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a b s t r a c t
The determination of dispersion number or its coefficient is pertinent to the control of pollution. This 
study evaluated the importance of the parameters measured from a river in South West Nigeria, during 
tracer studies using the Euler–Lagrangian approach. Several measurements which included tracer 
concentration, width, velocity, sampling time, and sampling point interval were obtained between 
January and April of 2017, cutting across the raining and dry seasons for model development and 
sensitivity analysis. The result revealed that a 1% increase in the dispersion coefficient will result from 
a 2.487% increase in velocity (t = 2.671, p = 0.020) and 8.914% increase in the channel width (t = 6.124, 
p = 0.000), which were statistically significant at 5% and 1%, respectively. This finding is well supported 
by previous studies which made use of the variable distance and constant time method. Furthermore, 
sampling time (t = 5.087, p = 0.000), sampling point interval (t = 6.124, p = 0.000), and tracer concentra-
tion (t = 2.453, p = 0.030) were new variables identified and all were statistically significant and had a 
direct relationship with dispersion coefficient. It is recommended that the Euler–Lagrangian approach 
should be adopted in other rivers to verify these claims, as it could be seen as a sustainable method for 
conducting tracer studies.
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1. Introduction

With increase in industrialization globally, pollution 
of rivers and streams has become a common occurrence. 
This has the propensity to increase anthropogenic activ-
ities within the river reach thereby impacting negatively 
on water bodies. To either mitigate or eliminate such sit-
uations, development of strong policies and adherence, 
constant monitoring, as well as applying a more sustainable 
approach among others are advocated. Moreover, these 
sustainable approaches vary from the application of tracer 
harvesting techniques, which will result in reduced cost 
and limited time [1–3] and utilization of developed mathe-
matical models [4–6]. The latter methods are still exhibiting 

significant variability as all parameters responsible for pre-
dicting the dispersion coefficient are not completely known 
[7,8], although it has been suggested that one of the major 
reasons could be the inconsistency in the shear stress and 
inappropriate representation of the velocity across the 
channel sections [9]. Furthermore, apart from the aforemen-
tioned, the issues of climate change cannot be neglected, 
and this has made some researchers to recommend the for-
mer approach as a lasting solution. The Euler–Lagrangian 
approach has been proposed by Agunwamba [1], and very 
few studies in the literature have adopted it both in the 
laboratory and in the river [2–3]. This method of sampling 
involved the collection of tracer from the outlet through to 
the inlet at equally marked distances irrespective of the sam-
pling time interval [10]. Similarly, it considered the variabil-
ity in the hydrodynamic conditions of the river or stream 
and reduces cost and subjectivity in sampling time interval 



345I.T. Tenebe et al. / Desalination and Water Treatment 109 (2018) 344–349

selection that appeared to be a limitation in the Levenspiel 
and Smith approach [11]. On the other hand, there is a need 
to evaluate the measured parameters in a bid to identify 
and establish how they affect the dispersion coefficient and 
to ascertain if this approach gives similar relationship with 
our a priori expectations when other methods are used. 
However, selecting the various explanatory variables for a 
model can be a difficult task, but when this is achieved, it 
will aid the prediction of the dependent variables, which 
is dispersion number or its coefficient in this case, taking 
less time, cost, and energy [12–16]. Most often, the use of 
least squares regression or multiple regression methods 
is engaged for this process. This involved the systematic 
combination of variables to produce an equation that can 
be used for trend analysis. Likewise, it can also be applied 
to show relationships between dependent and independent 
variables. It was revealed that the use of least square meth-
ods could help reduce the bias associated with the set of 
data and the curve generated [17]. This method has been 
widely used by several researchers for trend analysis in dif-
ferent environmental engineering–related problems and in 
other fields. For example, it was used to predict biochemical 
oxygen demand from degraded sewage, develop sensitivity 
analysis on roughness effects on dissolved oxygen and dis-
persion coefficient [18–21].The mathematical technique was 
also used to develop reaeration coefficients of rivers around 
the globe [22–27]. However, it is suggested that the outright 
use of ordinary least square estimates leads to inconsis-
tent coefficients and relationships between the explanatory 
variables. This is because the assumption that the variables 
(independent and dependent) which has a linear relation-
ship are error free is likely to be untrue [28]. In addition, 
the need to perform sensitivity analysis on model parame-
ters as well as evaluate model performance using different 
statistical techniques has been mentioned previously. This 
is because some parameters may not contribute meaning-
fully and are therefore insignificant [29]. In the literature, 
the importance and types of sensitivity analysis used have 
been well reported [13–16], making it a pertinent process. 
Therefore, the objectives of this investigation are to carry out 
tracer studies making use of the Euler–Lagrangian method 
in River Balogun in South West Nigeria and to identify the 
relationship between the variables and also comment on the 
similarities in the relationships between the selected param-
eters with already established relationships in other disper-
sion coefficient empirical models.

2. Materials and methods

2.1. Euler–Lagrangian method of harvesting tracer data

With this method, 25 kg of common salt was premixed 
with 50 L of the river water sample and poured gently into 
the river at the inlet, and then, electrical conductivity mea-
surements were taken from the outlet to the inlet without 
placing any priority on the sampling time interval. At every 
sampling point which was identified and marked out, tracer 
readings were obtained using the multileveller sampler that 
was fabricated. In the same vein, the tracer collected was 
poured into a clean container and the electrical conductivity 
readings were measured and recorded. The experiment was 

conducted between January and April of 2017 under suit-
able weather conditions and accessibility of the river. Also, 
the value of the dispersion number was generated using 
Eq. (1) [1,10].
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The relationship between the dispersion number and the 
normalized variance (σ2) is given by Eq. (2) [1].

∂ = + −
1
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Eq. (2) was derived from the statistical moment equation 
as reported by the authors Levenspiel and Smith [12] in 
Eq. (3), while Eqs. (4) and (5) represent the ratio of the time 
taken to collect tracer samples to the detention time and ratio 
of the sampling distance to the overall length of the river [1].
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3. Data analysis

The arrangement of the dataset for evaluation and sen-
sitivity analysis was achieved using Microsoft Excel 2013. 
Furthermore, EViews version 8.0 was used to carry out 
descriptive statistics, modelling, and sensitivity analysis. 
Data variability was conducted using the Jarque–Bera test 
for normality [18]. Cumulative sum of recursive residual 
(CUSUM) and the cumulative sum of squares of recursive 
residual (CUSUMSQ) test which measures the collective 
deviations of the parameters in a model were used to deter-
mine the structural stability of the coefficients of the vari-
ables. The Durbin–Watson (DW) statistics measured whether 
or not the residual error value of a regressed model (linear 
or multiple) were independent and determined the extent 
of serial correlation, as it revealed whether the model for-
mulated is either positive, negative, or first-order correlated 
and was employed in the analysis [30]. In addition, the DW 
values obtained were expected to be within the range of 0–4, 
with the value at 2 or close to indicated the absence of cor-
related error of residuals [31]. However, Field [32] stated that 
DW values between 1.5 and 2.5 are still acceptable; however, 
with values less than one peculiar with most time series 
experiments. The mathematical expression of DW statistics 
is given by:
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where e y yi i i= −  represents the observed and predicted val-
ues of the response variable for individual i and T in the total 
number of observations.

4. Results and discussion

The descriptive statistics of all the variables employed in 
this study are presented and discussed in Table 1. Specifically, 
the mean, median, minimum, maximum values, standard 
deviation, the skewness, kurtosis, Jarque–Bera values, and 
their corresponding probability values were also reported 
(Table 1). The mean of each of the variables is a pointer to 
the average of the corresponding variables obtained from 
the study. The standard deviation showed a drift of the vari-
able from the mean; thus, revealing the explosiveness of the 
variables. Additionally, the skewness and kurtosis indicators 
revealed asymmetry and peakedness of the distribution while 
the normality test was conducted using the Jarque–Bera sta-
tistics to indicate the strength of the tails of the distribution. 

The results in Table 1 revealed that both mean and median 
values for all the variables were in line with normal (random) 
time series trend. From the descriptive statistics presented, it 
is suggested that only spacing (distance), velocity, width, and 
time follow normal distribution as revealed by the skewness 
statistical values. This was due to the constant value obtained 
at each experimental run. All the variables were positively 
skewed except for time. Dispersion coefficient, tracer concen-
tration, width, and velocity were found to be leptokurtic in 
their distribution, while distance and time were platykurtic 
in their distributions.

In addition, to determine parameter relationship and to 
identify the presence of multicollinear dataset that existed 
among variables, a correlation matrix was conducted using 
the Pearson’s correlation coefficient (r). Table 2 showed that 
there was a medium positive relationship between tracer 
concentration and dispersion (r  =  0.502) and a negatively 
weak relationship between tracer concentration and dis-
tance (r = –0.072). Also, tracer concentration–time and tracer 
concentration–distance revealed a positive weak relation 
with r = 0.221 and 0.060, respectively, and a negative weak 
relationship with the width (r = 0.13). Dispersion–distance, 
dispersion–time, and dispersion–width all showed a weak 
positive relationships having r  =  0.051, 0.097, and 0.118, 
respectively, with the exception of dispersion–velocity 

Table 1
Summary statistics for datasets obtained between January and April of 2017

Tracer concentration (mg/L) Dispersion number Spacing (m) Time (s) Velocity (m/s) Width (m)

Mean 47.75 0.02 181.82 250.91 0.42 3.41
Median 2.30 0.00 200.00 240.00 0.43 3.05
Maximum 309.25 0.11 400.00 480.00 0.77 4.71
Minimum 0.03 0.00 0.00 0.00 0.12 2.57
Standard deviation 99.02 0.04 121.07 126.80 0.15 0.62
Skewness 1.95 1.16 0.03 –0.54 0.77 0.82
Kurtosis 5.25 3.20 1.82 2.86 4.17 2.99
Jarque–Bera 27.90 7.43 1.94 1.43 5.13 3.69
Probability 0.00 0.02 0.38 0.49 0.08 0.16
Sum 1,575.83 0.72 600.00 8,280.00 13.67 112.54
Sum of squared 
deviations

313,734.20 0.04 469,090.00 514,472.00 0.61 12.19

Observations 33 33 33 33 33 33

Note: Null hypothesis: reject when p < 0.05 that the variable is not normally distributed.

Table 2
Correlation statistics of all variables

Velocity (m/s) Tracer concentration (mg/L) Time (s) Distance (m) Dispersion number Width (m)

Velocity (m/s) 1.000 0.060 0.346 0.160 –0.265 –0.435
Tracer concentration 
(mg/L)

0.060 1.000 0.221 –0.072 0.502 –0.132

Time (s) 0.346 0.221 1.000 0.0337 0.097 –0.093
Distance (m) 0.160 –0.072 0.337 1.000 0.051 –0.462
Dispersion number –0.265 0.502 0.097 0.051 1.000 0.118
Width (m) –0.435 –0.132 –0.093 –0.462 0.118 1.000

Source: Authors’ computation achieved with EViews 8.0 statistical software.
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that revealed a negative weak relationship (r  =  –0.265). 
Additionally, both distance–time and distance–velocity 
showed positive weak relationships with r = 0.337 and 0.160, 
respectively, while an inverse relationship was observed 
between distance and width (r  =  –0.461). Consequently, a 
negative weak relationship was observed between time–
width and velocity–width (r  =  –0.093 and –0.435), while a 
positive but weak relationship emerged between velocity 
and time with r = 0.346.

The equation representing the variables used in the anal-
ysis is shown in Eq. (4).
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where i = 1, 2, 3…n. Also, β0 is contant or intercept, β1i is coef-
ficient of tracer concentration, β2i is coefficient of spacing, β3i 
is coefficient of time, β4i is coefficient of velocity, and β5i is 
coefficient of width.

Also, the developed model can be expressed in standard 
form as follows:

D = 2.777 × 10–16(W3.401V0.291T2.776S2.390TR0.214)� (8)

In Table 3, we present the dispersion coefficient model for 
both the dry and wet season for River Balogun. The model has 
tracer concentration, spacing interval between sections, time 
of sampling, velocity, and width of the river as the indepen-
dent variables. It revealed that there is a positive relationship 
between the dispersion coefficient and the tracer concentra-
tion obtained during the experimental scheme. In addition, it 
showed that for a unit accuracy of the dispersion number to be 
obtained, the tracer concentration observed at the river section 
should be increased by 0.162 units. The relationship is sup-
ported by the t-ratio and the p-value, which had their values 
set at –10.321 and 0.0001 at 1% significance. This implied that 
we are 99% sure that this relationship stands for these vari-
ables based on the datasets generated from the experiment. 
Furthermore, the relationship between spacing between sam-
pling points and dispersion coefficient were also investigated. 

These relationships showed positive relationship and 
revealed that for the dispersion coefficient to decrease by 1%, 
the spacing would have to decrease by 3.80%. Likewise, the 
corresponding t and p values from the table revealed also that 
spacing or sampling distance interval was a significant param-
eter to be considered for the effectiveness of our model. With 
t = 6.124 and p = 0.0001, the variable is statistical significant at 
1%. In the same vein, the relationship between the sampling 
time interval and the dispersion coefficient were not different. 
It exposed that for the dispersion coefficient to be more accu-
rate by unity, the sampling time should be increased by 2.308% 
thus showing a direct relationship. This findings corroborates 
with the findings of Agunwamba [1], which earlier identified 
the possible errors to be obtained from the subjectivity in sam-
pling time interval by most researches on tracer studies found 
in the literature. Similarly, consultation of the t and the p val-
ues revealed the statistical and model relevance of sampling 
time interval. This implied that the various time adopted by 
many researches in the literature on tracer studies might have 
contributed to the inaccurate estimation of dispersion number 
or its coefficient. Therefore, care should be taken in this regard 
in order to reduce subjectivity in sampling time selection. This 
is one strong point of this method as no top priority is given to 
time selection. Additionally, the t and p values of this variable, 
which is set at 5.087 and 0.0001, confirmed the statistical signif-
icance of sampling time interval. Consequently, the relation-
ship of the dispersion coefficient with the channel width were 
evaluated. The result showed a direct relationship between 
the two variables and supports the earlier findings of Seo 
and Cheong [33], Deng et al. [34], Kashefipour and Falconer 
[35], Seo and Baek [36], and Sedighnezhad and Salehi [37]. 
Specifically, 1% increase in the dispersion coefficient would 
require the width to increase by 8.914%, which was statisti-
cally significant (t = 4.897, p = 0.000). Lastly, we examined the 
relationship between the velocity of flow and dispersion coef-
ficient. It showed that an increase in the velocity of the river 
flow by a unit would result in an increase in the dispersion 
coefficient by 2.487%. The assertion from this model agreed 
with the literature studies on dispersion number or coefficient 
determination [38,39]. However, this research like the other 
approach that considered variability in velocity has pointed 
out one of the major limitations in the Levenspiel and Smith 
approach that assumed that velocity is uniform along the 
channel. The corresponding t-statistics and probability values 
confirm the statistical relevance of this parameter. The value 

Table 3
Model and parameter sensitivities using the Euler–Lagrangian appproach

Variable Coefficients Standard error (SE) t-Ratio Probability R2 Adjacent R2 Durbin–Watson statistic 
(DW)

C –44.419 4.304 –10.321 0.000
Tracer concentration 0.162 0.066 2.453 0.030 0.76 0.72 2.24
Spacing 3.809 0.620 6.124 0.000
Time 2.308 0.454 5.087 0.000
Velocity 2.487 0.931 2.671 0.020
Width 8.914 1.820 4.897 0.000

Source: Authors’ computation achieved with EViews 8.0 statistical software.
Note: C is constant.
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of DW revealed the serial correlation between two datasets 
from a particular variable measured at different times [32,40]. 
Also, it is used to identify variables that are not skewed as 
well as to increase the confidence placed on the suitability 
of a time series data at normalized state. The DW statistics 
was employed as a dimensionless value that also controlled 
for multicollinearity and autocorrelation of datasets. The rec-
ommended value for a good model ranges between 1.8 and 
2.2. For this model, the DW obtained was 2.24 revealing the 
absence of autocorrelated errors [31,32] after modeling and 
further strengthened the predictive capacity of the model gen-
erated. Additionally, high F-statistical value of 3.480 as well as 
the probability (F-statistics) of 0.035 are also a strong indica-
tion of a good model and well selected parameters. Moreover, 
to determine the stability of our coefficients in the model, 
CUSUM and CUSUMSQ tests were carried out (Figs. 1 and 2). 
The test helped to know the stability of our variables and 
the produced coefficients both in the long and short term. 
Specifically, the red lines showed the boundaries where it was 
expected that the stability of the variables do not cross. The 
blue line in turn represents the coefficients. The hypothesis 

from the figure is that for a stable set of coefficients, the blue 
lines should not exceed the boundaries. Therefore, from this 
investigation, we see that the parameters and their coefficients 
were stable (Figs. 1 and 2). Furthermore, the stability of the 
coefficients developed was tested both for the short and long 
term. From the CUSUM and CUSUMSQ tests had good sta-
bility overtime as the blue lines do not exceed the boundary 
of the red line.

5. Conclusion

This study assessed the parameters required for the esti-
mation of dispersion number or its coefficient using the Euler–
Lagrangian approach for River Balogun in South West Nigeria 
as case study. This was used to develop a statistical model 
which revealed similar relationships with the variable distance 
and constant time method which is a widely used method in 
the literature, that is, dispersion coefficient had a direct rela-
tionship with width (t = 4.90, p = 0.000) and velocity (t = 2.671, 
p  =  0.020). Additionally, tracer concentration (t  =  2.543, 
p = 0.030), sampling distance (t = 6.124, p = 0.000), and sampling 
time interval (t  =  5.087, p  =  0.000) have revealed to be perti-
nent variables to be considered while carrying out tracer stud-
ies as all were statistically significant thereby showing good 
signs of a promising, alternative, and affordable technique. It 
is also suggested that the Euler–Lagrangian method should 
be applied to all rivers especially rivers with dispersion coeffi-
cient history in order to validate its usability and performance.
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Symbols and abbreviations

CUSUM	 —	� Cumulative sum of 
recursive residual

CUSUMSQ	 —	� Cumulative sum of squared 
recursive residual

DW	 —	 Durbin–Watson statistics
LN (velocity)	 —	 Log of velocity coefficients
LN (width)	 —	 Log of width coefficients
LN (tracer concentration)	 —	� Log of tracer concentration 

coefficients
LN (spacing)	 —	� Log of spacing interval 

coefficients
LN (time)	 —	� Log of sampling time 

interval coefficients
r	 —	 Coefficient of determination
R2	 —	 Coefficient of correlation
SD	 —	 Standard deviation
SE	 —	 Standard error
t	 —	 t-Statistics
e y yi i i= − 	 —	� Difference between the 

observed and predicted 
values of the response 
variable for individual i

T	 —	� Total number of 
observations

Fig. 2. CUSUM of squares test result for log-transformed 
combined dataset.

Fig. 1. CUSUM test result for log-transformed variables for wet 
and dry experimental schemes.
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