computational efficiency 
and their ability to find near global optimal solutions. Shie-
Yui Liong [32] and Vasan and Simonovic [14] applied the SCE 
and DE approach, respectively.

Particle swarm optimization (PSO) is one of the evo-
lutionary algorithms, which has proven its possibility and 
performance in solving various optimization problems 
[33–37]. The PSO algorithm was developed by Kennedy and 
Eberhart [38] and inspired by the social behavior of a group 
of migrating birds trying to reach an unknown destination. 
This algorithm with certain modifications was used in this 
research to find solutions for the optimal design in water 
supply networks.

In this study, a simple modified PSO (SMPSO) is intro-
duced initially. This model uses a new constant factor to 
decrease inertia weight linearly using time for each itera-
tion. This strategy can significantly facilitate the balance of 
global and local searches. In the following steps, the per-
formance of this algorithm is evaluated for two standard 
benchmark networks, and the results are compared with the 
previous studies. Also, the sensitive analysis was performed 
for determining the best parameter values of SMPSO algo-
rithm on the network. The optimization problems addressed 
herein linked with hydraulic simulator of EPANET 2.0 [39]. 
The goal is to minimize the cost, with pipe diameter as deci-
sion variables.

2. Optimal design of a water distribution network

The optimal design of a WDN is often noticed as a least-
cost optimization problem. The decision variables are the 
diameters of each pipe in WDN. The optimal solution is 
obtained by minimizing the total cost. For a given layout, 
the source head, elevation and demand values for nodes, 
pipe lengths and pipe roughness are known in advance. The 
objective is to find a combination of different sizes of pipe 
that can satisfy the nodal head constraints at the lowest cost. 
In order to facilitate the comparison of results obtained by 
other authors, the following objective function was used to 
minimize the cost for a WDN by Eq. (1):

F C LD ii

n

iobj = =∑ 1
 (1)

where Di, Li, and CDi are the diameter, the length and the unit 
cost of the i-th pipe, respectively, and n is the total number 
of pipes in the network. Typically, the constraints of WDNs 
optimization include: flow continuity at each node, energy 
conservation in each primary loop, and the minimum allow-
able head requirement at each node. These constraints can be 
mathematically expressed as:
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where qj
in  is the flow entering at node j, qj

out  is the flow leav-
ing at node j towards the downstream nodes, qj is the demand 
at node j, HLi is the head loss in pipe i, npl is the number of 
pipes in a loop, nL is the number of loops in the WDN, Hj 
is the hydraulic head available at node j, Hj

min  is the mini-
mum hydraulic head required at node j, dj is the number of 
demand nodes, and in this context, Dmin and Dmax are the min-
imum and maximum allowable pipe sizes, respectively. The 
loop refers to the closed circuit formed by the pipes. Eq. (2) 
is referred to as the nodal mass balance equation; Eq. (3) is 
referred to as the loop energy balance equation; Eq. (4) is the 
minimum hydraulic head requirement constraint and Eq. (5) 
is the constraint for the pipe diameters.

The head loss in each pipe is the head difference between 
connected nodes, and can be computed using the Hazen–
Williams equation:

HL = ω
α β

αL
C D

qi

i i
i  (6)

where ω is a numerical conversion constant (dependent on 
units); Ci is roughness coefficient of pipe i (dependent on 
material); α and β are regression coefficients.
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Researchers have used different values for the numerical 
conversion constant ω and regression coefficients α and β. 
The higher constant ω, the greater the head loss is and vice 
versa. Thus, an optimal solution with higher value of ω will 
be costlier than solution with lower value of ω [28]. Savic and 
Walters [18] reported the smallest and largest value of ω used 
in the literature as 10.5088 (α = 1.85, β = 4.87) and 10.9031 
(α = 1.852, β = 4.87). Cunha and Sousa [26] and Geem et al. 
[27] used ω = 10.5088 (α = 1.85, β = 4.87). Eusuff and Lansey 
[30] and Shie-Yui Liong [32] coupled their algorithms with 
EPANET 2.0 in which ω = 10.667 (α = 1.852, β = 4.871).

To solve the problem mentioned above, the constrained 
model is converted into an unconstrained one by adding 
the amount of constraint violations to the objective function 
as penalties. Although the conservation of mass and energy 
constraints are satisfied externally via EPANET 2.0 [32], the 
pressure constraint is required to be considered in the penalty 
costs. Thus, the total cost of the network is considered as the 
sum of the network cost and a penalty cost is defined as Eq. (7):

F C LD ii

n

iobj = +
=∑ PF
1

 (7)

The penalty function PF only applies when the pressure 
in any node is less than a predetermined minimal value. For 
nodes with pressure larger than this minimal value, the asso-
ciated individual penalties are vanished, and 1 is used as the 
usual Heaviside step function ϑHeaviside in the explicit expres-
sion for PF as Eq. (8):

PF = −( ) −( )=∑ ϑHeaviside
nd H H a H Hj j j jj

min min. .
1

 (8)

where a is the penalty multiplier that is defined by user and 
in this study is assumed to be 9 × 109.

3. Hydraulic simulator: EPANET 2.0

EPANET 2.0 is a robust model which is used by a large 
community of users in the world in order to run the hydrau-
lic simulations of the WDNs [39]. It combines all the main 
infrastructures of supplying systems, such as gravity and 
pump systems, valves (e.g., relief, pressure reducing, regu-
lating, control and isolation valves), reservoirs (of fixed or 
variable level), by which it is possible to make operating con-
ditions. EPANET 2.0 calculates flow in each pipe, pressure in 
each node, water level in each reservoir and concentration of 
chemicals during the simulation period. It considers the bal-
ance conditions, for a set of equations, using the method of 
gradient and runs static and quasi-steady simulations of the 
hydraulic and water quality situation of pipe network [27].

4. Simple modified particle swarm optimization algorithm

PSO is a promising new optimization technique devel-
oped by Kennedy and Eberhart [38] which models a set of 
potential solutions as a swarm of particles moving about in a 
virtual search space. The method was inspired by the move-
ment and interaction of flocking birds with their neighbors in 
the group. A swarm of P particles optimizes in n-dimension 
search space. Each particle i has position X x x xi

t
i i is= ( , ,..., )1 2  

and velocity V v v vi
t

i i is= ( , ,..., )1 2  at iteration t. Each parti-
cle keeps tracking of its position vector pbest, which has 
achieved the best fitness function so far. The position vector 
gbest, which is the best value of fitness function, obtained by 
any particle so far that is also remembered. The values of the 
fitness function for these are stored. The PSO concept con-
sists of changing the velocity of each particle toward its pbest 
and gbest. Once the velocities are determined, then position 
vectors of the particles will be updated. At these updated 
positions, the fitness function is recalculated and the position 
vectors pbest and gbest are updated. This process continues 
until the given iterations are over. The following equations 
were used, which iteratively modify the particle velocities Vij

t 
and positions Xij

t  at iteration number t: [37,40]
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t
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t

ij
t

ij
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where i = [1, 2,..., P] and j = [1, 2,..., n]. c1 and c2 are accelera-
tion constants and r1, r2 are random numbers between [0,1]. 
The position vector gbest (global best position) and pbest 
(particle best position) are modified during the iteration. 
Proper fine-tuning of the parameters c1 and c2 in Eq. (9) may 
result in faster convergence of the algorithm, and allevia-
tion of the problem of local minima. To control the changes 
in velocity, Clerc [41] introduced the constriction factor into 
the standard PSO algorithm to ensure the convergence of 
the search. The role of inertial weight w in Eq. (9) is con-
trolling the impact of previous velocities on the current one. 
A large inertial weight facilitates global exploration (search-
ing new areas), while a small weight tends to facilitate local 
exploration. Hence, selection of a suitable value for the iner-
tial weight w usually helps in reduction of the number of 
iterations that required to locate the optimum solution [42]. 
Shi and Eberhart [43], Shi and Eberhart [44] suggested that 
the allowable of w changes between 0.4 and 0.9, in standard 
PSO algorithm.

In this research, a SMPSO is present by using a reduction 
factor, wdamp, to adjust the convergence speed of an algorithm 
to find the optimal solution. It is important to determine the 
appropriate value of wdamp, as it reduces w following a linear 
form in each iteration:

w w wt t+ =1 . damp
 (11)

To manage any changes in the particle velocities, the 
relevant upper and lower limits were defined as follows:

Vmin ≤ V ≤ Vmax (12)

The standard PSO algorithm is applicable to continu-
ous problems and cannot use for discrete problems. Various 
approaches were put forward to tackle discrete problems with 
PSO [34,35]. Essentially, this algorithm only takes integer parts 
of flying velocity vector components into account. Following 
the new velocity Vij

t+1, that is an integer, the new position 
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vector components also will be integer (Eq. (13)). As a result, 
the initial position vectors are generated with integer values.

V wV c r ij X c r Xij
i

ij
t t

ij
t t

ij
t+ = + ( ) −( ) + ( ) −1

1 1 2 2round pbest gbest j(( )( )
 (13)

For discrete variables, round() is a function that takes 
the integer part of its argument. The particle velocity is com-
puted by Eq. (13) and follows exactly the limits which are 
established by Eq. (12). Vmax is calculated by Eq. (14):

V X Xmax max min. .= −( )0 5  (14)

where Xmax and Xmin are maximum and minimum diameters 
that can be considered for each network.

5. Testing the benchmark problems 

The performance of developed SMPSO-based model for 
optimization of WDN design problem is evaluated through 
three well-known benchmark case studies: the two-loop net-
work, the Hanoi network, and the Kadu network. For each 
case study, a preliminary sensitivity analysis was performed 
to determine the effective parameter values of the SMPSO 
algorithm on the basis of the range that was suggested by 
Clerc and Kennedy [45].

5.1. Two-loop network

The two-loop network, which is shown in Fig. 1, was orig-
inally presented by Alperovits and Shamir [4]. The network 
has seven nodes and eight pipes with two loops and is fed 
by gravity from a reservoir with a 210 m fixed head. Nodal 
demands and elevations are given in Table 1. The pipes are all 
1,000 m length with the assumed Hazen–Williams coefficient 
of 130. The required minimum head of other nodes is 30 m 
above ground level. There are 14 commercial diameters for 
selection and costs for each pipe size are given in Table 2. 
Thus, the problem search space consists of 148 different net-
work designs, which made this illustrative example difficult 
to solve [18].

The results of this study were compared with the pre-
vious researches, which solved this problem by different 
evolutionary algorithms such as GA, SA, SFLA, HS, and SS 
(Table 3). According to Table 3, the cost obtained due to the 
optimization with PSO algorithm is $419,000, which is the 
minimum cost reported for this network so far and obtained 
after 3,100 times of number of function evaluation (NFE) 
(Fig. 2), whereas other methods reached this cost after at 
least 3,215 times of NFE. The constant of Hazen–Williams 
equation (ω, Eq. (6)) was considered 10.667, 10.5088, 10.5088, 
and 10.55879 for PSO, GA, SA, and HS algorithms, respec-
tively. The increase in ω coefficient will increase the head 
loss of the pipes, so, larger pipe diameters should be selected. 

Fig. 1. Layout of the two-loop network.

Table 1
Node demands and elevations for two-loop network

Node number Elevation (m) Demand (m3/h)

2 180 100
3 190 100
4 185 120
5 180 270
6 195 330
7 190 200
Reservoir 1 210 –1,120

Table 2
Pipe sizes and costs for two-loop network

Pipe number Diameter (mm) Cost ($/m)

1 25.4 2
2 50.8 5
3 76.2 8
4 101.6 11
5 152.4 16
6 203.2 23
7 254.0 32
8 304.8 50
9 355.6 60
10 406.4 90
11 457.2 130
12 508.0 170
13 558.8 300
14 609.6 550

Table 3
Results for design of two-loop network by various researchers

Model Cost ($) NFE ω

GA [18] 419,000 250,000 10.5088
SA [26] 419,000 25,000 10.5088
SFLA [30] 419,000 11,323 10.667
HS [28] 419,000 5,000 10.5879
SS [46] 419,000 3,215 10.667
SMPSO (This work) 419,000 3,100 10.667
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The obtained diameters of pipes and pressure of nodes for 
this network are shown in Table 4.

The most important step in starting the optimization is 
determining the best values for the algorithm parameters. 
For this purpose, in the two-loop network, SMPSO parame-
ters change within their standard range and their sensitivity 
is investigated.

At the first step, the initial population sizes of 20, 60, 100, 
140, and 180 for the two-loop network was introduced to 
SMPSO algorithm. The lowest cost of optimization (equal to 
$420,000) was obtained in the population size of 100 (Fig. 3). 
After 22 iterations, no change was seen in the cost reduction 
process in all charts in Fig. 3. While determining the popula-
tion size, w = 0.9, wdamp = 1 and c1 = c2 = 2 were selected as default.

The behavior of parameter w was studied by increasing 
from 0.4 to 0.9 and assuming a population size of 100 (Fig. 4). 
In w = 0.4, minimum network cost ($419,000) was obtained in 
iteration 23.

After determining the value of w, the optimum value of 
wdamp should be determined. After performing successive iter-
ations of the algorithm, the appropriate range of wdamp (0.9–1) 
is recommended for this network. wdamp with its effect on w, 
caused the optimal solution to be found in fewer iterations. 
According to Fig. 5, the values of wdamp equal to 0.92 and 0.98 

had the optimal solution ($419,000) in 13 and 15 iterations, 
respectively. Compared with the previous state, the number 
of iterations had a noticeable reduction.

As one can see in Figs. 6 and 7, the investigation was 
done on c1 and c2 within their authorized ranges (4–2) [43]. 
These two parameters are very sensitive and determining 
their exact values is time consuming. In Fig. 6, the values 
of 2.05, 2.3, and 2.45 offer the minimum cost for the param-
eter c1, whereas, according to Fig. 7, the values of 2.05 and 

Fig. 2. Convergence chart of SMPSO algorithm in two-loop 
network optimization.

Table 4
Pipe diameters and node pressures due to optimization with 
SMPSO method for two-loop network

Pressure 
(mH2O)

Node numberDiameters 
(mm)

Pipe number

53.242457.21
30.4632542
43.444406.43
33.805101.64
30.446406.45
30.5572546

2547
25.48

Fig. 3. Changes of population size for the two-loop network.

Fig. 4. Changes of w for two-loop network.

Fig. 5. Changes of wdamp for two-loop network.
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2.5 are recommended as the best values for parameter c2. 
Finally, after examining the combined changes of these two 
parameters for the two-loop network, it was concluded that 
c1 = c2 = 2.05, should be selected.

Finally, the best selected SMPSO input parameters are as 
follows: population size = 100; w = 0.4; wdamp = 0.98; c1 = c2 = 2.05 
and the maximum number of iterations = 30.

5.2. Hanoi network

The Hanoi network in Vietnam (Fig. 8), first presented 
by Fujiwara and Khang [7], is a new design as all new pipes 
are to be selected. The network consists of 32 nodes and 34 
pipes organized in three loops. The system is gravity fed by a 
single reservoir and network details that are given in Table 5. 
The minimum required head pressure for all nodes is 30 m. 
There are six available pipe diameters to be selected for each 
new pipe; thus, the total search space consists of 634 possible 
designs. Table 6 lists the pipe cost per meter for the six avail-
able pipe diameters.

Table 7 fully shows the results obtained from the SMPSO 
algorithm in comparison with other algorithms. In SA and 
HS algorithms, the minimum cost is reported as $6.056 × 106, 

Fig. 6. Changes of c1 for the two-loop network.

Fig. 7. Changes of c2 for the two-loop network.

Fig. 8. Layout of Hanoi network.

Table 5
Network data for the Hanoi problem

Pipe 
data

Pipe number 1 2 3 4 5 6 7 8 9 10 11

Length (m) 100 1,350 900 1,150 1,450 450 850 850 800 950 1,200
Pipe number 12 13 14 15 16 17 18 19 20 21 22
Length (m) 3,500 800 500 550 2,730 1,750 800 400 2,200 1,500 500
Pipe number 23 24 25 26 27 28 29 30 31 32 33 34
Length (m) 2,650 1,230 1,300 850 300 750 1,500 2,000 1,600 150 860 950

Node 
data

Node number 1 2 3 4 5 6 7 8 9 10 11
Demand (m3/h) –19,940 890 850 130 725 1,005 1,350 550 525 525 500
Node number 12 13 14 15 16 17 18 19 20 21 22
Demand (m3/h) 560 940 615 280 310 865 1,345 60 1,275 930 485
Node number 23 24 25 26 27 28 29 30 31 32
Demand (m3/h) 1,045 820 170 900 370 290 360 360 105 805

Table 6
Pipe sizes and costs for Hanoi network

Pipe Diameter (in) Cost ($/m)

1 12 45.726
2 16 70.400
3 20 98.378
4 24 129.333
5 30 180.748
6 40 278.280
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whereas, ω = 10.5088 and if the solution proposed by these 
algorithms is simulated by EPANET 2.0 software (ω = 10.667); 
the least minimum pressure of 30 m was not respected in all 
nodes [47]. In this network, the cost obtained due to optimi-
zation with SMPSO algorithm is $6.097 × 106, obtained after 
30,300 times of NFE (Fig. 9). The pressure at each node is 
shown in Table 8.

Since in Hanoi network the number of network pipes 
(decision variables) is higher than that of the two-loop 
network, the initial population size should also increase. 
Therefore, after reviewing different population sizes in this 
network, the values of 100, 140, 180, 220, 260, and 300 were 

evaluated. According to Fig. 10, the population size equal to 
300 had a better convergence process. Based on the results of 
previous example, c1 = c2 = 2.05 were set in this network first, 
and then the analysis was performed on other parameters of 
SMPSO algorithm.

After several times of Hanoi network assessment, it was 
concluded that the network has many local minimums and 
solutions, and should be investigated with greater caution by 
avoiding premature convergence of the algorithm; and wdamp 
values with very little changes in the scope of (0.990–1). As 
can be seen in Figs. 11 and 12, the best value for w and wdamp, 
were obtained as 0.6 and 0.998, respectively.

Table 7
Solutions for Hanoi network obtained by different techniques

Pipe diameters (in)

Pipe GA [18] ACO [48] SCE [32] SA [26] HS [27] SMPSO (This work)

1 40 40 40 40 40 40
2 40 40 40 40 40 40
3 40 40 40 40 40 40
4 40 40 40 40 40 40
5 40 40 40 40 40 40
6 40 40 40 40 40 40
7 40 40 40 40 40 40
8 40 40 30 40 40 40
9 40 40 30 40 40 40
10 30 30 30 30 30 30
11 24 24 30 24 24 24
12 24 24 24 24 24 24
13 20 20 16 20 20 20
14 16 12 12 16 16 16
15 12 12 12 12 12 12
16 12 12 24 12 12 12
17 16 20 30 16 16 16
18 20 24 30 20 20 24
19 20 20 30 20 20 20
20 40 40 40 40 40 40
21 20 20 20 20 20 20
22 12 12 12 12 12 12
23 40 40 30 40 40 40
24 30 30 30 30 30 30
25 30 30 24 30 30 30
26 20 20 12 20 20 20
27 12 12 20 12 12 12
28 12 12 24 12 12 12
29 16 16 16 16 16 16
30 16 16 16 12 12 16
31 12 12 12 12 12 12
32 12 12 16 16 16 16
33 16 16 20 16 16 16
34 20 20 24 24 24 20
Cost ($ millions) 6.195 6.134 6.220 6.056 6.056 6.097
NFE 1,000,000 85,571 25,402 53,000 200,000 30,300
ω 10.9031 10.667 10.667 10.5088 10.5088 10.667
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After sensitivity analysis, the best SMPSO parameters 
were chosen as follows: the population size = 300, w = 0.6, 
wdamp = 0.998, c1 = c2 = 2.05, and the maximum number of iter-
ations = 100.

5.3. Kadu network

A two-reservoir network with 26 nodes, 34 links, and 9 
loops is shown in Fig. 13, which was initially introduced and 
optimized by Kadu et al. [49]. Two reservoirs with heads of 
100 and 95 m feed the network through nodes 1 and 2, respec-
tively. Number of nodes, pipes, and demand of each node 
are shown in cubic meters per minute in Fig. 13; and Hazen–
Williams’s coefficient is 130 for all pipes. Other information 
such as the length of pipes and demand of nodes are provided 
in Table 9. There are 10 commercial diameters, which can be 
selected to optimize the network that is expressed in Table 10 
along with cost per length unit of them. As a result, in this 
problem, 1438 is different states for possible designing, which 
should be evaluated in the absence of optimization method. 

In addition, the minimum allowable pressure for network 
nodes are different values, which leads to more complexity of 
the problem compared with two previous networks.

This network has already been optimized by GA and 
GA-ILP (integer-linear programming) algorithms and the min-
imum cost offered in these methods are 131,312 and 815 rupees 
that have been obtained after 4,440 times of NFE. In this study, 
however, SMPSO algorithm obtained 130,666,043 rupees 
cost after 45,150 times of NFE (Table 11). The maximum NFE 
increased in comparison with the two previous methods, 

Fig. 9. Convergence chart of SMPSO algorithm in Hanoi network 
optimization.

Table 8
Node pressures due to optimization with SMPSO method for Hanoi network

Pressure (mH2O)Node numberPressure (mH2O)Node numberPressure (mH2O)Node number

39.262430.071397.142
36.022535.651461.673
32.292633.911556.924
31.242731.651651.055
35.802833.601744.856
31.112949.971843.407
30.153055.111941.678
30.623150.572040.299
31.893241.222139.2710

36.052237.7111
44.442334.2812

Fig. 10. Changes of population size for Hanoi network.

Fig. 11. Changes of w for Hanoi network. 
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but the final cost for the network decreased. Fig. 14 shows that 
the minimum cost was fixed after 2,200 times of NFE and the 
algorithm performance is evident on accelerating convergence.

The minimum required pressure and calculated pres-
sure for each node of Kadu network, after optimization with 
SMPSO, are provided in Table 12. The pressure at each node 
was higher than the minimum allowable pressure.

The analysis results of the SMPSO parameters on Kadu 
network are shown in Figs. 15–17.

According to Fig. 15, cost of 180,611,053 rupees were 
obtained for the network in the population size of 150 and 
in iteration 270, which is better than other populations. After 
applying different w, the value w = 0.4 was to reduce network 
cost to 139,444,688 rupees and 130 iterations (Fig. 16). Finally, 
the minimum cost of 130,666,043 rupees was obtained for Kadu 
network in iteration 120 by applying wdamp = 0.998 (Fig. 17).

After optimization of this network with SMPSO 
algorithm, the final values for its parameters were selected 

as w = 0.4, c1 = c2 = 2.05, and wdamp = 0.998. Moreover, the 
optimization started based on the initial population of 150 
and finished after 300 iterations.

6. Summary and conclusions

Designing an optimal WDN is a complex task. Being 
nonlinear, nonconvex, and discrete in nature make this 
problem difficult to solve. In general, two major aims are 
followed in optimizing water pipe networks: (1) obtaining 
the global solution and (2) developing a computationally 
efficient procedure [50]. Various deterministic and heuristic 
algorithms have been proposed and attempted for solving 
this problem.

Fig. 12. Changes of wdamp for Hanoi network. Fig. 13. Layout of Kadu network.

Table 9
Network data for the Kadu network

Pipe 
data

Pipe number 1 2 3 4 5 6 7 8 9 10 11

Length (m) 300 820 940 730 1,620 600 800 1,400 1,175 750 210
Pipe number 12 13 14 15 16 17 18 19 20 21 22
length (m) 700 310 500 1,960 900 850 650 760 1,100 660 1,170
Pipe number 23 24 25 26 27 28 29 30 31 32 33 34
Length (m) 980 670 1,080 750 900 650 1,540 730 1,170 1,650 1,320 3,250

Node 
data

Node number 1 2 3 4 5 6 7 8 9 10 11 12 13
Demand (m3/min) – – 18.4 4.5 6.5 4.2 3.1 6.2 8.5 11.5 8.2 13.6 14.8
Node number 14 15 16 17 18 19 20 21 22 23 24 25 26
Demand (m3/min) 10.6 10.5 9 6.8 3.4 4.6 10.6 12.6 5.4 2 4.5 3.5 2.2

Table 10
Pipe sizes and costs for Kadu network

Pipe number Diameter (mm) Cost (rupees/m) Pipe number Diameter (mm) Cost (rupees/m)

1 150 1,115 6 400 4,255
2 200 1,600 7 450 5,172
3 250 2,154 8 500 6,092
4 300 2,780 9 600 8,189
5 350 3,475 10 700 10,670
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In this research, a simple modified PSO algorithm, 
SMPSO, applied for the optimal design of WDN. The min-
imum cost obtained by SMPSO programming linked via 
water network hydraulic solver EPANET 2.0. The perfor-
mance of the proposed SMPSO algorithm studied on three 
benchmark networks and the results were compared with the 
previous studies. In a two-loops network, SMPSO obtained 
the optimal solution in fewer NFE than other stochastic opti-
mization algorithms, including GA, SA, SFLA, HS, and SS. 

In the second study case, the Hanoi problem, comparison of 
the results showed that SMPSO was able to find the best solu-
tion in fewer NFEs than other best-performing algorithms, 
such as SCE and ACO.

In the third example, which was a network offered by 
Kadu, the complexity of the problem increased due to the 

Table 11
Solutions for the Kadu network obtained by different techniques

Pipe diameters (mm)
Pipe number GA-ILP [49] GA [48] SMPSO 

(This work)

1 1,000 1,000 900
2 900 900 900
3 400 400 500
4 350 350 250
5 150 150 150
6 250 250 200
7 800 800 900
8 150 150 150
9 400 400 600
10 500 500 700
11 1,000 1,000 900
12 700 700 700
13 800 800 500
14 400 400 450
15 150 150 150
16 500 500 450
17 350 350 300
18 350 350 450
19 150 150 500
20 150 200 150
21 700 700 600
22 150 150 150
23 450 400 150
24 400 400 400
25 700 700 500
26 250 250 150
27 250 250 350
28 200 200 350
29 300 300 150
30 300 300 300
31 200 200 200
32 150 150 150
33 200 250 200
34 150 150 150
Cost (rupees) 131,312,815 131,678,935 130,666,043
NFE 4,440 360,000 45,150
ω 10.667 10.667 10.667

Fig. 14. Convergence chart of SMPSO algorithm in Kadu network.

Fig. 15. Changes of population size in Kadu network.

Fig. 16. Changes of w for Kadu network.
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difference in the minimum allowable pressure of the nodes. 
The results showed that NFE increased by the proposed 
SMPSO algorithm, while the least new cost was less than the 
other previous works.

After the sensitive analysis of the parameters of SMPSO 
algorithm for all three benchmark networks, the following 
results were achieved:

1.  According to the standard range of w, when it is closer 
to 0.4, the convergence was accelerated, but if a problem 
has numerous local minimums such as Hanoi network, it 
is likely for the algorithm to fall into local minimum trap. 
Conversely, by increasing the value of w to 0.9, algorithm 
reviews the solutions with more caution, but the number 
of iterations will be increased.

2.  With increasing the number of decision variables of 
a problem (i.e., diameter of network pipes), the size of 
initial population should also increase (e.g., Hanoi and 
Kadu networks, where the initial population size was 
more than that of the two-loop network).

3.  In the two-loop and Hanoi and Kadu networks, c1 and 
c2 were changed to the amounts suggested by Eberhart 
(between 2 and 3). After examining all different scenar-
ios, it was concluded that c1 = c2 = 2.05 are the best values 
for all the networks in this study.

4.  In this research, a new factor called wdamp was used to 
decrease w in each iteration and damp the impact of 

prior speed on the current speed. This factor was effec-
tive in increasing the speed of convergence, and far away 
from trapping in a local minimum. However, it is better 
to increase wdamp from 0.980 to 0.998 as the network size 
increases.

Finally, it seems that the SMPSO algorithm can solve opti-
mization problems of WDNs with a few parameters and easy 
implementation. It also can find the optimal solution in less 
duration than other algorithms.
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