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ABSTRACT

Magneso-silicate (MgSi) and polyacrylamide acrylic acid (Pam-Aa-MgSi) impregnated with magne-
so-silicate, as hybrid ion-exchange materials have chemical stability comparing with other composites
ion-exchange materials. The capacities of MgSi, (Pam-Aa) and (Pam-Aa-MgSi) composites prepared at
different radiation doses to Ni*, Cd*, Co*, Pb*, Zn* and Cu*ions were studied and the data indicated
that their values of (Pam-Aa) and (Pam-Aa-MgSi) composites are lower than the values obtained for
MgSi by 0.6 and 0.93 values, respectively. Distribution coefficients in nitric acid medium have been
evaluated to explore the separation potentiality of MgSi, (Pam-Aa) and (Pam-Aa-MgSi) composites for
mentioned cations. The data indicated that Cd* ion has high separation factor by 2.57, 2.13, 1.95, 1.93
and 1.42 for Pb*, Zn*, Co*, Cu* and Ni* ions, respectively, on MgSi and the selectivity for the inves-
tigated ions had the sequence: Cd* > Ni* > Cu* = Co* > Zn* > Pb* on MgSi.
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1. Introduction

The most treacherous of the pollutants are heavy toxic
metals, or a trace element such as lead, chromium, mercury,
cadmium, nickel, iron, arsenic and cobalt. These toxic met-
als are non-biodegradable and can risk the human health
by being accumulated in the food chain [1,2]. These toxic
heavy metals are very dangerous to health, for example, lead
is considered as a highly toxic element, when ingested or
inhaled and adsorbed, it can harm virtually every system in
the human body, especially brain, kidney and reproductive
systems of both male and females. Lead harms many body
systems because it disrupts enzyme systems mediated by
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other metals important to the body such as; iron, calcium
and zinc [3]. Public concern over heavy metal pollution has
demanded treatment of such effluents before disposal to the
environment. Several techniques have been developed for the
removal of such metal ions. These techniques include chem-
ical precipitation, physical treatment such as ion-exchange,
solvent extraction, reverse osmosis and adsorption [2,4]. Are
the most widely used techniques for the removal of heavy
toxic metals from wastewater streams. However, among
all these methods, ion-exchange is one of the most attrac-
tive, cost effective, simple and widely used techniques for
the treatment of wastewater containing heavy metals [5].
Nowadays, inorganic ion-exchange materials can use in ana-
lytical chemistry, owing to their thermal and radiation resis-
tance as well as their chemical attack [6]. Organic polymers
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as ion exchangers are well known for their uniformity, chem-
ical stability and control of their ion-exchange properties
through synthetic methods [7,8]. To obtain a combination of
these advantages associated with polymeric and inorganic
materials as ion exchangers, attempts have been made to
develop polymeric-inorganic composite ion exchangers by
incorporation of organic monomers in the inorganic matrix.
These materials were found selective for some toxic heavy
metal ions and can utilized for the treatment of water pollu-
tion [3,9], environmental remediation [10,11], water soften-
ing [11], hydrometallurgy [11], catalysis [12], biochemistry
[13] and selective adsorption [14,15] to medical applications
[16-20]. Different inorganic ion-exchange materials based on
silicate salts and polyacrylamide acrylic acid silicon titanate
were synthesized earlier by Abou-Mesalam et al. [13,21] and
used for removal of some heavy metals from industrial and
hazardous wastes.

In this work magneso-silicate (MgSi), polyacrylamide
acrylic acid (Pam-Aa) and polyacrylamide acrylic acid
magneso-silicate (Pam-Aa-MgSi) composites prepared at
radiation doses 25, 65 and 90 kGy were investigated for
ion-exchange capacity, distribution coefficient and separation
factor of chemically stable for Ni*, Cd*, Co*, Pb*, Zn*" and
Cu*ions.

2. Experimental

MgSi, (Pam-Aa) and (Pam-Aa-MgSi) materials were
prepared as described earlier by Abou-Mesalametal. [6,13,21].

2.1. Chemical stability

The chemical stability of MgSi, (Pam-Aa) and
(Pam-Aa-MgSi) composites prepared at different radiation
doses was studied in water and acid media (HNO, and HCI)
in concentration range [10~ to 6 M] by mixing 100 mg of each
of the prepared samples and 100 mL of the desired solution
with intermittent shaking for about 1 week at 25°C + 1°C. The
filtrate was tested gravimetrically [22].

2.2. Equilibrium time

All the measurements of equilibrium were done by
shaking 0.2 g of MgSi, (Pam-Aa) and (Pam-Aa-MgSi) com-
posites prepared at different radiation doses with 10 mL of
Ni*, Cd?*, Co*, Pb*, Zn?*" and Cu?'ion solutions in a shaker
thermostat at 25°C + 1°C with V/m =50 mL/g. After each time
interval, the shaker is stopped and the solution is separated
at once from the solid. The filtrate was taken to analyze for
the determination of the concentration of the metal ions
by atomic absorption spectrometer (AAS) model AA-6701
F-Shimadzu, Kyoto “Japan”. The percentage uptake can be
calculated by using the following equation [23]:

L /%100
c 1)

i

% uptake =

where C, and C, the initial and final concentration of metal
ions in solution, respectively.

2.3. Effect of batch factor (V/m)

Batch factor was optimized by shaking different weights
of composites with different volume of Ni*, Cd*, Co*, Pb*,
Zn* and Cu*'ion solutions (100 ppm) to obtain varying V/m
ratios (V/m = 25, 50, 100, 200 and 400 mL/g). After an equilib-
rium, the solutions were separated and the filtrate was taken
to analyze for the determination of the concentration of the
metal ions by AAS. The percentage uptake can be calculated
by using Eq. (1).

2.4. Capacity measurements

The capacities of MgSi, (Pam-Aa) and (Pam-Aa-MgSi)
composites prepared at different radiation doses were deter-
mined using batch technique by repeated equilibrium of the
composites with Ni*, Cd*, Co*, Pb*, Zn* and Cu?*" ion solu-
tions. 1 g of each solid material was equilibrated with 50 mL
of 100 ppm Ni*, Cd*, Co*, Pb*, Zn* and/or Cu* ion solu-
tions by V/m =50 mL/g. The mixture was shaken for 1 day at
25°C +1°C. After equilibrium, the liquid phase was separated
by centrifugation and replaced by the same volume of the
initial solution. The procedure was repeated until no further
absorption of cations occurred. The capacity was calculated
from the following equation [2,11]:

Capacity = uptake . C, - ng/g )
m

where C is the initial concentration of solution, mg/L; V'is the
solution volume, mL and m is the weight of the composite, g.

2.5. Effect of [H'] ion on distribution studies

The distribution coefficient (K,) values on MgSi, (Pam-Aa)
and (Pam-Aa-MgSi) composites prepared at different radia-
tion doses as a function of different concentration of H* ion
was investigated using batch technique. 0.2 g of composites
were shaken at 25°C + 1°C with 10 mL of Ni*, Cd?*, Co*, Pb%,
Zn* and Cu® ion solutions (100 mg/L) with a V/m ratio of
50 mL/g. The [H'] concentrations were adjusted to 107, 107,
107, 0.5, 1, 2 and 4 M. After an overnight standing (sufficient
to attain the equilibrium), the solution is separated at once
from the solid and the filtrate was taken to analyze for the
determination of the concentration of metal ions by AAS. The
distribution coefficient (K,) and separation factor (a",) values
were calculated using the following equations [2,4,6]:

(A -4y) vV
g :quzml/g (3)

eq.

Ky(B)

Separation factor (OLAB) = K (A) 4)

where A and A are the concentrations of the ions in solu-
tions before and after equilibration, respectively, V is the
solution volume, m is the composite weight and K (A) and
K ,(B) are the distribution coefficients for the two competing
species A and B in the system.
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3. Results and discussion

The scope of this work is the attempt to study capacity
and sorption investigation of a high chemical stable inor-
ganic, organic and composite ion-exchange materials MgSi,
(Pam-Aa) and (Pam-Aa-MgSi) composites prepared at differ-
ent radiation doses.

The chemical stability of MgSi, (Pam-Aa) and
(Pam-Aa-MgSi) composites prepared at different radiation
doses was studied in water, nitric acid and hydrochloric acid
media and the data are shown in Table 1. From this table,
we find that MgSi, (Pam-Aa) and (Pam-Aa-MgSi) compos-
ites prepared at different radiation doses are stable in H,O,
nitric acid and hydrochloric acid up to 6 M, and partially
dissolved in acid media higher than 6 M. The solubility val-
ues were increased with the increasing of the acid concen-
tration. The chemical stability of the prepared MgSi in acid
medium is agree with the chemical stability of with SiTi [22]
(Pam-Aa) and (Pam-Aa-MgSi) composites are more stable
than polypyrrole Th(IV) phosphate [9], especially at high acid
concentration (4 M HCl and 4 M HNQO,), polyaniline Sn(IV)
tungstoarsenate [24], especially at de mineralize water and
high acid concentration (4 M HCl and 4 M HNO,), poly(acryl-
amide-acrylic acid)-silicon titanate [21] and polypyrrole/poly-
antimonic acid [21], while polyaniline Sn(IV) phosphate [25],
is more chemically stable than the prepared (Pam-Aa) and
(Pam-Aa-MgSi) composites. Also, the data indicates that MgSi
composite has a higher stability than (Pam-Aa) and (Pam-Aa-
MgSi) composites prepared at different radiation doses, this
may be due to the higher crystallinity of magneso-silicate
composite to polymer composites as mention earlier in X-Ray
diffraction pattern studies [26], and also may be due to the
higher water content of polymer composites compared with
magneso-silicate composite. And from the data obtained, it is
clear that the solubility decreased with the increasing of radi-
ation doses, this may be due to increasing of crosslinking in
the polymers, where the crosslinking increase by increasing
radiation dose. And also from the results obtain in Table 1, it
is clear that (Pam-Aa-MgSi) composites have higher chem-
ical stability than (Pam-Aa) copolymers, this may be due to
the higher crystallinity and complexation of (Pam-Aa-MgSi)
composites than (Pam-Aa) copolymers.

The variation of adsorption percentage of Ni*, Cd?*,
Co*, Pb*, Zn** and Cu* ions onto MgSi, (Pam-Aa) and
(Pam-Aa-MgSi) composites with shaking time was carried
out as shown in Figs. 1(a)—(c), respectively. It is seen that the
percentage uptake increases with the increase in shaking time
and maximum adsorption was observed at 24 h on all pre-
pared composites. Therefore, we can consider these times are
sufficient to attain equilibrium for Ni*, Cd*, Co*, Pb*, Zn*
and/or Cu* ions onto MgSi, (Pam-Aa) and (Pam-Aa-MgSi)
composites and used for all further experiments.

Effect of batch factor (the ratio of volume solution (V) to
the amount of exchanger (m)) on the percentage uptake of
Ni*, Cd*, Co*, Pb*, Zn*" and/or Cu*'ion solutions (100 ppm)
by MgSi, (Pam-Aa) and (Pam-Aa-MgSi) ion exchangers was
studied. Optimization was carried out by shaking 10 mL of
solutions containing Ni*, Cd*, Co*, Pb*, Zn* and/or Cu*
ion solutions (100 ppm) for 24 h with various amounts
(0.025, 0.05, 0.1, 0.2 or 0.4 g) of ion exchangers. The ratios of
V/m were 25, 50, 100, 200 and 400. The results are given in

Chemical stability of MgSi, (Pam-Aa) and (Pam-Aa-MgSi) composites prepared at different radiation doses in different media at 25°C + 1°C

Table 1

Solubility (g/L at 25°C + 1°C)

H,0

Radiation

Sample

M)

HCI (

107

HNO, (M)

107

dose

10! 0.5

102

10 0.5

102

0.66
0.77
0.75
0.71
0.74
0.71
0.65

0.45
0.56
0.52
0.5

0.32
0.44
0.42
0.39
0.39
0.35
0.33

0.22
0.29
0.25
0.23
0.25
0.24
0.21

0.11
0.18
0.17
0.13
0.16
0.12
0.11

0.0022 0.059

0.65
0.77
0.72
0.69
0.69
0.65
0.61

0.32
0.49
0.46
0.41
0.52
0.44
0.42

0.29
0.46
0.41
0.33
0.43
0.36
0.32

0.21
0.35
0.31
0.24
0.32
0.26
0.22

0.12
0.25
0.22
0.18
0.22
0.17
0.12

0.0032 0.061

B.D.L.

MgSi

0.0042 0.066

0.0056 0.086
0.0051

B.D.L.

25 kGy
65 kGy
90 kGy
25 kGy
65 kGy
90 kGy

(Pam-Aa)

0.0039 0.062

0.076

B.D.L.

0.0035 0.061

0.0035 0.071

B.D.L.

0.49
0.46

0.0046 0.066

0.0038 0.072

B.D.L.

(Pam-Aa-MgSi)

0.0043 0.064

0.0034 0.071
0.0031

B.D.L.

0.44

0.0033 0.061

0.062

B.D.L.

B.D.L., Below detection limit.
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Fig. 1. Effect of contact time on percentage uptake of Ni*, Cd*,
Co*, Pb*, Zn* and Cu®* ions on MgSi (a), (Pam-Aa) (b) and
(Pam-Aa-MgSi) (c) composites at 25°C + 1°C.

Figs. 2(a)—(c). From this figure, it is clear that retention of Ni*,
Cd*, Co*, Pb*, Zn*" and/or Cu* ions on the MgSi, (Pam-Aa)
and (Pam-Aa-MgSi) composites decrease with increasing the
(V/m) ratio and the ratio (25) is the best ratio for maximum
retention value.

The ion-exchange capacities of MgSi, (Pam-Aa) and
(Pam-Aa-MgSi) composites prepared at different radiation
doses for Ni*, Cd*, Co*, Pb*, Zn* and/or Cu* ions were
determined at 25°C + 1°C. The data are tabulated in Table 2.
Table 2 indicates that the affinity sequence for all cations is:
Cu? > Ni** = Co* > Pb* 2 Zn* > Cd* for MgSi. This sequence
is in accordance with the unhydrated radii of the exchanging
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Fig. 2. Effect of V/m on percentage uptake of Ni*, Cd*, Co*, Pb*,
Zn* and Cu*ions on MgSi (a), (Pam-Aa) (b) and (Pam-Aa-MgSi)
(c) composites at 25°C + 1°C.

ions, whereas the ions with smaller unhydrated radii easily
enter the pores of the exchanger, resulting in higher adsorp-
tion [7,27-29]. The high capacity of MgSi for cupper ion may
be due to the higher complexing ability of cupper with the
presence in more than one oxidation states. The lower capac-
ity of magneso-silicate for Cd* ion reflects the non-selectivity
of MgSi for Cd* ion.

Also, the data in Table 2 show that the ion-exchange
capacities of (Pam-Aa) and (Pam-Aa-MgSi) composites
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prepared at different radiation doses for mentioned cat-
ions is lower than that obtained for MgSi by 0.6 and 0.93
values, respectively, with the sequence order: Co* > Ni*" >
Pb* > Zn* > Cd* > Cu* and Co* > Ni** > Cu* > Zn* > P
b* > Cd* for (Pam-Aa) and (Pam-Aa-MgSi), respectively.
These results suggest that the composites keeping cavity for
exchangeable ions in the framework by polymer composites
of these cations with MgSi [6]. The high capacity of (Pam-Aa)
for cobalt ion may be due to the higher complexing ability of
cobalt with the presence in more than one oxidation states
[16]. The lower capacity of (Pam-Aa) for Cu® ion reflects
the non-selectivity of (Pam-Aa) for Cu* ion. Also, the lower
capacity of (Pam-Aa-MgSi) for Cd* and Pb* ions reflects
the non-selectivity of (Pam-Aa-MgSi) for Cd* and Pb* ions.
Also, the data in Table 2 shows a relatively high capacity of
(Pam-Aa-MgSi) compared with (Pam-Aa) for the studied
cations that may be due to the impregnation of MgSi to
(Pam-Aa) material increases the number of acidic sites on the
surface of (Pam-Aa-MgSi) [16].

The distribution coefficients (K; mL/g) and separation
factors (a) of Ni*, Cd*, Co*, Pb%*, Zn* and/or Cu* ions onto
MgSi, (Pam-Aa) and (Pam-Aa-MgSi) composites prepared
at different radiation doses of the range (107 to 4 M) HNO,
medium were calculated and tabulated in Tables 3-5 and
shown in Fig. 3. The preliminary studies indicate that, the
time of equilibrium for mentioned cations onto prepared
ion-exchange materials was attained after 24 h (sufficient
to attain equilibrium) in a shaker thermostat adjusted at
25°C +1°C.

The data in Fig. 3 show that K, values are inversely
proportional to the [H'] ion concentration of the media. This
is an obvious phenomenon where, by increase of the [H'] ion
of the medium, the chance of the replacement of metal ions
Ni*, Cd*, Co*, Pb*, Zn?*" and/or Cu* with H* ion in the com-
posite decreased that lead to decrease of percentage uptake
of these cations onto the composites [30].

Fig. 3(a) and Table 3 show the [H*] dependency of K, val-
ues of Ni*", Cd*, Co*, Pb*, Zn*and/or Cu?* ions onto MgSi.
On the other hand, the linear relations between logK  and [H]
were observed for Ni*, Cd?, Co?*, Pb*, Zn* and/or Cu* ions
with slopes 0.28, 0.31, 0.25, 0.32, 0.37 and 0.13, respectively.
These slopes did not equal to the valence of the metal ions
sorbed, which prove the non-ideality of the exchange reaction.
The variation may be due to the prominence of a mecha-
nism other than ion-exchange, such as precipitation, surface
adsorption or simultaneous adsorption of anions [6,7].

The distribution coefficients (K,) and separation factors
(a) for the mentioned cations in 10 M HNO, medium were
calculated and tabulated in Table 3. The data in Table 3 indicate
that the distribution coefficients have the affinity sequence:
Cd?* > Ni* > Cu* = Co* 2 Zn* > Pb*".

For MgSi, this sequence supported that the sorption of
metal ions was carried out in unhydrated ionic radii except
Cd?* ion adsorbed as hydrated ionic radii. The ions with
smaller unhydrated ionic radii easily enter the cavities of the
exchanger resulting in a higher uptake and hence K increases
[29]. The separation factors for the studied cations were
calculated and indicated that, Cd*" ion has a higher separa-
tion factor by 2.57, 2.13, 1.95, 1.93 and 1.42 for Pb*, Zn*, Co*,
Cu? and Ni* ions, respectively, these values indicated that
Cd?* ion can easily separate from radioactive and industrial

Table 3
K, values and separation factors (a) for Ni**, Cd*, Co™, Pb*, Zn*
and/or Cu*ions onto MgSi at 25°C + 1°C

[H] K,(mL/g) Pb* Zn* Co* Cu* Ni* Cd*
and (o)

107 K, (o) 491 592 646 653 886 126

121 132 133 18 2.57

1.09 1.1 15 2.13

1.01 1.37 1.95

1.36 1.93

1.42

107 K, () 399 552 57 571 789 123

138 143 143 198 3.08

1.03 1.03 143 2.23

1 1.38 2.16

1.38 2.15

1.56

100 K, () 328 41.8 539 537 764 110

127 164 1.64 233 3.35

129 128 1.83 2.63

1 1.42 2.04

1.42 2.04

1.44

0.5 K, (o) 249 351 49.7 491 659 80.5

141 2 197 2.65 3.23

142 14 188 2.29

099 1.33 1.62

1.34 1.64

1.22

1 K, (o) 229 19 33.1 444 481 51

083 145 194 21 2.23

174 234 253 2.68

1.34 145 1.54

1.08 1.15

1.06

2 K, (o) 147 114 129 353 268 20.8

078 088 24 1.82 1.41

113 31 235 1.82

274  2.08 1.61

0.76 0.59

0.78

4 K, (o) 1.8 16 6.6 16 6.2 7.4

0.89 3.67 889 344 4.11

413 10 3.88 4.63

242 094 1.12

0.39 0.46

1.19
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Fig. 3. Plots of logK, against [H'] ion of Ni*, Cd*, Co*, Pb*, Zn*" and Cu* ions onto MgSi (a), (Pam-Aa) at radiation dose 25,65 and
90 kGy (b)—(d), respectively. And (Pam-Aa-MgSi) at radiation dose 25, 65 and 90 kGy (e)—(g), respectively at 25°C + 1°C.
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waste solutions included the abovementioned cations, and
these values reflect that non-selectivity of MgSi for Pb*ion.

Figs. 3(b)—(d) and Table 4 show the [H'] dependency of
K, values of divalent metal cations Ni*, Cd*, Co*, Pb*, Zn*
and/or Cu* ions onto (Pam-Aa) copolymers prepared at dif-
ferent radiation dose. Linear relations between logK, and
[H*] were observed for Ni*, Cd*, Co*, Pb*, Zn* and Cu*
ions with slopes (0.28, 0.29, 0.24, 0.36, 0.3 and 0.13), (0.22,
0.28, 0.18, 0.52, 0.18 and 0.1) and (0.47, 0.42, 0.63, 0.36, 0.42
and 0.45) for (Pam-Aa) at radiation doses 25, 65 and 90 kGy,
respectively. These slopes did not equal to the valence of
the divalent metal sorbed, which prove that the deviation
from ideality of the ion-exchange reaction for all studied
metal ions on (Pam-Aa) at different radiation doses [29]. The
non-ideality may be due to a different mechanism such as
physical adsorption; in addition, this may be due to exchange
ion replaced; some impurities presented in the matrix, and
may be due to complexity of the system [6].

The distribution coefficients (K,) and separation factors (cx)
for the mentioned cations onto (Pam-Aa) at different radiation
dose in 10°* M HNO, medium were calculated and tabulated in
Table 4. From the data presented in Table 4, it was found that
the selectivity order of the investigated cations absorbed on
(Pam-Aa) at radiation dose 25 kGy is: Ni* > Cd*" > Co*" > Cu* >
Pb* > Zn* while the sequence order of the investigated cations
absorbed on (Pam-Aa) at radiation dose 65 kGy is: Ni** = Cd* >
Cu? 2 Co* > Zn*" > Pb*" and the selectivity order of the investi-
gated cations absorbed on (Pam-Aa) at radiation dose 90 kGy is:
Co? > Ni* = Cd* > Cu* > Pb* > Zn*. This sequence order sup-
ports the sorption of metal ions as unhydrated state except Cd**
ion adsorbed as hydrated state, which may be due to the ionic
radii. The ions with smaller ionic radii are easily exchanged
and moved faster than that of ions with large ionic radii [29].
The separation factors for the studied cations on (Pam-Aa) at
different radiation doses were calculated and indicated that,
Ni*" ion has a higher separation factor by 4.56, 2.61, 2.34, 1.33
and 1.18 for Zn*, Pb*, Cu*, Co* and Cd* ions, respectively, at
radiation dose 25 kGy. While Ni*" ion has a higher separation
factor by 2.98, 2.52, 2.24, 1.96 and 1.02 for Pb*, Zn?*, Co*, Cu*
and Cd* ions, respectively, at radiation dose 65 kGy. These val-
ues indicated that Ni*" ion can easily separate from hazardous
and industrial waste solutions included the abovementioned
cations [16]. Co* ion has a higher separation factor by 4.4,
3.57,2.75, 1.75 and 1.72 for Zn*, Pb*, Cu*, Cd* and Ni?* ions,
respectively, at radiation dose 90 kGy. These values indicated
that Co* ion can easily separate from radioactive and indus-
trial waste solutions included the abovementioned cations, and
reveal that non-selectivity of (Pam-Aa) for Zn* ion.

The [H*] dependency of K, values of Ni*, Cd*, Co*, Pb*,
Zn* and Cu* ions onto (Pam-Aa-MgSi) composites prepared at
different radiation dose are shown in Figs. 3(e)—(g) and Table 5.
The linear relations between logK, and [H'] were observed
for Ni*, Cd*, Co*, Pb*, Zn* and Cu*'ions with slopes (0.18,
0.3, 0.23, 0.76, 0.7 and 0.18), (0.3, 0.42, 0.45, 0.9, 0.8 and 0.29)
and (0.74, 0.5, 0.25, 0.54, 0.64 and 0.52) for (Pam-Aa-MgSi) at
radiation doses 25, 65 and 90 kGy, respectively. These slopes
are smaller than the valence of the divalent metal ions sorbed,
which prove the non-ideality of the exchange reaction. The
variation may be due to the prominence of a mechanism other
than ion-exchange, such as precipitation, surface adsorption
or simultaneous adsorption of anions [6,31].

The distribution coefficients (K,) and separation fac-
tors (a) for the mentioned cations onto (Pam-Aa-MgSi) at
different radiation dose in 10 M HNO, medium were cal-
culated and tabulated in Table 5. The data in Table 5 indicate
that the distribution coefficients have the sequence order
of the investigated cations absorbed on (Pam-Aa-MgSi) at
radiation dose 25 kGy is: Cd*' > Zn?" > Pb*" 2 Ni** > Co*" = C
u?* while the selectivity order of the investigated cations
absorbed on (Pam-Aa-MgSi) at radiation dose 65 kGy is:
Pb*>Cd* = Co*>Zn* 2Ni* >Cu? and the selectivity order of
the investigated cations absorbed on (Pam-Aa-MgSi) at radi-
ation dose 90 kGy is: Pb*" > Cd* > Ni** > Co* > Cu?*" > Zn*".
This sequence order supports the sorption of metal ions
as hydrated state except Zn*" ion adsorbed as unhydrated
state, which may be due to the ionic radii. The separation
factor for the investigated cations on (Pam-Aa-MgSi) at dif-
ferent radiation doses was calculated and indicated that,
Cd?* ion has a higher separation factor by 1.94, 1.93, 1.19,
1.14 and 1.03 for Cu*, Co*, Ni*, Pb* and Zn?*" ions, respec-
tively, at radiation dose 25 kGy. While Pb* ion has a higher
separation factor by 5.45, 3.76, 3.68, 3.33 and 3.33 for Cu?*,
Ni*, Zn*, Co* and Cd* ions, respectively, at radiation dose
65 kGy. And Pb* ion has a higher separation factor by 2.3,
2.22,1.62, 1.26 and 1.18 for Zn*, Cu?*, Co?*, Ni* and Cd*
ions, respectively, at radiation dose 90 kGy. These values
indicated that Pb* ion can easily separate from radioactive
and industrial waste solutions included the abovemen-
tioned cations, and reflect non-selectivity of (Pam-Aa-MgSi)
for Cu*ion [16].
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