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a b s t r a c t
This study investigates the concentrations of potentially harmful elements (PHEs) in various drinking 
waters along the Sadkal oil exploration and production in Fateh Jang, Pakistan. For this purpose, rep-
resentative water samples were collected from various drinking water sources (bore wells, dug wells 
and hand pumps). Water samples were analyzed for physicochemical parameters, such as anions using 
electrochemical analyzer (C6030) and titration methods, and PHEs by graphite furnace atomic absorp-
tion spectrophotometer (Perkin-Elmer model 700, USA). Results revealed that especially in shallow 
waters (hand pumps), the pH, chloride (Cl), nitrate (NO3) and PHEs including chromium (Cr), nickel 
(Ni), manganese (Mn), iron (Fe), cadmium (Cd), lead (Pb) and copper (Cu) concentrations surpassed 
their respective safe drinking water guidelines set by World Health Organization (WHO). Determined 
PHEs concentrations in drinking water were evaluated for the potential risk assessment through the 
daily intake (DI) of metals and health risk index (HRI). Higher DI values for Zn (1.90E–01 mg kg–1-d), 
and the HRI values >1 for Cd and Ni through hand pumps water consumptions were observed. Higher 
HRI values could cause various chronic and acute health problems to the exposed human population. 
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1. Introduction

Oil and gas are the main sectors of energy, economic 
development and social prosperity. However, the 
by-product of oil and gas exploration and exploitation 
resulted in  environmental contaminations such as the 
potentially harmful elements (PHEs) and hydrocarbons 
[1–3]. Among these contaminants, the PHEs are considered 
as more hazardous due to their toxic, non-degradable and 
bioaccumulative nature [4–9]. The PHEs enriched effluents 
find their ways to environmental compartment such as water 

and soil, and cause contamination of such resources [10,11]. 
The effluents flow to surface water much more easily and 
adversely affects and deteriorates its quality and inhabits 
living organisms, making the surface water systems more 
vulnerable to contamination [12–14]. Therefore, groundwater 
is considered safe [15,16] and preferably used for drinking 
and other domestic purposes [12,13]. However, recently the 
PHEs contaminations in groundwater have been documented 
in various environmental studies [17,18].

The PHEs’ contaminations in water lead to direct expo-
sure via the most common routes, including oral intake and 
dermal contact with the consumers. Oral intake of PHEs is 
considered as the major pathway for human exposure and 
causes various health problems [19,20]. Among PHEs, the 
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Fe, Mn, Cr, Ni, Zn and Cu are required in a specific amount 
for normal function of body and classified as essential ele-
ments. Deficiencies of essential elements lead to various 
health effects, while higher concentrations cause toxicity. 
Non-essential elements including Cd, Pb, Hg and As are 
extremely toxic to human even in minute quantities [21–23]. 
Toxic effects of non-essential elements include hyperten-
sion, headache, asthma, anemia, liver and kidney problems, 
immune dysfunction and cardiovascular diseases, cancer 
and memory deterioration in children [17,24].

Globally, the PHEs contamination in drinking water 
has been well studied. However, the problem of PHEs con-
tamination is often more severe in the developing countries 
due to higher population growth, low economy and lack of 
treatment facility [25,26]. Like other developing countries, 
Pakistan is also facing higher population growth, low-in-
come and drinking water exploitation and contaminations’ 
problems [19]. The PHEs contamination in sediments [27], 
and ecological communities such as mussels [2] resulting 
from the oil exploration and production have been studied. 
Similarly, the PHEs contaminations of soil near to Sadkal oil 
exploration and production were reported by Khan et al. [28]. 
The PHEs could leach down, lead to groundwater contami-
nations, and pose potential health risk via consumption of 
contaminated drinking water. So far, the drinking water qual-
ity and its potential health risk along the Sadkal oil explora-
tion and production have not been explored. Therefore, this 
study was aimed to investigate whether the high levels of 
PHEs previously observed in soil are getting into groundwa-
ter. Further, drinking water sources at various depths were 
evaluated for potential health risk assessment through con-
sumption of PHEs that could be used as a benchmark against 
future sampling efforts, to track trends over time. 

2. Materials and methods 

2.1. Study area

Sadkal oil exploration and production unit is located in 
the Sadkal village, Fateh Jang town, Pakistan, lies between 
latitude 33°34ʹN and longitude 72°45ʹE having 866 km2 area 
(Fig. 1). The study area mainly consists of rain fed agriculture 
lands. Natural vegetation such as forest, shrubs, grasses and 
the wastelands exist on non-cultivated areas. Two major sea-
sons prevails, but the rainfall is more in summer monsoon 
than winter. Seasonal mean rainfall ranges in summer (300–
500 mm) and winter (250–300 mm) seasons with temperature 
(5°C–30°C) [29,30].

This study area was selected to investigate the levels of 
PHEs and other contaminations in drinking water near the 
Oil and Gas Development Company (OGDC) activities. 
The oil exploration in Sadkal village has been started by 
OGDC since 1980s. Wastewater is produced as a by-prod-
uct of oil during the exploration and exploitation activities. 
Unfortunately, wastewater is released without any treatment 
and accumulated in open ponds closely <1 km located to 
human settlements. High levels of PHEs contamination in 
soil near the Sadkal village were reported by Khan et al. [28]. 
Water could dissolve PHEs in the percolation or leaching due 
to lithogenic process (weathering and erosion) and result in 
drinking water contamination of area. 

2.2. Samples collection and analysis

Water samples were collected in 500 mL clean polythene 
bottles from the available drinking water sources, including 
shallow (hand pumps 8–12 m), medium (dug well 16–22 m) 
and deep (bore wells 25–35 m) along the Sadkal village in 
June 2014. Basic parameter such as pH was measured on 
site using the electrochemical analyzer C6030 and two bot-
tles were pre-washed three times with respective samples 
and filled from each sampling source. One of the two-bottle 
water was filtered through Whatman (0.45 μm) filter paper 
and acidified with few drops of nitric acid (HNO3). Water 
samples were properly marked, transported to Centralized 
Resource Laboratory (CRL), University of Peshawar and 
stored in dark at 4°C till further analyses [31].

2.3. Analytical procedure

Each non-acidified water sample was analyzed for 
anions, including chloride (Cl), fluoride (F), sulfate (SO4), 
nitrate (NO3) and nitrite (NO2) using the titration method 
and electrochemical analyzer C6030. Acidified samples were 
analyzed for sodium (Na), potassium (K), calcium (Ca), mag-
nesium (Mg) by Ion Chromatography (Metrohm, 800 series) 
and PHEs concentrations using the Graphite furnace atomic 
absorption spectroscopy (G-FAAS Perkin-Elmer model 700, 
USA) at the CRL, University of Peshawar. Each sample was 
analyzed in triplicates having reproducibility at 90% ± 5% 
confidence level and mean values were used for results’ inter-
pretation. For the G-FAAS calibration and data confirmation, 
three standards (2.5, 5.0 and 10.0 μg L–1) and a blank (0.0 μg L–1)  
with regular interval of 10 samples were used within this 
study. Standards for each corresponding element were pre-
pared from the stock Fluka Kamica (Buchs, Switzerland) 
solution of 1,000 mg L–1 with deionized water.

2.4. Risk assessment

In the study area, residents were interviewed/surveyed 
for drinking water habits, sources, collection and storage ves-
icles, common health diseases, age, body weight and income 
level. Questionnaire was developed for collection of basic 

Fig. 1. Map of the study area showing oil and gas exploration 
wells and sampling sites.
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health information from previous study by Muhammad et al. 
[17]. After approval from the department board, this study 
randomly surveyed the local respondents (n = 380) included 
both genders, i.e., male (n = 190) and female (n = 190), chil-
dren (1–16 years, n = 140) and adults (17–65 years, n = 240). 

Oral intake via contaminated drinking water [17,32] and 
food [33,34] is the major pathway for human exposure to 
PHEs. Potential risk assessment of PHEs through drinking 
consumption was calculated by average daily intake (DI) of 
element and health risk index (HRI) using equations adopted 
from US EPA [35].

DI = (CW × IR × EF × ED)/(BW × AT) (1)

where CW is the concentration of PHEs in water (mg L–1), 
IR ingestion rate of water (2 L d–1), EF exposure frequency  
(365 d y–1), ED exposure duration (30 y), BW body weight 
(children 30 kg and adults 70 kg) and AT averaging time, that 
is, 365 d y–1 × ED for non-carcinogens [36].

The intake of PHEs was used for the HRI calculation.

HRI = DI/RfD (2)

where the oral toxicity reference dose (RfD, mg kg–1-d)  
values of PHEs are Cd (5.0E−04), Cr (1.5), Cu (3.7E−02),  
Mn (1.4E−01), Ni (2.0E−02), Pb (3.6E−02) and  
Zn (3.0E−01) mg kg mg–1-d. Exposed population is assumed 
to be safe if HRI < 1 [17].

2.5. Statistical analyses

Data were analyzed using computer software’s such as 
MS Excel (Office 2010), Sigma plot 12.5 for the arithmetic 
mean, standard deviation and range, and SPSS 21 (SPSS Inc., 
Chicago, IL, USA) for one-way analysis of variance (ANOVA), 
correlation and principal components’ analyses (PCA).

3. Results and discussion

3.1. Physicochemical parameters

Table 1 summarizes the concentrations of physicochemi-
cal parameters in the study area. The pH has indirect effects 
to human health by affecting the ions’ solubility and aquatic 
life survival. The pH values ranged from 6.80 to 8.50, 7.90 to 
8.23 and 8.30 to 9.10 in bore wells, dug wells and hand pumps 
water, respectively (Table 1). Hand pump showed the high-
est mean pH values as compared with bore wells and dug 
wells water sources. The pH values for bore wells and dug 
wells were found within the safe permissible limits of drink-
ing water guidelines set by the World Health Organization 
(WHO) [37]. However, 50% of hand pumps water samples 
surpassed this limit. Higher pH in shallow (hand pumps) 
drinking water sources within the study area was found 
consistent with those reported by Gul et al. [38] for shallow 
drinking water in Mardan district of the surroundings. 

Anions such as Cl, F and SO4 are required in a limited 
amount for normal body functions. However, higher concen-
trations than the fixed amount could cause toxicity in living 
beings [36,39,40]. In the study area, Cl concentrations ranged 
(75.02–624.13, 147.45–380.43 and 522.17–2,441.09 mg L–1), F 

(0.16–5.75, 0.53–0.60 and 0.90–1.62 mg L–1), SO4 (4.12–143.32, 
86.60–200.39 and 54.28–280.18 mg L–1), NO3 (4.60–266.01, 
22.40–200.11 and 18.60–576.37 mg L–1) and NO2 (0.12–2.02, 
0.34–0.70 and 1.04–4.02 mg L–1) in bore wells, dug wells and 
hand pumps water, respectively (Table 1). Results revealed 
that majority of anions showed the highest concentrations 
in hand pumps’ water as compared with deep water (bore 
wells) and surpassed their respective drinking water guide-
lines set by the WHO. High levels of anions’ contaminations 
in soil were due to wastewater discharge of the Sadkal oil 
exploration and production [28]. Hand pumps’ water sources 
stay close to the surface; therefore, the contaminants could 
easily seep or leach down from wastewaters and soils to the 
water. High concentrations of NO3 and NO2 could cause var-
ious health problems, especially in babies. Anion’s results of 
this study were found higher than those reported for drink-
ing water by Khan et al. [19] in the Peshawar district and 
Iqbal et al. [41] Rawalpindi/Islamabad districts.

Specific amounts of Na, K, Ca and Mg are essentially 
required for normal functions of human being. Deficiency 
effects of Na, K, Ca and Mg include dehydration, fatigue, 
muscle and bladder weakness, hypertension, depression, 
asthma, heart problems and kidney diseases. However, 
higher concentrations may cause toxicity or health problems, 
including rapid heartbeat, hypertension, headaches, edema, 
stroke, kidney damages, stomach problems, nausea, cystitis, 
ovarian cysts, reduced renal function and abnormal metab-
olism of protein [36,42,43]. The concentrations of Na ranged 
(68.23–233.34, 100.29–139.21 and 96.41–708.29 mg L–1), K 
(0.21–1.34, 0.40–0.51 and 0.43–15.50 mg L–1), Ca (10.20–167.37, 
22.50–60.44 and 170.34–490.16 mg L–1) and Mg (24.8–116.50, 
19.60–50.10 and 30.20–40.18 mg L–1) in bore wells, dug wells 
and hand pumps water, respectively (Table 1). The safe 
drinking water guidelines set by WHO were surpassed by 
Na (40%, 100% and 75%), K (25%, 0% and 0%), Ca (50%, 0% 
and 0%) and Mg (40%, 50% and 10%) samples of bore wells, 
dug wells and hand pumps water. Although, water dissolves 
these elements due to natural lithogenic processes (weather-
ing and erosion) along the flow, however, the various anthro-
pogenic (industrial, mining and agriculture) activities could 
affect their concentrations in water as well [18,38].

The PHEs are extremely hazardous, owing to their 
toxicity, persistence and bioaccumulative nature [44]. 
Instrumental detection limits of PHEs Cd, Cr, Cu, Mn, Ni, 
Pb, Zn and Fe were 0.002, 0.004, 0.005, 0.005, 0.07, 0.05, 0.02 
and 0.06 μg L–1, respectively. Chromium concentrations 
ranged from 0.01 to 0.06, 0.01 to 0.97 and 0.006 to 0.97 mg L–1 
in bore wells, dug wells and hand pumps water, respectively 
(Table 1). The concentrations of Cr were found below than 
the safe drinking water guidelines set by WHO, except for 
10%, 20% and 50% samples of bore wells, dug wells and hand 
pumps water, respectively. Chromium is one of the required 
elements for lipid and glucose metabolism, and amino acid 
utilization [45]. However, higher concentrations of Cr may 
cause toxicity and affect the kidneys, liver and respiratory 
organs and human cancer [46]. Nickel concentrations ranged 
from 0.01 to 0.30, 0.01 to 0.10 and 0.13 to 1.48 mg L–1 in bore 
wells, dug wells and hand pumps water, respectively (Table 
1). Nickel concentrations have surpassed the drinking water 
guidelines set by the WHO for 30%, 40% and 100% samples 
of bore wells, dug wells and hand pumps water, respectively. 
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Exposure to high levels of Ni may cause different diseases 
including allergic dermatitis, lung fibrosis and cancer in 
respiratory tract, vomiting, nausea, abdominal discomfort, 
headaches, cough and shortness of breath [47]. Manganese 
concentrations ranged from 0.05 to 1.03, 0.01 to 0.90 and 0.43 
to 1.70 mg L–1 in bore wells, dug wells and hand pumps water, 
respectively (Table 1). Bore wells (40%), dug wells (50%) and 
hand pumps (75%) of water samples have surpassed the safe 
drinking water guidelines set by WHO. Manganese is one of 
the essential elements for all living beings [17,48]. However, 
exposure to be higher level of Mn could cause severe health 
issues such as dizziness, muscle tremors, liver disease, and 
effect nervous system and other function of human beings 
[49]. Iron concentrations ranged from 0.04 to 1.50, 0.21 
to 0.40 and 0.82 to 1.30 mg L–1 in bore wells, dug well and 
hand pumps water, respectively (Table 1). A majority (66%) 
of sampling showed higher concentrations of Fe in all water 
sources and surpassed the safe drinking water guidelines set 
by WHO. Like Mn, Fe is also essentially required for normal 
human function in a specific amount. However, higher con-
centrations of Fe could produce human toxicity, including 
vomiting, diarrhea, blood, kidney and liver, cardiovascular 
and central nervous systems problems [18].

Cadmium concentration ranged from <0.01 to 0.07, 0.02 
to 0.07 and 0.01 to 0.30 mg L–1 in bore wells, dug wells and 
hand pumps water, respectively (Table 1). Bore wells (40%), 
dug wells (100%) and hand pumps (100%) of water samples 
showed higher Cd concentrations than the safe drinking 
water guidelines set by WHO. Exposure to higher levels of 
Cd contaminations could cause acute and chronic toxicity. 

Acute toxic effects include gastrointestinal problems, such 
as vomiting and diarrhea [50], while chronic exposure may 
cause kidney and skeleton damage [51,52]. Lead concentra-
tions ranged from below detection limit (BDL) to 0.20, 0.01 
to 0.10, 0.01 to 0.60 mg L–1 in bore wells, dug wells and hand 
pumps water, respectively (Table 1). Bore wells (30%), dug 
wells (10%) and hand pumps (50%) of water samples have 
surpassed the drinking water guideline set by the WHO. 
Lead toxic effects include nervous, damage to digestive 
system and kidneys [52]. Children are more sensitive to Pb 
toxicity, which deteriorate their mental sharpness, memory 
and cause anemia [17,53]. Zinc and Cu concentrations ranged 
from BDL to 3.28, 0.32 to 2.60 and 1.92 to 4.00 mg L–1 and 
0.08 to 2.10, 0.39 to 2.50 and 2.30 to 3.10 mg L–1, respectively 
(Table 1). In the study area, bore wells (30%, 20%), dug wells 
(10%, 10%) and hand pumps (75%, 100%) of water samples 
showed higher concentrations that the safe drinking water 
guidelines set by the WHO. Zinc and Cu are essential met-
als and required for normal body function. However, their 
higher concentration could cause toxicity such as sideroblas-
tic anemia and Alzheimer’s disease [17,54].

3.2. Shallow and deep groundwater comparison

Groundwater’s that stay close to surface is considered 
shallow water such as the hand pump source. Shallow water 
showed significantly (p < 0.05) higher level of contamina-
tions as compared with deep water sources. Higher level of 
contaminations could be attributed to aboveground soil 
 contamination, oil and gas exploration activities [28]. Water 

Table 1
Physicochemical parameter concentrations (mg L−1) in various drinking water sources of the study area

Bore wells (na = 30) Dug wells (n = 09) Hand pumps (n = 12) WHO
Range Mean ± Stdb Range Mean ± Std Range Mean ± Std

pHc 6.80–8.50 7.70 ± 0.17 7.90–8.23 8.05 ± 0.15 8.30–9.10 8.58 ± 0.18 6.50–8.50
Chloride 75.02–624.13 249.36 ± 45.98 147.45–380.43 263.50 ± 116.50 522.17–2,441.09 1,491.50 ± 515.17 250.00
Fluoride 0.16–5.75 1.50 ± 0.57 0.53–0.60 0.57 ± 0.04 0.90–1.62 1.35 ± 0.17 1.50
Sulfate 4.12–143.32 64.02 ± 12.56 86.60–200.39 143.30 ± 56.70 54.28–280.18 165.00 ± 48.31 250.00
Nitrate 4.60–266.01 104.11 ± 24.33 22.40–200.11 111.20 ± 88.80 18.60–576.37 235.05 ± 122.43 10.00
Nitrite 0.12–2.02 0.94 ± 0.35 0.34–0.70 0.52 ± 0.18 1.04–4.02 2.50 ± 0.74 1.00
Na 68.23–233.34 142.2 ± 715.53 100.29–139.21 119.50 ± 19.50 96.41–708.29 395.50 ± 128.58 200.00
K 0.21–1.34 0.69 ± 0.12 0.40–0.51 0.46 ± 0.06 0.43–15.50 6.29 ± 3.25 12.00
Ca 10.20–167.37 59.47 ± 16.11 22.50–60.44 41.25 ± 18.75 170.34–490.16 278.50 ± 72.74 200.00
Mg 24.8–116.50 51.69 ± 8.64 19.60–50.10 34.85 ± 15.25 30.20–40.18 34.73 ± 2.1 50.00
Cr 0.01–0.06 0.02 ± 0.00 0.01–0.60 0.30 ± 0.30 0.01–0.97 0.65 ± 0.22 0.05
Ni 0.01–0.30 0.05 ± 0.03 0.01–0.10 0.05 ± 0.05 0.13–1.48 0.73 ± 0.29 0.02
Mn 0.05–1.03 0.40 ± 0.10 0.01–0.90 0.46 ± 0.45 0.43–1.70 1.03 ± 0.26 0.40
Fe 0.04–1.50 0.52 ± 0.15 0.21–0.40 0.31 ± 0.10 0.82–1.30 1.03 ± 0.1 0.30
Cd BDLc–0.07 0.01 ± 0.01 0.02–0.07 0.05 ± 0.03 0.01–0.30 0.12 ± 0.06 0.003
Pb 0.01–0.20 0.05 ± 0.02 0.01–0.10 0.01 ± 0.01 0.01–0.60 0.25 ± 0.13 0.01
Zn 0.01–3.28 1.96 ± 0.35 0.32–2.60 1.46 ± 1.14 1.92–4.00 2.91 ± 0.55 3.00
Cu 0.08–2.10 0.75 ± 0.23 0.39–2.50 1.45 ± 1.06 2.30–3.10 2.83 ± 0.19 2.00

aNumber of samples. 
bStandard deviation. 
cUnitless.
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in the percolation or leaching due to lithogenic process could 
dissolve most of the contaminant and bring in shallow-water 
sources as these sources along with surface water are more 
susceptible to contaminations. These results were found con-
sistent with those reported by Begum et al. [18] for drinking 
water along mafic and ultramafic rocks, where the shallow 
water revealed higher contamination levels as compared with 
deep water sources. Anions and PHEs concentrations of this 
study were found higher than those reported by Khan et al. 
[19] in the Peshawar district and Iqbal et al. [41] Rawalpindi/
Islamabad districts.

3.3. Risk assessment

In the field survey, we observed that many of the 
local inhabitants had a low literacy rate, income level and 
are unaware of the importance of clean and safe water. 
Residents cannot afford bottled water and are dependent 
on the local groundwater for their drinking water. A major-
ity (over 60%, 10% and 15%) of the population were using 
bore wells, dug wells and hand pumps drinking water 
within the study area. Female’s especially young ladies use 
manual or electric power to collect water from mentioned 
sources and were stored in close polythene or cemented 
brick tanks. Waters are used for drinking and other domes-
tic purposes without filtration, filtered through nylon cloth 
for dirt, or allowed to settle for suspended particles. Basic 
information together with the PHEs concentrations in 
drinking water were used for the risk assessment via aver-
age DI and HRI. 

Potential risk depends on the concentrations and variety 
of PHEs, consumption rate, type and toxicity [19,44]. The 
highest DI of Zn occurred through hand pumps water con-
sumption as compared with other PHEs and water sources 
(Fig. 2). Higher Zn intakes as compared with other PHEs 
were attributed to its high contamination level in the drink-
ing water. The DI values of PHEs through water consump-
tion were different for various age groups such as adults 
and children. Children showed the highest DI values for  
Zn (190 μg kg–1-d) and the lowest for Cd (0.91 μg kg–1-d). 
Similarly, the adults’ highest DI values for Zn was  
(80.7 μg kg–1-d) and the lowest for Cd (0.39 μg kg–1-day, Fig. 2). 

The highest HRI values (16.01) were observed for Cd 
occurred through hand pumps water consumption as com-
pared with other PHEs and water sources (Fig. 3). These 
higher HRI values for the Cd as compared with other PHEs 
were attributed to its higher toxicity and low reference dose. 
Hand pumps’ water posed higher HRI values to the exposed 
human population as compared with bore wells. Higher HRI 
values were attributed to the high levels of PHEs contamina-
tions in hand pumps’ water that led to their higher intake and 
resulted in higher HRI. Higher doses of Cd could cause acute 
and chronic toxicity in the exposed population. The HRI 
values were <1 for Cr, Mn, Pb, Zn and Cu, therefore, pose 
no potential risk when compared with the US EPA   limits. 
Children showed the highest HRI values for all PHEs as 
compared with adults. Higher HRI values for children were 
attributed to low body weight. In the study area, HRI values 
were found higher than those reported in drinking water of 
Peshawar district by the Khan et al. [19] and Mardan district 
by Gul et al. [38].

3.4. Statistical analyses

One-way ANOVA analysis for statistical comparison 
of water sources revealed the significant variations in the 
level of p < 0.05, which means that the sources contribute 
differently to the mean water contamination. Table 2 sum-
marizes the Pearson correlation matrices of selected physi-
cochemical parameters in drinking water of the study area. 
Physicochemical parameters showed significant correlations 
in drinking water. Highly significant correlations were found 
between the parameter pairs, including Na–K (r = 0.951),  
Na–Cr (r = 0.771) and Na–Pb (r = o.814) showing a common 
source of these elements. Other pairs like Cr–Ni (r = 0.812), 
Cr–Mn (r = 0.753), Cr–Cd (r = 0.814) and Cr–Cu (r = 0.671) 
showed significant correlation suggesting their geochemical 
association (Table 2). Results of the PCA for selected physi-
cochemical parameters in drinking water were summarized 

Fig. 2. Daily intake through PHEs consumptions in drinking 
water sources.

Fig. 3. Health risk assessment through PHEs consumptions in 
drinking water sources.
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(Table 3). This method resulted in reduction of large data-
set to five components having eigenvalues >1 (before and 
after rotation) that explained 82.57% of the data variation 
in drinking water. Each factors components PC1 (29.54%), 
PC2 (20.98%), PC3 (14.01%), PC4 (10.59%) and PC5 (7.44%) 
accounted for the total variance. The Cr, Ni, Mn and Cd were 
strongly associated with Ca (PC1) suggesting higher con-
taminations from anthropogenic (wastewater ponds on the 
surface) and lesser to lithogenic (influence of carbonate bed-
rock minerals such as talc carbonate schist) sources. Higher 
PHEs contaminations in surface soil were attributed from 
the wastewater ponds in the vicinity [28] which could be 
the cause of drinking water contaminations. Pb and Zn with 
Na and K (PC2) observed high associations due to drinking 
water percolation through bedrock. PC3 includes pH, sulfate 
and nitrates high loadings and demonstrates the seepage of 
surrounding wastewater of Sadkal oil exploration, surface 
soil contamination, agriculture and other human activities 
to groundwater. Lithogenic or background contribution of 
metals to groundwater is also represented by PC4 and PC5 
(Table 3). 

4. Conclusions

This study concluded that majority of physicochemical 
parameters have surpassed their respective safe drinking 
water guidelines set by the WHO in hand pumps (50%–100%) 

and in bore wells and dug wells (10%–40%) water samples. 
Shallow water showed significantly (p < 0.05) higher levels of 
contaminations as compared with deep wells water sources. 
Higher contaminations of the hand pump as compared with 
bore wells drinking water led to higher intake of PHEs that 
resulted in higher HRI values. The highest DI values were 
observed for Zn and HRI values for Cd and Ni in children 
through hand pump water consumption of local population 
(15% of total population). Statistical analyses such as correla-
tion analysis and PCA revealed that anthropogenic (explora-
tion industrial wastewater) activities and contaminated soil 
contributed to drinking water contaminations. This study 
recommends stopping the use of hand pumps’ water for 
drinking and other domestic purposes and emphasis on deep 
boring tube wells installation and regular monitoring and 
treatment of drinking water. This study strongly suggests the 
wastewater treatment for efficient removal of PHEs before 
releasing to the surrounding ecosystem. 
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