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a b s t r a c t
Soil salinity is the key factor limiting agricultural expansion over poorly drained soils. In Saudi Arabia, 
the main source of irrigational water is the groundwater aquifers. Therefore, groundwater resources 
are under constant pressure and over exploited to fulfil the irrigational water demands. Moreover, 
soils in Saudi Arabia are poor and lack tolerable drainage system. Harsh agricultural environments 
thrust the farmers to maximize daily groundwater pumpage to overcome the substantial daily 
evapotranspiration caused by the massive turbulent heat fluxes in the designated study area. 
Normalized difference salinity index was generated based on remotely sensed data derived from 
Landsat 8 acquired on April 14th, 2014, after proper radiometric and atmospheric corrections. Thematic 
map of soil salinity was generated and then reclassified into four classes based on the natural break 
classification techniques. On the other hand, fraction of absorbed photosynthetically active radiation 
(FAPAR) is another remotely sensed vegetation index established to envisage the effect of different soil 
salinity on the crop vigorously. FAPAR index was estimated using remote sensing data derived from 
the medium-spectral resolution imaging spectrometer on the same day of acquisition for consistency 
reasons. Results demonstrated that the FAPAR index is highly dependent on soil salinity. Higher 
soil salinity values corresponded to lower FAPAR values. Findings of the current research will help 
decision makers and decision takers to take soil salinity into consideration in future strategic plans.
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1. Introduction 

Water resources are limited and scarce in Saudi Arabia. 
The main source of freshwater is the groundwater [1]. During 
the last three decades we are witnesses of an extensive agri-
cultural expansion to meet the domestic needs [2,3]. The 
expansion of the agricultural activities took place in different 
regions in Saudi Arabia. Primarily, it started in the central 
region of Saudi Arabia known as Al-Qassim [4,5]. 

Due to over exploitation of the groundwater to sus-
tain the agricultural activities in Al-Qassim, the water table 
dropped dramatically to the extent of inability to pump up 
more groundwater [5]. Consequently, the agricultural activ-
ities in that region are mostly degraded and the agricultural 

activities moved in both of the northern (Al-Jouf) and the 
southern (Ad-Dawasir) regions of Saudi Arabia [1].

Saudi Arabia is characterized by arid climate conditions, 
extremely hot and long summer in addition to rare precip-
itations [6,7]. Aridity conditions drove the farmers to com-
pensate the high evaporation rates by excessive irrigation to 
avoid cops welting [8]. The current groundwater pumpage 
regime led to additional natural resource degradation. Water 
logging and soil salinity augmentation are now the most 
limiting factors to the agricultural expansion in those areas 
[9,10].

The accumulation of salts in soils has radical effects on 
crop production. Salty soils compete with the crops on the 
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available soil moisture content and make it unavailable for 
crops uptake [11]. Salts accumulation rapidly occurs in poorly 
drained soils, where the excess of the irrigational water stays 
on the top soils [12–14]. 

Remote sensing techniques are broadly used to overcome 
regional scale problems that directly related to crops produc-
tion and its corresponding water demands [10,15–17]. There 
are several vegetation indices that are exercised to investigate 
soil/crop relationships [18,19]. Implementation of remote 
sensing data and geographic information systems (GIS) prac-
tices is reported in several scholarly works [20–23]. However, 
there is no ideal procedure to use remote sensing data in con-
junction with GIS to examine soil/crop relationships [24,25]. 

Several soil salinity indices were developed to monitor 
the soil salinity levels in different ecosystems by using differ-
ent satellite sensors [16,17]. The most exercised soil salinity 
index is the normalized difference salinity index (NDSI), due 
to the spectral bands availability in Landsat images [26].

Medium-spectral resolution imaging spectrometer 
(MERIS) is fairly used to estimate different vegetation indi-
ces [27]. The implemented algorithm utilizes top of atmo-
sphere-vegetation (TOA-VEG) radiative transfer models 
and associated geometry as inputs [28,29]. The role of the 
adopted algorithm capitalizes the physical remote sensing 
measurements and discourses many operational limitations 
related to the systematic data analysis [30].

MERIS data can be used to generate fraction of absorbed 
photosynthetically active radiation (FAPAR). The latter is an 
important variable to distinguish crops drought condition 
[31,32]. FAPAR principally depends on visible/near infrared 
spectral bands of MERIS data. These bands are rectified to 
ensure their prime atmospheric decontamination as well as 
the removal of any angular effects [28,32,33]. 

TOA reflectance simulation using MERIS spectral bands 
(13 spectral bands) necessitates 15 different input variables 
based on the experimental design to ensure the realization 
of equal canopy occupied spaces [31,34]. Generally, there is 
no wide agreement on specific measures to estimate FAPAR 
taken into consideration the environmental conditions and a 
certain input data sets [32,35,36].

The aim of the current study is to envisage the effect of 
different soil salinity levels in correspondence to remotely 
sensed FAPAR index as an indicator of water stress condition 
in Wadi Ad-Dawasir.

2. Materials and method

2.1. Study area

The study area is located in Najd plateau at 20°27′52″N 
044°47′14″E. It is characterized by gravelly tableland dis-
connected by insignificant sandy oases and isolated moun-
tain bundles (Fig. 1). The tableland descends toward the 
east from an elevation of 1,360 m (4,462 ft) in the west to 
750 m (2,460 ft) at its easternmost limit. The major source 
of irrigational water in Wadi Ad-Dawasir is the abstraction 
from Al-Wajid aquifer. Agriculture in Wadi Ad-Dawasir 
area consists of technically highly developed farm enter-
prises that operate modern pivot irrigation system. The size 
of center pivot ranges from 30 to 60 ha (75–149 acr) with 
farmers managing hundreds of them including the corre-
sponding number of wells. The main crop grown in win-
ter is wheat (Triticum aestivum) and occasionally potatoes 
(Solanum tuberosum L.), tomatoes (Solanum lycopersicum) or 
melons (Citrullus lanatus). All year fodder consists of alfalfa 
(Medicago sativa), which is cut up to 10 times a year for ani-
mal feed. Typical summer crops for fodder are sorghum 
(Sorghum bicolor) and Rhodes grass (Chloris gayana), which is 
perennial, but dormant in winter. The shallow alluvial aqui-
fers could not sustain the high groundwater abstraction rates 
for a long time and groundwater level declined dramati-
cally in most areas [5]. Meteorological features of the area 
are speckled. Five elements of meteorology are constantly 
recorded with fixed weather station located within the study 
area. Temperature varies from 6°C as minimum temperature 
to 43°C as maximum temperature. The relative humidity 
is mostly stable at 24%. Solar radiation (W/m2) of average 
sunrise duration is 11 h/d. Average wind speed is closer to 
13 km/h and may reach up to 46 km/h in thunderstorm inci-
dents. Finally, mean annual rainfall is about 37.6 mm [37].

Fig. 1. Location of the study area.



173M. Elhag / Desalination and Water Treatment 112 (2018) 171–178

2.2. Methodological framework

The current research work is based on assessing the effi-
ciency correlation between estimated FAPAR corresponding 
salinity index (SI’s) values obtained from satellite images. 
Therefore, field data collection was carried out with accurate 
synchronization of satellite bypassing over the designated 
study area to avoid any atmospheric discrepancies. 

2.2.1. Soil sampling and analysis 

A total number of 150 random soil samples were collected 
based on simple random sampling technique from Wadi 
Ad-Dawasir area with a minimum distance of 100 m (329ft) 
between the samples location to avoid data clumping (Fig. 2). 
The standard procedure for determining soil extract salinity 
in terms of electrical conductivity was followed according to 
Shaw [38] under laboratory condition. 

2.2.2. Remote sensing data 

In the current study, two different satellite sensors were 
used Landsat 8 and MERIS. Landsat 8 scene was acquired 
on April 17th, 2014. Fundamental radiometric and atmo-
spheric corrections were applied to visible and near infra-
red bands according to Chavez [40] and Beisl et al. [41]. 
Moreover, MERIS scene was also acquired on the same date 
of Landsat acquisition to minimize the atmospheric varia-
tions between the two scenes. MERIS sensor has a spatial 
resolution of 300 m at nadir designed to acquire data over 
the Earth whenever illumination conditions are suitable 
[42]. MERIS sensor was designed to derive estimates of the 
concentration of chlorophyll-a. Therefore, MERIS data are 
very important to monitor photosynthesis process based on 
the effective estimation of solar radiation fraction consumed 
by crops [14,43]. 

Landsat 8 images are consisting of nine spectral bands 
ranging from visible to thermal infrared with a spatial res-
olution of 30 m for bands from 1 to 7 and then 9. The reso-
lution for the panchromatic band 8 is 15 m. Spectral bands 

are selectable across the range of 435–1,251 nm. Meanwhile, 
MERIS land and coast images are consisted of 15 spectral 
bands ranging from visible to near infrared with spatial reso-
lution of 300 m. Spectral bands are selectable across the range 
of 390–1,040 nm.

2.2.3. Estimation of remote sensing indices

NDSI and FAPAR were estimated individually using cor-
responding remote sensing data according to the following 
equations.

• NDSI is estimated according to Major et al. [26] as follows:

NDSI (R NIR)/(R NIR)= +−  (1)

where R is red band of Landsat 8; NIR is near infrared band 
of Landsat 8.

• FAPAR is estimated according to Gobron et al. [44] and 
Vermote et al. [45] as follows:
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where λi is the wavelength (blue, red or near-infrared) of 
spectral band i, ρTOA (Ω0, Ωv, λi) is the bidirectional reflectance 
factor values measured by the sensor in the spectral band 
λi, Ω0 is the actual geometry of illumination; Ωv is the actual 
geometry of observation; F(Ω0, Ωv, kλi, Ωλi

HG, ρλic) is the shape of 
the radiance field; kλi, Ωλi

HG, ρλic is the Rahman-Pinty-Verstraete 
parameters according to Rahman et al. [46].

Red and infrared MERIS spectral bands require radiomet-
ric correction. Radiometric correction processed as follows:

ρ ρ λ ρ λRred blu red= ( ) ( ) g1  ,  (3)

ρ ρ λ ρ λRnir blu nir= ( ) ( ) g2  ,  (4)

Fig. 2. Soil sample location on a false color composite of Landsat 8 image [39].
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Meanwhile,

gn
P

Q
i j

i j

 ρ λ ρ λ
λ λ

λ λ
blu red( ) ( )  =

( )
( )

,
,

,
 (5)

P l l l l li j n i n n j n n iλ λ ρ λ ρ λ ρ λ, , , , , ,( ) = ( ) +( ) + ( ) +( ) + ( )1 2

2

3 4

2

5   ρρ λ j( )  (6)

Q l l l l

l

i j n i n n j n

n i

λ λ ρ λ ρ λ

ρ λ

, , , , ,

,

( ) = ( ) +( ) + ( ) +( )
+ ( )

6 7

2

8 9

2

10

 

 ρ λ j nl( ) + ,11  (7)

The optimization of the polynomial coefficients ln,m was 
carried out based on the normalization of each bi-directional 
reflectance and its corresponded spectral polynomial val-
ues of gn[ρ̃(λblu), ρ̃(λj)] under anisotropic reflectance func-
tion [33,47]. Corrected channels used to estimate FAPAR as 
follows:
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2.2.4. Regression analysis

The regression analysis is the practice of creating a curve, 
or mathematical function that has the best fit to a series of 
data points, possibly subject to constraints. There are sev-
eral fitting functions and there is no general best fit. Best fit 
is a data dimension and mathematical function dependent 
[48–51]. 

In this study, the neural analysis [52] and multivari-
ate analysis [53] were applied to examine the relationship 
between FAPAR and NDSI. The neural network regression 
model is written as:

Y w w Xh h h h ih ii
p= + =α Σ φ α Σ+( )1  (9)

where Y = E(Y|X). This neural network model has one hid-
den layer, but it is possible to have additional hidden layers. 
The φ(z) function used is hyperbolic tangent activation func-
tion. It is used for logistic activation for the hidden layers. 
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It is significant that the final outputs to be linear not to 
constrain the predictions to be between 0 and 1. The equa-
tion for the skip-layer neural network for regression is shown 
below:

Y X w w Xi
p

i
p

i i h h h h ih i= + = =α Σ Σ φ α Σβ + +1 1( )  (11)

It should be clear that these models are highly parame-
terized and thus will tend to over fit the training data. Cross-
validation is therefore critical to make sure that the predictive 
performance of the neural network model is adequate. Recall 

the skip-layer neural network regression model looks like 
this:

Y X w w Xi
p
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However, this model most likely overfits the training data. 
Consequently, determination of the adequate performance of 
the artificial neural networks model is a must. Five different 
criteria are used: the Pearson coefficient of correlation (R), 
the root mean square error (RMSE), the mean absolute devi-
ation, the negative log-likelihood and the unconditional sum 
of squares. Basically, RMSE is the examined parameter for 
comparability reasons. RMSE can be computed as:
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where t is the time index, and yˆt and yt are the simulated and 
measured values. Principally, the higher value of R and smaller 
values of RMSE ensure the better performance of model.

2.2.5. Correspondence analysis

Correspondence analysis was carried in order to assess 
the current agricultural practice in the designated study 
area. Correspondence analysis involves estimation of aver-
age accuracy, average reliability and overall efficiency. The 
average accuracy is estimated by a horizontal function of the 
tested dataset. The average reliability is estimated by a verti-
cal function of the tested dataset. The overall efficiency is esti-
mated the diagonal function of the tested dataset. Following 
Congalton and Mead [54], a correspondence analysis was 
constructed as follows: 
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where r is the number of rows in the error matrix; xii is the 
number of observations in row i and column i (the diagonal 
cells); xi+ is the total observations of row i; x+I is the total obser-
vations of column i; and N is the total of observations in the 
matrix. 

2.3. Validation 

Validation of NDSI values was carried out using the 
ground truth data collection. 150 soil samples were analyzed 
for electric conductivity measured in ppm and plotted against 
the remotely sensed salinity values. Validation of FAPAR val-
ues was carried by according to Gobron et al. [31,55] using 
different canopy radiation transfer regimes under European 
Joint Research Centre (JRC) utilizing sea-viewing wide field-
of-view sensor plotted against ground truth data.

3. Results and discussion

The adopted methodology resulted in two different the-
matic maps, soil salinity map (Fig. 3) and FAPAR index map 
(Fig. 4). The two maps were then reclassified into four classes 
according to natural break classification [56].
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Soil salinity spatial variation demonstrates that the 
peripheral areas of Wadi Ad-Dawasir agriculture areas are 
highly salinized, especially the new agricultural expansion at 
the southern west part of the designated study area [39]. This 
could be explained by the fact that the study area is charac-
terized by affluence relief. Therefore, the sprinkle movement 
drove the accumulation of excess waters at the peripherals of 
the agricultural areas [24,57]. 

Evaluation of estimated NSDI values using remote sens-
ing data was plotted against ground truth data collected from 
150 soil samples demonstrated in Fig. 5. The robust correla-
tion was noticed at R2 value of 0.97 [10,39].

Spatial variations of FAPAR values followed a similar 
pattern of NDSI values. The lower FAPAR values were 
located at the newly agricultural expansion (southern 
west part of the designated study area). This could be 
explained by the less availability of soil moisture content 
to crops. Due to salt accumulation in soils, there is no 
enough available water in soils for proper photosynthesis 
process [17,24]. 

According to Table 1, the polynomial fit was the best to 
describe the relationship between NDSI and FAPAR to be 
read as FAPAR = 0.6326351 – 6.4654e–6 × NDSI + 8.66e–10 × 
(NDSI – 42468)2. The RMSE was expressed its lowest value 
among the other regression models at the polynomial fit [58]. 
Regardless the outliers, the NDSI cloud data were central-
ized around 5,000 ppm of salt and its corresponding FAPAR 
value of 0.1 as it demonstrated in Fig. 6. This co-occurrence 
indecently proves that higher soil salinity values affect dras-
tically the photosynthesis process, particularly in arid envi-
ronments [11,19]. 

Quantification of the current agricultural practice effi-
ciency was assessed by the confusion matrix. System accu-
racy and reliability were calculated in Table 2 while overall 
efficiency was calculated in Table 3 to be 49.54%. 

RMSE is explicitly defining the deviated predictions, on 
average, from the actual values. While R2 is conveniently 
scaled between 0 and 1. Obviously R2 can be more easily 
interpreted, but RMSE is more accurate because it is not 
scaled to any particular values [59].

The reclassification method used in the current study 
assigned four ordinal values to the resulted thematic maps 
according to their intensities ranges from high stability 
(rank 4) to no suitability (rank 1). Subsequently, NDSI and 
FAPAR thematic maps were converted into vector files 
using the ordinal ranking. Consequently, intersection func-
tion under GIS environment was applied and the resulted 
matrix is shown in Table 3. According to the matrix, the 
system efficiency is calculated to be 49% (the diagonal sum 
over the total sum). This clearly stated that the agricultural 
practice in Wadi Ad-Dawasir needs to be comprehensively 
reviewed in term of water saving strategies and the hori-
zontal expansion if the newly reclaimed land [2,10].

Fig. 3. NDSI spatial distribution in Wadi Ad-Dawasir.

Fig. 4. FAPAR spatial distribution in Wadi Ad-Dawasir.
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4. Conclusion

The groundwater resources are the only water source of 
irrigation to sustain the agricultural activities taken place in 
Wadi Ad-Dawasir. Moreover, the designated study area soils 
are poorly drained although the pumpage rates are higher 
than the actual crop needs. Horizontal expansions of the agri-
cultural areas are the driving forces of underground water 
resources over exploitation, regardless the physical and chem-
ical properties of the utilized soils. Remote sensing techniques 

in terms of vegetation indices were fairly exercised in the 
current study and present reliable assessment of the current 
agricultural practice in the area. NDSI and FAPAR showed no 
discrepancies in interpretation of the salinity problem conjunc-
tion with low photosynthetic capabilities. The current study 
strongly suggests decision makers and decision takers to 
review the existing agricultural strategy in Wadi Ad-Dawasir. 
Rational groundwater resources utilization and crop allocation 
needs to be taken into consideration. Meanwhile, soil physical 
and chemical properties need to be thoroughly investigated 
along with temporal monitoring of the designated area soils.
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