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a b s t r a c t
An approach to forecast the mixed liquor suspended solids (MLSS) and food-to-mass ratio (F/M) of 
the activated sludge in bioreactor using some methods of statistical modelling has been proposed. 
The impact of explanatory variables used in the models on the exactness of the models developed has 
also been analyzed. Those variables are wastewater quality indicators and parameters of activated 
sludge chambers while the modelling methods used are the support vectors machines, cascade neural 
networks and boosted trees. Moreover, the possibility of modelling those variables based on the mea-
surements of wastewater flow and temperature in the wastewater inflow to the wastewater treatment 
plant has been investigated. It was concluded that the MLSS as well as the F/M could be successfully 
forecasted by variety of statistical models in which the wastewater quality indicators are not measured 
but modelled. The method is very useful operationally because it makes possible to monitor and cor-
rect the values of MLSS and F/M quickly and efficiently while only a limited access to the wastewater 
quality measurements is available.

Keywords: �Wastewater treatment plant; Food-to-mass ratio; Mixed liquor suspended solids; Cascade 
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1. Introduction

Owing to changes in amount and quality of raw waste-
water inflow, online control of parameters of activated 
sludge chambers (ASC) is needed to maintain the stable con-
ditions of the wastewater treatment process. Such permanent 
control is aimed to assert steady values of the sludge age, 
food-to-mass ratio (F/M) and the biomass (or sludge) mixed 
liquor suspended solids (MLSS). In typical technological 
systems to remove the carbon, nitrogen and phosphorous 
compounds from the wastewater, it is recommended that F/M 
value cannot be higher than 0.10 g biological oxygen demand 
(BOD5)/g MLSS·d and it cannot be lower than 0.05 g BOD5/g 
MLSS·d; then the problems concerning the sludge sedimenta-
tion induced by filamentous bacteria can be eliminated [1–5]. 

Nowadays a correction of ASC parameters is performed ad 
hoc in real time what is usually neither economically nor 
ecologically efficient. Hence, the loads of the biodegradable 
wastewater compounds as well as other wastewater quality 
indicators are suggested to be based on statistical models. 
Such approach would help the treatment plant operator to 
predict the correction values of ASC parameters and to main-
tain the F/M and MLSS values in the really optimal range. It 
has been recently shown [6–9] that statistical or physical mod-
els are widely developed in order to improve the efficiency 
of ASC operation. However, the use of physical models is 
connected with many calculation troubles concerning their 
calibration and the complexity of description of biochemical 
reactions. Therefore, the statistical models have been increas-
ingly applied when their structure is generated on the stage 
of model learning and when the exactness of their prediction 
ability is checked on the stage of model testing. Those models 
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are created by means of certain data mining methods, such 
as neural networks and their modifications, support vectors 
machines (SVM) or method of random trees. The methods 
are commonly used to optimize the processes of sewage nitri-
fication, denitrification, dephosphatation and aeration, and 
also of sludge sedimentation or BOD5 and chemical oxygen 
demand (COD) reduction in the wastewater [10–13]. The 
models could be applied in the prediction processes and they 
could improve essentially the efficiency of wastewater treat-
ment plants (WWTP). Nevertheless, to our knowledge, the 
importance of controlling F/M parameter in WWTP operation 
has been described very rarely [14]. Moreover, in the majority 
of the models developed, the wastewater quality indicators 
and ASC operational parameters are considered as the input 
variables. Such approach is unaccepted from economic and 
operating points of view. Therefore, it is strongly advised to 
develop some sophisticated models addressed to predict the 
difficult measurable variables on the basis of other variables 
which are fast and easily measured.

A novel route to model activated sludge concentration 
and substrate loading has been described in this paper. The 
models could be applied in a lack of input data concerning the 
wastewater quality or reactor operating parameters. To avoid 
the costs resulted from online measurements of wastewater 
input data, it is recommended to predict those values on the 
basis of temperature and wastewater inflow measurements 
using the selected data mining methods. The goal of the men-
tioned analyses is to develop a method to model and control 
a biological reactor working in a continuous manner.

2. Object of investigation

The measurement data used in the following for mod-
elling and forecasting have been collected from the WWTP 
Sitkówka-Nowiny, located in Kielce in central part of Poland. 
The nominal capacity of that WWTP is 72.000 m3/d what cor-
responds to the population equivalent of 275.000 p.e. The 
flowing wastewater is pretreated mechanically on stepped 
bars and in the aerated grits (the fats removal included) and 
then it is primarily clarified. After that it flows into the bio-
logical reactor supplied with BARDENPHO system. Then, it 
is transported into four secondary clarifiers where the pro-
cess of a final clarification occurs and after that the treated 
wastewater is discharged into Bobrza river.

3. Methodology

Some selected statistical models to predict the MLSS and 
F/M were applied. The impact of individual input variables 
(e.g., amount and quality of wastewater inflow) on the exact-
ness of prediction of modelled bioreactor parameters has been 
analyzed. The MLSS prediction is described by the formula:

MLSS = …( )f x x x x xi n1 2 3, , , , � (1)

where n is the number of input variables concerned in the 
models (i  =  1,2,3,…,n); xi is the variable values concerning 
the wastewater inflow (Q), the wastewater quality indica-
tors in the inflow (BOD5,in, CODin, TSSin, TNin and N–NH4,in

+), 
operational parameters (Zt, where t = 1,2,3, …6) of ASC (pH, 

temperature in bioreactor (Tsl), oxygen concentration in nitri-
fication chamber (dissolved oxygen [DO]), return activated 
sludge (RAS) pumping rate in % of daily flow and amount of 
excessive sludge (waste activated sludge [WAS]) directed to 
anaerobic digesters, methanol added (mmet)).

The possibility to predict the concentrations of BOD5,in and 
CODin, total suspended solids (TSSin), total nitrogen (TNin) 
and ammoniacal nitrogen (N–NH4,in

+) based on the measure-
ments of daily wastewater inflow (Q) and of its temperature 
(Tin) can be described by the following relation [15,16]:
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where m, k is the time gaps in the measurements of concerned 
variables, j is the number of a wastewater quality indicator 
analyzed. The stationarity of the time series collected was 
checked using Mann Kendall test for trend analysis prior to 
determining the model prognoses of wastewater quality and 
quantity. 

Eq. (2) is based on the assumption that the wastewater 
quality characterized by the pollution load is predictable and 
the dilution of the wastewater inflow and the corresponding 
pollution degradation influence the values of respective 
wastewater quality indicators. That assumption has been 
confirmed [15–17] for the distribution wastewater network 
supplying the WWTP investigated.

To identify the explanatory variables used for modelling  
the wastewater quality indicators the method of boosted 
trees (BT) has been used [18]. In practical considerations 
this is a frequently used approach what allows to limit the 
number of inputs (explanatory variables) in mathematical 
models [18,19]. So, the importance indicators for particular 
predictors have been calculated and the ranking list of them 
was prepared. The variables taken into account in Eq. (2) are 
based on that list. Based on the models the F/M has been cal-
culated using the formula:
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where VASC is the capacity of ASC, BOD5,in,cal(t) is the 
BOD5 value modelled by means of Eq. (2), Qcal(t) is the 
predicted value of wastewater inflow based on the Q(t – p) 
measurements (where p means the time gap between the 
modelled and measured variable values), MLSScal(t) is the 
predicted value of MLSS calculated from Eq. (1) or using the 
combination of Eqs. (1) and (2).

Using the diagram in Fig. 1, the operational parame-
ters of bioreactor can be modelled and adjusted so that the 
F/M value will be placed in the optimal range even if the 
measuring devices installed on the wastewater inflow and in 
the bioreactor are out of order.

To model the wastewater quality indicators and MLSS 
and F/M values, the methods of SVM, cascade neural net-
works (CNN) and BT were used. The usefulness of the 
SVM, CNN and BT methods for forecasting the operation 
of WWTP has been demonstrated in many studies [6–8,12]. 
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In order to properly carry out the learning process and then 
evaluate the performance of the obtained statistical mod-
els, a fivefold cross-validation was performed, dividing the 
available measurements data into a learning set (75%) and a 
test set (25%). It was found that the learning and testing data 
set included separately 250 values of MLSS, F/M and the fol-
lowing wastewater quality indicators: BOD5,in, CODin, TNin, 
N–NH4,in

+ and TSSin. To develop the models for forecasting 
the daily inflow of wastewater a set of data 1,250 values was 
used. The data for the learning and testing sets were ran-
domly selected. All data have been standardized by means 
of the min–max transformation before they were used to cal-
culate the models.

To simulate complex environmental processes neu-
ral networks are commonly used and then the multilayer 
perceptron (MLP) are mostly applied [6,7,20,21]. Neural 
networks of MLP type are usually made up of three layers 
(input, hidden and output layer). At the model learning 
stage, for the adopted activation function and the number 
of neurons on the hidden layer, the weights values for indi-
vidual neurons are estimated on the basis of some numerical 
algorithms. Detailed information about the MLP networks 
and learning algorithms can be found in papers [19,20]. One 
of MLP modifications is the CNN where some additional 
connections between the neurons situated on the input layer 
and the neurons placed on the following layers are created. 
A cascade network having a higher number of layers than 
three can be used to model complex nonlinear dependences 
[22,23]. In the paper, to find the optimal model structure by 
modelling the variables Q, CODin, BOD5,in, N–NH4,in

+, TNin, 
TSSin and MLSS the number of neurons on the single hid-
den layer has been changed from 3 up to 2·S + 1, where S is 

the number of model inputs [24,25]; the activation functions 
between the input and hidden layer were linear, exponen-
tial, sinusoidal, sigmoidal and tangent-hyperbolic and 
they have been taken subsequently; the models calculated 
were assessed by means of the standard quality measures 
like mean absolute error (MAE), mean absolute percent-
age error (MAPE) and correlation coefficient (R). Based on 
the papers [26,27] concerning the CNN, three additional 
connections between the input neurons and the following 
network layers have been defined. The networks calcu-
lated have got two hidden layers [26]. To learn the models 
the Broyden–Goldfarb–Shanno algorithm was used [22]. 
The CNN models forecasting the amount of inflowing 
wastewater, the wastewater quality indicators and param-
eters of the biological reactor have been developed using 
the MATLAB program (toolbox Neural Network). For the 
adopted activation function the number of neurons on two 
hidden layers has been changed by trial and error method 
until the maximum R-value and the minimum MAE and 
MAPE values were obtained.

In the following method of SVM there is admissible 
that the relations between the model output and the input 
variables are nonlinear; then a nonlinear transformation of 
n-dimensional space of input variables into K-dimensional 
space of variable features using a kernel function is exe-
cuted (where K > n). The SVM networks do not show the 
typical drawback of MLP networks what is a frequent case 
of breaking the learning modelling stage in one of the local 
minima of the minimized criteria function; in SVM method 
a special learning algorithm developed by Vapnik [28] is 
used to improve the calculation features of the network. 
In that method the prediction abilities of the obtained 

Fig. 1. Diagram of calculation and control of MLSS and F/M values.
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models depend on the values of the following parameters: 
capacity (C), kernel function (γ) and threshold of insensi-
tivity (ε) [26,28,29]. In the paper to forecast the wastewater 
inflow, MLSS and the wastewater quality indicators the 
regression SVM method with a radial kernel function has 
been used [12].

A significantly simpler than CNN and SVM method is 
the BT method being an implementation of the method of 
stochastic gradient strengthening [30]. The main idea of 
the method consists in a creation of a sequence of regres-
sion trees where by means of each of the following tree 
the rests generated by the preceding tree are calculated. 
A clear advantage of the method are relatively simple 
structures of the models developed and as a result lower 
numbers of model parameters compared with CNN and 
SVM models. The choice of the trees number (N) in the 
models developed was done by a successive approxima-
tion and by taking different tree numbers, so the limit of 
N = 200 trees was not exceeded in order to avoid a model 
overlearning.

In the case of SVM and BT models forecasting the quantity 
and quality of the wastewater inflow and the parameters of 
the biological reactor, the parameters C and γ were changed 
by means of the trial-and-error method using STATISTICA 
program (toolbox Data Mining) until the assumed modelling 
effects as in the CNN models was achieved.

4. Results

Based on the measurements concerning the wastewater 
inflow and the wastewater quality indicators and the param-
eters of the WWTP bioreactor the ranges of variation of those 
variables have been calculated (Table 1).

It is easy to notice that the pollution loads flowing to the 
ASC are highly variable what is followed by a large varia-
tion of the bioreactor parameters including MLSS and F/M 
values. Using the wastewater inflow, the wastewater quality 
indicators and bioreactor parameters, the statistical models 
to forecast the MLSS have been calculated. In those mod-
els the possibility of modelling those variables by using the 
inflow loads of organic compounds, suspended solids and 
the nitrogen and the ASC parameters (RAS, WAS, pH, Tsl, 
DO and mmet) were considered.

To predict the wastewater quality, expressed by the val-
ues of BOD, COD, TSS, TN and N–NH4, and to determine 
MLSS and F/M, several various methods have been already 
applied (Table 2). In contrast to those activities, the applica-
tion of data mining methods such as CNN, BT and SVM to 
model quantity and quality indicators of the wastewater has 
not been fully examined so far. It confirms therefore an inno-
vative character of our current approach.

In Table 3, the results of MLSS calculation using the 
methods of SVM, CNN and BT have been listed. To calculate 

Table 1
Variation ranges of parameters describing the wastewater inflow, the wastewater quality indicators and bioreactor parameters [9,20]

Variables Minimum Average Maximum Standard deviation

Q, m3/d 32,564 40,698 86,592 8,088
Tin, °C 8.40 16.60 20.90 2.64
Tsl, °C 10.00 15.90 23.00 3.58
pH 7.20 7.60 7.80 0.20
MLSS, mg/L 2,010 4,260 6,520 1,040
RAS, % 44.60 90.70 167.60 23.71
mmet, m3/d 0.00 1.35 4.56 1.00
WAS, kg MLSS/d 3,489 11,123 19,194 3,950
DO, mg/L 0.55 2.56 5.78 1.03
F/M, g BOD5/g MLSS·d 0.03 0.07 0.15 0.02
HRT, d 0.85 1.98 3.54 0.32
SRT, d 10.00 16.25 22.35 5.12
BOD5,in, mgO2/L 127 309 557 86
BOD5,eff, mgO2/L 2.00 4.59 10.00 1.35
CODin, mgO2/L 384 791 1250 174
CODeff, mgO2/L 23.00 35.4 50.10 6.35
TSSin, mg/L 126 329 572 77
TSSeff, mg/L 1.00 5.60 14.00 4.79
N–NH4,in

+, mg/L 24.40 37.8 65.90 7.10
N–NH4,eff

+, mg/L 0.20 2.14 9.25 3.77
TNin, mg/L 33.91 77.73 124.09 10.62
TNeff, mg/L 4.38 7.38 20.10 3.47

HRT, hydraulic retention time; SRT, sludge retention time.
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the models using SVM method the values for its characteris-
tic parameters C and γ have been taken from the ranges 5÷12 
and 0.25÷0.65, respectively. In the models numbered from 
1 to 3 and from 4 to 6 the neuron numbers on the singular 
hidden layers were 5 and 6, respectively, and in the models 
from 7 to 8 and from 9 to 10 the relevant neuron numbers 
were 8 and 9. By the BT models the number of trees created 
changed between N = 80÷100 what resulted that the models 
received were not overlearned. Table 3 also shows that the 
best prediction values of MLSS assessed by means of MAE 
and MAPE values were received by CNN method and the 
worst MLSS prediction has been obtained by BT method. The 
received results show that the prediction of MLSS has been 
essentially impacted by the CODin load (LCOD) that is present 
in all models analyzed. The conclusion is also confirmed by 
the investigations of communal treatment plants performed 
by Hong and Bhamidimarri [10] and Güçlü and Dursun [11].

On the other hand, when CODin is the only predictor 
parameter, the modelling leads to the models with the worst 

MLSS prediction, that is, with the highest values of MAE and 
MAPE errors. If some additional predictors such as BOD5,in, 
TSSin, TNin and N–NH4,in

+ are considered, then the ability of 
MLSS prediction improves essentially and the error values 
regarding, for example, MAE decline by 29% in CNN mod-
els, by 23% in SVM models and by 14% in BT models. This 
observation confirms substantial influence of those variables 
on the exactness of MLSS prediction. Table 3 also shows that 
the errors of MLSS prediction obtain their minimal value 
when the wastewater inflow, the wastewater quality indica-
tors and operational parameters of ASC (pH, Tsl, WAS, RAS, 
DO and mmet) are considered as the explanatory variables. 
This observation is supported by the calculations of Güçlü 
and Dursun [11] who developed a MLSS model of satisfied 
prediction ability (R  =  0.88) using MLP method and based 
on Q, CODin, TSSin, LCOD, TKNin and DO as the model inputs. 
The data listed in Table 3 are also confirmed by the simula-
tion results done by Hong and Bhamidimarri [10] who elabo-
rated accurate MLSS models (R = 0.91÷0.92) by means of MLP 

Table 2
Currently applied methods to predict selected wastewater quality parameters (BOD5,in, CODin, TSSin, TNin and N–NH4,in

+) and the 
reactor operational parameters (MLSS, F/M)

Variable Method

BOD5,in MLP [31,33], MLR [16,31], MARS [15], RF [15], RF + SOM [15]
CODin k-NN [32], MARS [15], MLP [31,33], MLR [16,31]

TSSin k-NN [18,32], MARS [15,18,32], MLP [18,32], RF + SOM [15], RF [15,18], SVM [18,32]

TNin k-NN [32], MARS [15], RF + SOM [15]

N–NH4,in k-NN [32], MARS [15], RF [15], RF + SOM [15]

MLSS GP [10], MLP [10,11,14,34], MLR [10,14]

F/M MLR [14], MLP [14]

MLP, multilayer perceptron; MLR, multilinear regression; GP, genetic programming; k-NN, k-nearest neighbour method; RF, random forest 
method; SVM, support vectors machines; SOM, self-organizing map; MARS, multivariate adaptive regression splines.

Table 3
Calculation results concerning the SVM, BT and CNN models forecasting the MLSS described by Eq. (1)

Model Variables CNN SVM BT

MAE 
(mg/L)

MAPE 
(%)

R MAE 
(mg/L)

MAPE 
(%)

R MAE 
(mg/L)

MAPE 
(%)

R

1 1,2 839 19.86 0.37 889 21.85 0.28 892 21.53 0.11
2 1,2,3 775 18.72 0.55 840 19.96 0.46 845 20.25 0.34

3 1,2,3,4 728 17.33 0.65 795 18.27 0.57 816 19.89 0.40

4 1,2,3,4,5 685 16.39 0.68 745 17.74 0.59 814 19.40 0.45

5 1,2,3,4,5,6 637 15.10 0.73 725 18.25 0.58 783 19.05 0.49

6 1,2,3,4,5,6,7 598 14.13 0.80 685 17.93 0.64 735 17.75 0.58

7 1,2,3,4,5,6,7,8 552 12.86 0.82 640 15.05 0.72 696 17.21 0.66

8 1,2,3,4,5,6,7,8,9 500 11.73 0.87 590 14.04 0.77 657 16.00 0.67

9 1,2,3,4,5,6,7,8,9,10 445 10.52 0.89 553 13.36 0.79 616 15.18 0.74

10 1,2,3,4,5,6,7,8,9,10,11 373 8.75 0.92 485 12.59 0.82 565 13.98 0.77

11 1,2,3,4,5,6,7,8,9,10,11,12 291 6.89 0.95 395 9.62 0.89 495 12.15 0.83

1, Q; 2, CODin; 3, BOD5,in; 4, N–NH4,in
+; 5, TNin; 6, TSSin; 7, Tsl; 8, pH; 9, mmet; 10, DO; 11, RAS; 12, WAS.
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method and taking into account the ASC parameters (pH, 
RAS and MLSS(t  –  1)), the wastewater inflow and rainfall 
depth as the input variables.

In order to model the wastewater quality indicators from 
Eq. (1) (BOD5,in, CODin, TSSin, TNin and N–NH4,in

+) the rele-
vant explanatory values displayed in Eq. (2) have been iden-
tified by means of BT method. Additionally, the predictors 
describing the daily wastewater inflow (Q) were defined and 
the importance indicators (IMP) have been calculated for all 
variables concerned (Table 4). Table 4 shows that the IMP val-
ues are changing in wide range (IMP = 0.56÷1.00). The great-
est range occurs for CODin variable and the lowest one for 
BOD5,in. The results listed in Table 4 show that the amount 
and temperature of the wastewater inflow have got an essen-
tial impact on the values of the concerned wastewater quality 
indicators. Moreover, the Mann Kendall test calculation at 
the level of statistical significance p = 0.05 shows no trends in 
the time series data what makes them steady-state.

Those results are confirmed by other calculations done by 
Jurik et al. [16], Rousseau et al. [17] and Szeląg et al. [15]. For 
further modelling analyses the predictor variables attributed 
to the calculated IMP values higher than 0.90 have been 
selected [18,19]. To forecast the daily wastewater inflow to 
WWTP, the values of Q measurements in three following 
time steps, that is, of Q(t – 1), Q(t – 2) and Q(t – 3), were taken 
into account. Based on the results achieved (Table 4) the mod-
els predicting the wastewater quality indicators have been 
developed by means of CNN, SVM and BT methods. The 
modelling results received are shown in Table 5 while the 
results concerning the inflow prediction are listed in Table 6.

In the models predicting the wastewater quality indica-
tors (Table 5) and developed by SVM method the used C value 
was in the range of 8–15 and the γ value was between 0.64 
and 1.00. The number of neurons in individual hidden layers 
in the models received by CNN method was between 7 and 

10 and the activation function applied mostly in those models 
was the tangent-hyperbolic function. The number of trees in 
the models calculated by BT method was between 70 and 105 
what assures that the models have not been overlearned.

In the model predicting inflow Q received by SVM 
method the C value applied was 7 and in the model received 
by CNN method the neurons number on the singular hidden 
layer was 4 while the activation function used was sigmoidal. 
For BT model the number of the trees concerned did not 
exceed N = 100.

The modelling results concerning the TSSin prediction by 
CNN method (Table 5) are slightly worse than the similar 
results obtained by Verma et al. [18] (R = 0.91) who calculated 
the CODin concentration and the wastewater inflow Q. By the 
models predicting CODin while using CNN method the calcu-
lated R value is very similar to the results achieved by Abyaneh 
[31] (R  =  0.81) who used the MLP method for this purpose. 
However, the MAPE value received in our CODin modelling 
is higher than that the one obtained by Minsoo et al. [32] who 
applied the k-NN method (MAPE = 7.35%). On the other hand, 
the R value received here by BOD5 prediction while using CNN 
method is identical with the result obtained by Dogan et al. [33] 
by means of MLP method and basing on the measurements 
data of Q, SSin, TNin and TPin. Comparing the results of TNin 
modelling computed by Minsoo et al. [32] for dry weather 
using k-NN method it is easy to notice that they are slightly 
better (MAPE = 4.54%) than those once received by us using 
CNN method. The values of R and MAPE (Table 4) computed 
by the models predicting CODin, BOD5,in, TNin, N–NH4,in

+ and 
TSSin while using CNN method are only marginally different 
from the results received by other investigators. It should be 
pointed out that Q and Tin variables have only been used in our 
analyses as the model predictors. That confirms a very high 
ability of CNN to model the wastewater quality indicators 
with limited access to the explained variables.

Table 4
Calculated importance indicators of predictors explaining the wastewater quality indicators

BOD5,in CODin TSSin N–NH4,in
+ TNin Qin

Variable IMP Variable IMP Variable IMP Variable IMP Variable IMP Variable IMP

Q(t – 1) 1.00 Q(t – 1) 1.00 Q(t – 1) 1.00 Q(t – 1) 1.00 Q(t – 1) 1.00 Q(t – 1) 1.00
Q(t – 2) 0.97 Q(t – 2) 0.94 Q(t – 6) 0.97 Q(t – 2) 0.98 Q(t – 2) 0.96 Q(t – 2) 0.93

T(t – 3) 0.95 Q(t – 6) 0.93 Q(t – 5) 0.95 Q(t – 3) 0.94 Q(t – 3) 0.95 Q(t – 3) 0.92

Q(t – 5) 0.94 Q(t – 3) 0.92 Q(t – 4) 0.94 Tin(t – 1) 0.93 Tin(t – 3) 0.94 Q(t – 4) 0.78

Q(t – 6) 0.93 Q(t – 4) 0.92 Tin(t – 3) 0.93 Tin(t – 2) 0.92 Tin(t – 2) 0.93 Q(t – 5) 0.69

Tin(t – 7) 0.92 Q(t – 5) 0.92 Q(t – 3) 0.92 Tin(t – 3) 0.91 Q(t – 6) 0.92 Q(t – 6) 0.67

Tin(t – 1) 0.92 Q(t – 7) 0.91 Tin(t – 1) 0.91 Q(t – 4) 0.90 Tin(t – 1) 0.91 Q(t – 7) 0.66

Tin(t – 5) 0.91 Tin(t – 7) 0.90 Q(t – 2) 0.90 Q(t – 5) 0.90 Q(t – 7) 0.90 Q(t – 8) 0.66

Q(t – 4) 0.90 Tin(t – 3) 0.74 Q(t – 7) 0.81 Q(t – 6) 0.81 Tin(t – 6) 0.73 Q(t – 11) 0.57

Q(t – 2) 0.82 Tin(t – 6) 0.71 Tin(t – 5) 0.08 Tin(t – 4) 0.80 Q(t – 4) 0.66 Q(t – 12) 0.55

T(t – 6) 0.81 Tin(t – 2) 0.07 Tin(t – 4) 0.78 Tin(t – 5) 0.80 Tin(t – 4) 0.65 Q(t – 9) 0.53

Q(t – 7) 0.79 Tin(t – 4) 0.68 Tin(t – 6) 0.74 Tin(t – 6) 0.77 Q(t – 5) 0.64 Q(t – 14) 0.50

Tin(t – 4) 0.75 Tin(t – 1) 0.58 Tin(t – 2) 0.73 Tin(t – 7) 0.76 Tin(t – 5) 0.63 Q(t – 10) 0.48

Tin(t – 2) 0.72 Tin(t – 5) 0.56 Tin(t – 7) 0.66 Q(t – 7) 0.75 Tin(t – 7) 0.62 Q(t – 13) 0.47
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The calculation results of quality indicators obtained by 
means of SVM, CNN and BT methods based on Eq. (2) were 
included into Eq. (1) and thus MLSS value may be appointed 
(Table 7). The quality indicators values of Q, BOD5,in and 
MLSS obtained while using the mentioned methods were 
substituted in Eq. (3) and the F/M was then determined 
(Table 8). The calculation results regarding MLSS and F/M 
for different combinations of variables (whose numbering is 
explained in Table 2) are shown in Tables 7 and 8, respec-
tively. Comparing the data from Tables 7 and 8 one can say 
that higher errors of matching MLSS measurements with 
calculation results were observed for the model in which 
the wastewater quality indicators were computed based on 
the measurements of temperature and wastewater inflow 
to WWTP. The modelling results listed in Table 7 compared 
with the data from Table 2 show that the prediction errors 

regarding the wastewater quality indicators influence vitally 
the exactness of MLSS prediction. The highest errors of 
MLSS prediction computed by CNN, SVM and BT methods 
(Table 7) were received for the models in which the predictors 
were represented by the wastewater inflow Q and the values 
of BOD5,in and CODin. Whereas the lowest prediction errors of 
MLSS (Table 7) were received, Table 2, using as the predictors 
the variables describing the inflow Q, the wastewater quality 
(BOD5,in, CODin, TSSin, TNin and N–NH4,in

+) and the bioreactor 
parameters (pH, DO, mmet, RAS and WAS). Making a compar-
ison between the results of MLSS modelling shown in Table 6 
and the results from other papers, for example, Hong and 
Bhamidimarri [10], Güçlü and Dursun [11] and Rustum [34] 
should be noted that the prediction errors achieved here are 
a little higher but it does not exclude a practical application 
of the models.

Table 7
Results of MLSS calculation based on the combinations of Eqs. (1) and (2)

Variables CNN SVM BT

MAE 
(mg/L)

MAPE 
(%)

R MAE 
(mg/L)

MAPE 
(%)

R MAE 
(mg/L)

MAPE 
(%)

R

1,2 836 19.72 0.42 893 21.66 0.17 926 22.40 0.08
1,2,3 880 21.08 0.15 924 22.29 0.04 961 23.17 0.03

1,2,3,4 826 20.15 0.37 872 21.74 0.30 932 22.27 0.16

1,2,3,4,5 770 19.31 0.52 842 20.84 0.35 891 21.90 0.31

1,2,3,4,5,6 721 17.65 0.65 832 20.33 0.35 865 21.19 0.36

1,2,3,4,5,6,7 665 16.56 0.72 798 19.23 0.42 840 20.39 0.40

1,2,3,4,5,6,7,8 615 16.16 0.70 791 19.26 0.46 830 20.15 0.47

1,2,3,4,5,6,7,8,9 570 15.90 0.78 768 19.31 0.52 784 19.60 0.53

1,2,3,4,5,6,7,8,9,10 520 14.02 0.79 730 19.05 0.54 769 18.96 0.56

1,2,3,4,5,6,7,8,9,10,11 450 12.35 0.83 640 17.90 0.67 743 18.24 0.58

1,2,3,4,5,6,7,8,9,10,11,12 363 8.32 0.93 530 13.50 0.84 758 17.40 0.63

Table 6
Results of modelling the daily wastewater inflow Q by means of SVM, CNN and BT methods

CNN SVM BT
MAE (m3/d) MAPE (%) R MAE (m3/d) MAPE (%) R MAE (m3/d) MAPE (%) R
2,541 2.54 0.86 2885 6.84 0.75 3129 7.46 0.70

Table 5
Results of modelling the wastewater quality indicators (BOD5,in, CODin, TSSin, N–NH4,in

+ and TNin) by means of SVM, CNN and BT 
methods

Quality 
indicators

CNN SVM BT

MAE (mg/L) MAPE (%) R MAE (mg/L) MAPE (%) R MAE (mg/L) MAPE (%) R

BOD5,in 25.88 8.88 0.92 42.88 14.94 0.78 52.29 18.50 0.63
CODin 67.31 9.29 0.82 89.77 12.62 0.74 99.93 13.22 0.60

N–NH4,in
+ 2.19 4.51 0.90 4.00 8.25 0.66 4.44 9.24 0.58

TSSin 25.41 8.47 0.90 39.03 13.27 0.78 46.92 16.33 0.63

TNin 3.73 4.75 0.88 5.74 7.42 0.66 6.25 8.23 0.59
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(a)

(b)

Fig. 2. Comparison of the measurements data with the results of MLSS calculation done by CNN, SVM and BT methods while using 
Eq. (1): (a), or Eqs. (1) and (2): (b).

Table 8
Results of F/M calculation by means of Eq. (3)

Variables CNN SVM BT

MAE MAPE (%) R MAE MAPE (%) R MAE MAPE (%) R

1,2 0.0145 21.38 0.66 0.0181 26.92 0.28 0.0181 28.13 0.18
1,2,3 0.0160 23.20 0.57 0.0183 27.20 0.24 0.022 30.29 0.05

1,2,3,4 0.0153 22.12 0.63 0.018 26.56 0.26 0.019 29.78 0.08

1,2,3,4,5 0.0134 19.52 0.71 0.0179 26.29 0.25 0.0195 29.29 0.10

1,2,3,4,5,6 0.0132 18.89 0.71 0.0176 25.72 0.28 0.0193 28.37 0.16

1,2,3,4,5,6,7 0.0126 18.13 0.75 0.0171 25.10 0.31 0.0184 27.37 0.19

1,2,3,4,5,6,7,8 0.0117 16.74 0.78 0.0176 25.92 0.26 0.0194 28.50 0.15

1,2,3,4,5,6,7,8,9 0.0119 17.11 0.77 0.0177 25.90 0.29 0.0180 28.25 0.23

1,2,3,4,5,6,7,8,9,10 0.0112 16.01 0.80 0.0166 24.27 0.40 0.0175 26.90 0.32

1,2,3,4,5,6,7,8,9,10,11 0.0108 15.95 0.81 0.0133 19.28 0.67 0.0173 27.04 0.32

1,2,3,4,5,6,7,8,9,10,11,12 0.0087 13.35 0.86 0.0118 16.58 0.81 0.0171 25.43 0.46
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Looking at the data in Table 7, it can be concluded that 
the lowest errors of F/M prediction were obtained by CNN 
method whereas the highest one by BT method is compatible 
with the results of Q and MLSS modelling and with the mod-
elling results concerning the wastewater quality indicators.

As for the MLSS prediction, the lowest prediction errors 
of F/M have been obtained with the model in which the 
wastewater quality indicators (BOD5,in, CODin, TSSin, TNin 
and N–NH4,in

+) and the ASC parameters have been taken 
into account as the predictors. In order to visualize received 
modelling results they are shown graphically in Figs. 2 and 3, 
where the results of MLSS and F/M simulation carried out by 
the models computed are reflected.

The MLSS values predicted by means of BT method are 
in many cases overestimated or underestimated compared 
with the measurements that could be affected by inappli-
cable technological decisions by WWTP operation – such 
exemplary cases are marked in Fig. 2(a) as BT(u) for u = 1–8. 
Much better fitting of simulation results to the measurements 
data was received using SVM and CNN methods. Moreover, 
based on the results shown in Fig. 2(b), it can be noted that 
MLSS values modelled only by CNN method are mostly rel-
evant to the measurements data. On the contrary, the MLSS 
values received by SVM and BT methods up to day number 
500 are overestimated and after that they are mostly underes-
timated. Those results confirm an essential impact of predic-
tion errors of singular wastewater quality indicators on the 
calculated MLSS values.

Based on the data reproduced in Fig. 3, it can be con-
cluded that F/M values predicted by BT method are under-
estimated whereas the values computed by SVM method are 
in many cases overestimated. The results of F/M simulation 
computed by CNN method are comparable with the mea-
surements data what creates the possibility to apply the elab-
orated model to control and monitor the F/M parameter in 
case of failures of probes measuring the wastewater quality 
indicators.

5. Conclusions

It is clear that the modelling methods of CNN, SVM and 
BT can be successfully applied to model wastewater quality 

indicators as well as MLSS. The best matching of the calcu-
lation results to the measurements data was obtained by the 
method of CNN and the highest error values were obtained 
by the method of BT. Furthermore, it should be pointed out 
that particular wastewater quality indicators can be pre-
dicted based on the degree of wastewater dilution that is 
determined by the amount of wastewater inflow and its tem-
perature; those parameters determine the rate of biochemical 
processes occurring in the wastewater.

Some limitations in respect of the modelling method-
ology presented in the paper may refer to separate sewer 
systems of a small scale. In general, the possibility of predic-
tion of the wastewater quality exclusively on the base of the 
wastewater inflow and temperature could be widely used in 
engineering practice. It enables to substitute the measured 
values of the wastewater quality indicators by correspond-
ing calculation data in the models forecasting the MLSS or 
F/M what has been demonstrated in the paper. The lowest 
prediction errors while modelling the MLSS and F/M vari-
ables were received for the models in which the explained 
variables were the inflow of the wastewater, its quality indi-
cators and the operational parameters of ASC. In turn, the 
largest prediction errors of MLSS and F/M were obtained by 
the models in which the pollution loads BOD5 and COD have 
been taken into account as the predictors.

The presented models could be successfully applied 
in the practice to reduce the extent of measurements of 
the wastewater quality indicators and bioreactor parame-
ters which are commonly used to conduct the operation of 
WWTP. That is operationally important because a sustained 
monitoring and control of MLSS and F/M values determines 
the effectiveness of ASC operation and by using the mod-
els those actions can be carried out even when the relevant 
measuring probes are defected or when some technical 
problems arise while measuring the wastewater quality 
indicators.

Taking into account the modelling results obtained some 
further analyses are to be done to assess the possibility 
of optimization of WWTP operation, regarding the 
improvement of the quality of the wastewater outflow and 
the settings of the bioreactor parameters with limited access 
to the wastewater inflow measurements.

Fig. 3. Comparison of the measurements data with the results of F/M modelling by means of CNN, SVM and BT methods.
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