

Removal of micropollutants and nutrients in household wastewater using organic and inorganic sorbents

W. Zhang^{a,*}, K. Blum^b, M. Gros^c, L. Ahrens^c, H. Jernstedt^c, K. Wiberg^c, P.L. Andersson^b, B. Björlenius^d, G. Renman^a

^aDepartment of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden, email: zhangw@kth.se (W. Zhang), gunno@kth.se (G. Renman) ^bDepartment of Chemistry, Umeå University, Linnaeus väg 6, SE-90187 Umeå, Sweden, email: kristinblum89@gmail.com (K. Blum), patrik.andersson@umu.se (P.L. Andersson)

^cDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007 Uppsala, Sweden, email: mgros@icra.cat (M. Gros), lutz.ahrens@slu.se (L. Ahrens), henrik.jernstedt@slu.se (H. Jernstedt), karin.wiberg@slu.se (K. Wiberg) ^dDepartment of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden, email: berndtb@kth.se (B. Björlenius)

Received 28 April 2018; Accepted 22 July 2018

ABSTRACT

The efficiency of five organic and five inorganic sorbents in removing 19 organic micropollutants (MPs), phosphorus, nitrogen, and dissolved organic carbon (DOC) was tested in a two-week column experiment using household wastewater spiked with pharmaceuticals (n = 6), biocides/pesticides (n = 4), organophosphates (n = 3), a fragrance, a UV-stablizer, a food additive, a rubber additive, a plasticizer and a surfactant. Two types of granular activated carbon (GAC), two types of lignite, a pine bark product, and five mineral-based sorbents were tested. All the organic sorbents except pine bark achieved better removal efficiencies of DOC (on average, $70 \pm 27\%$) and MPs ($93 \pm 11\%$) than the inorganic materials (DOC: $44 \pm 7\%$ and MPs: $66 \pm 38\%$). However, the organic sorbents (i.e. GAC and xyloid lignite) removed less phosphorus ($46 \pm 18\%$), while sorbents with a high calcium or iron content (i.e. Polonite® and lignite) generally removed phosphorus more efficiently (93 ± 3%). Ammonium-nitrogen was well removed by sorbents with a pH between 7 and 9, with an average removal of 87%, whereas lignite (pH 4) showed the lowest removal efficiency (50%). Some MPs were well removed by all sorbents (≥97%) including biocides (hexachlorobenzene, triclosan and terbutryn), organophosphates (tributylphosphate, tris-(1,3-dichloro-2-propyl)phosphate and triphenylphosphate) and one fragrance (galaxolide). The pesticide 2,6-dichlorobenzamide and the pharmaceutical diclofenac were poorly removed by the pine bark and inorganic sorbents (on average, 4%), while organic sorbents achieved high removal of these chemicals (87%).

Keywords: Micropollutants (MPs); Synthetic substances; Sorbents; On-site sewage facilities (OSSFs)

1. Introduction

Organic micropollutants (MPs) comprise a vast number of man-made and natural substances, such as pharmaceuticals, personal care products, pesticides, and industrial chemicals, which pose a threat for the aquatic environment over the world [1]. Besides, many MPs are not completely removed during wastewater treatment due to their physicochemical properties [1]. Many studies have been performed on the removal of MPs in centralized waste water treatment plants (WWTPs) worldwide [2–4]. However, less attention has been given to on-site sewage facilities (OSSFs), even though OSSFs are commonly used in decentralized rural and semi-urban areas. The concentrations of MPs in OSSF

*Corresponding author.

120 (2018) 88–108 July

^{1944-3994/1944-3986 © 2018} The Author(s). Published by Desalination Publications.

This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.

effluents were generally comparable to those observed in conventional WWTP effluents [6,7]. In Sweden, 753 000 households (corresponding to 10% of the population) are using OSSFs and are not connected to municipal WWTPs [5]. These OSSFs are commonly soil based systems, such as soil and infiltration beds [5], where sand is currently the most prevalent filter medium. Sand was capable of removing some MPs, while a number of other MPs were poorly removed [8,9]. A variety of wastewater treatment technologies have been studied for the removal of MPs, including membrane bioreactors [10-12], activated sludge systems [10], UV oxidation [13], ozonation [14], slow sand filtration [8], and sorbents such as activated carbon (AC) [15]. However, for practical and economic reasons, most of these technologies are not suitable for OSSFs. Other concerns include ecotoxicological hazards when using reactive treatments, e.g. ozonation may generate toxic transformation products that increase the genotoxic and mutagenic potential of MPs in wastewater [16,17]. Thus, there is an urgent need to study alternative filter materials with better adsorption capacities than sand or add-on filter materials that can be used after soil based systems to remove MPs from OSSF discharge.

The discharge of nutrients from the OSSFs to receiving water bodies is an important environmental issue. In Sweden, the OSSFs release 295 tons of phosphorus and 3066 tons nitrogen per year [18]. Furthermore, two studies showed that the discharged water from several OSSFs cannot meet the protection levels recommended by the Swedish Environmental Protection Agency [18,19]. Therefore, studying the removal of nutrients in OSSFs treatments is an important issue.

AC is one of the most effective organic sorbents for removing MPs. This material has been tested for, e.g., pharmaceuticals [15,20,21], cholorophenoxy pesticides [22] and per- and polyfluoroalkyl substances [23,24]. The granular activated carbon form (GAC) is more suitable for OSSFs than the powdered form (PAC), since it can be used as a filter medium and also because it requires less mechanical treatment. However, the adsorption capacity can differ between different types of GAC [15,25]. Moreover, GAC is expensive, so an alternative sorbent with lower costs is desirable. Other sorbents, such as lignite (often referred to as brown coal), has been studied for its adsorption of different substances, including MPs, and good removal efficiencies have been observed [26-29]. However, the performance of these organic sorbents in the removal of nutrients has not been explored yet. Furthermore, even though most inorganic sorbents are applied for nutrients removal, only few studies reported their efficiency in the removal of MPs. Different clay materials showed promising adsorption potential for the removal of a few pharmaceuticals and personal care products from aqueous solutions [30-32], and Zeolite, which has a porous uniform structure, showed good removal of some MPs, such as methyl tert-butyl ether (MTBE) [27,33]. However, the performance of these materials has only been confined to a limited number of individual MPs. Sand is the most common filter medium used in OSSFs. Nevertheless, improvements have to be made to enhance both nutrients and MPs removal. Thus, further research including a broader range of MPs as well as nutrients by a variety of sorbents is needed to improve wastewater treatment in OSSFs.

In order to identify proper sorbents for OSSFs for the removal of both MPs and nutrients, ten different sorbents were tested in a column experiment, covering materials with different physicochemical properties and application purposes. Based on literature studies, GAC and lignite showed promising removal for several types of MPs, therefore GAC with different particle sizes, lignite with different physical characteristics (coal and fiber) and a natural wood fiber product were used in the experiment. The studied inorganic sorbents are commercial products used for phosphorus/nitrogen/organic matters removal in OSSFs. Sand was chosen as a reference material to represent typical soil bed systems for OSSFs.

The main aim of this study was to find alternative sorbents for OSSFs which can remove both MPs and nutrients. A short-term column experiment was performed to evaluate the selected sorbents in terms of their capacity for removing multiple MPs, as well as nutrients (dissolved organic carbon (DOC), total phosphorus (P_{tot}) and ammonium nitrogen (NH₄-N)) and to provide an overview of their merits and demerits. The MPs tested in the experiment covered a wide range of chemicals, with different physicochemical properties, including pharmaceuticals, biocides/pesticides, fragrance, UV-stabilizer, food additives, rubber additives, plasticizers, surfactants and organophosphates.

2. Materials and methods

2.1. Filter media

The selected filters comprised five organic and five inorganic materials, including natural materials and industrially processed materials (Table 1). The selection was based on literature studies, practical applications, and economical benefits [15,20–33].

The five organic filter materials comprised two kinds of GAC, two kinds of lignite, and a natural pine bark product (Zugol[®]). The materials Filtrasorb[®]300 and EnvirocarbTM 207EA, lignite and Xylitare coal-based sorbents, whereas Zugol[®] is a natural wood fiber. Both GACs (i.e. Filtrasorb[®] 300 and EnvirocarbTM 207EA) were manufactured from bituminous coal, but have different particle sizes (0.6–2.4 and 3–4 mm, respectively). In order to achieve a raw compact lignite sorbent, this material was crushed and sieved to 2–4 mm and used as filter material. Xylit consists of natural wood fibers derived from lignite (usually called xyloid lignite), and Zugol[®] is made of Swedish pine bark without the addition of any chemicals.

Rådasand is a natural sand excavated from the Råda esker (south-west Sweden), and was washed and sieved to 0.7–1.0 mm (referred to as sand in the following). Filtralite[®] P and Polonite[®] are used in OSSFs to remove phosphorus, while Filtra[®] N is intended to remove nitrogen. Unlike the other inorganic filter materials, Sorbulite[®] and Filtra[®] N are porous materials, therefore providing a large adsorptive surface area and increasing the possibility for removal of MPs.

2.2. Target compounds

The target compounds included 19 MPs, covering the following chemical classes: biocides/pesticides (n = 4), a

Table 1

Filter materials used in the column			

Filter media	Material	Supplier	Particle size ^a (mm)	Surface area ^b (m ² g ⁻¹)	Pore volume ^b (cm ³ g ⁻¹)	Average pore size ^b (nm)
Organic materia	ls					
Filtrasorb [®] 300	GAC: agglomerated bituminous coal	Chemviron Carbon AB, Sweden	0.6–2.4	783.5	0.519	2.7
Envirocarb [™] 207EA	GAC: bituminous coal	Chemviron Carbon AB, Sweden	3-4	914.4	0.507	2.2
Lignite	Brown coal	MátraiErömü, Bükkábrány, Hungary	2–4	5.3	0.020	14.7
Xylit	Nature wood fibers derived from lignite	Eloy Water, Belgium	Fibers	2.5	0.010	16.7
Zugol®	Swedish pine bark	Zugol AB, Sweden	Fibers	2.5	0.017	26.4
Inorganic mater	ials					
Rådasand	Sand: Quartz and feldspar	Rådasand AB, Sweden	0.7–1.0	0.6	0.002	17.0
Sorbulite®	Tobermorite (autoclaved aerated concrete)	Ecofiltration Nordic AB, Sweden	2–4	20.4	0.092	18.1
Filtra [®] N	Zeolite (clinoptilolite and mordenite)	Nordkalk AB, Sweden	1–4	19.0	0.067	14.1
Polonite®	Calcium silicate bedrock	Ecofiltration Nordic AB, Sweden	2–6	3.8	0.022	23.1
Filtralite [®] P	Expanded clay aggregate	Saint-Gobain Byggevarer AS, Norway	0.5–4	0.5	0.003	24.2

^aProvided by supplier; ^bThe specific surface area, pore volume and average pore size of the sorbents was determined by Brunauer-Emmett-Teller (BET) analysis using a Tristar surface area analyzer.

Table 2

Chemicals (n = 19) spiked to the feed water with abbreviation and class name used for the column experiments

Analyte	Abbreviation	Class
Hexachlorobenzene	НСВ	Biocides/pesticides
Triclosan	TCS	
2,6-Dichlorobenzamide	BAM	
Terbutryn	TBT	
α-Tocopheryl acetate	α-ΤΡΑ	Food additive
Galaxolide	ННСВ	Fragrance
Tributylphosphate	TBP	Organophosphates
Tris-(1,3-dichloro-2-propyl)phosphate	TDCPP	
Triphenylphosphate	TPP	
Carbamazepine	CBZ	Pharmaceuticals
Oxazepam	OZP	
Metoprolol	MTP	
Diclofenac	DF	
Losartan	LST	
Caffeine	CF	
N-Butylbenzenesulfonamide	n-BBSA	Plasticizer
2-(Methylthio)benzothiazole	MTBT	Rubber additive
2,4,7,9-Tetramethyl-5-decyn-4,7-diol	TMDD	Surfactant
Octocrylene	OC	UV-stabilizer

food additive, a fragrance, organophosphorus compounds (n = 3, used as e.g. flame retardants), pharmaceuticals (n = 6), a plasticizer, a rubber additive, a surfactant and a

UV-stabilizers (Table 2). The MPs were selected based on their environmental significance and occurrence in OSSFs discharges based on previous studies [6,7].

2.3. Experimental set-up

The feed water for the column experiment was taken from the effluent of a soil bed system serving 13 households located at Drottningholm close to Stockholm, Sweden. The facility was constructed in 2012 and consists of a three-chamber septic tank followed by a soil bed. Two standard mixtures were added into the feed water. Standard Mixture 1 contained HCB, TCS, α-TPA, HHCB, TBP, TDCPP, TPP, n-BBSA, MTBT, TMDD and OC. Standard Mixture 2 contained BAM, TBT, CBZ, OZP, MTP, DF, LST and CF. To prepare the feed solution, 3 mL of Standard Mixture 1 and 5 mL of Standard Mixture 2 were added to the wastewater in a 2-L volumetric flask and mixed thoroughly with a magnetic stirrer. The mixture was then added to 8 liters of wastewater in a 10 L flask which resulted in a spiking concentration of 0.55 μ g L⁻¹ to 35 μ g L⁻¹ for individual MPs (for details see Table S2). The concentrations of the selected MPs were measured after spiking as well (Table S3). Feed solutions were prepared freshly in the beginning of each week and the experiment lasted for two weeks.

The columns used (n = 11) consisted of PP tubes with internal diameter of 4.82 cm (Fig. 1). Each column was filled with a 10 cm layer of one of the test filter media. The reference column was kept empty. Two multichannel pumps were used to apply the feed water with a vertical saturated flow and a pumping rate adjusted to 1.14 mL min⁻¹ for each column (Fig. 1). To simulate realistic wastewater flows, the pumps were run three times per day, from 7:00 to 7:30 h, 12:00 to 13:00 h, and 18:00 to 18:30 h. The surface load was 75 L m⁻²d⁻¹. Unspiked wastewater was pumped into one empty reference column to determine background levels of the MPs. Feed water was pumped onto the top of each column. Effluent pipes were curved to form a 'U' shape and raised 10 cm above the column base. This shape ensured that the filter media were saturated during the experiment. Effluent water from each column was collected separately in 250 mL glass bottles, transferred daily to sample glass bottles for respective weekly samples, and stored in the refrigerator at 4°C. At the end of the experiment, the concentration of 19 MPs were analyzed in 26 samples including 2 unspiked influent samples, 2 spiked influent samples, 20 effluent samples from filter columns and 2 effluent samples from the reference column.

2.4. Analytical methodology

HCB, TCS, α-TPA, HHCB, TBP, TDCPP, TPP, n-BBSA, MTBT, TMDD and OC were extracted and analyzed according to Blum et al. [6]. Briefly, the wastewater samples were filtered, extracted by automated solid phase extraction with OASIS HLB cartridges (200 mg, 6 mL, Waters, Milford, MA, USA) and filtered through Na, SO, columns before gas chromatography mass spectrometry analysis (Pegasus 4D HRT, Leco Corp., St.Joseph, MI, USA). BAM, TBT, CBZ, OZP, MTP, DF, LST and CF were analyzed by off-line SPE, using Oasis HLB (500 mg, 6 mL, Waters Corporation, Milford, MA, USA) cartridges, followed by Ultra-High-Performance-Liquid Chromatography (Acquity UHPLC, Waters Corporation, Milford, MA, USA) coupled to quadrupole-time-of-flight mass spectrometry (QTOF Xevo G2S, Waters Corporation, Manchester, UK). Extracts were analyzed in both positive and negative electrospray ionization mode. Details of the analytical method can be found in Gros et al. [7]. Quantification was carried out with the isotope dilution method using a mixture of labelled internal standards (Table S1).

The water quality parameters analyzed included DOC, ammonium-nitrogen (NH₄-N), phosphate-phosphorus (PO₄-P), total phosphorus (P_{tot}), pH, turbidity, and conductivity. Analysis of DOC was carried out with a TOC-L TOC analyzer (Shimadzu, Kyoto, Japan) and of NH₄-N, PO₄-P and P_{tot} were analysed using Seal Analytical AA3 Autoanalyzer.

2.5. Calculations and statistical analysis

The removal efficiency (RE) of water quality parameters was calculated according to:

$$RE = \left(1 - \frac{C_{eff}}{C_{in}}\right) \times 100\% \tag{1}$$

where C_{in} is the influent concentration of the water quality parameter, and C_{eff} is the effluent concentration of the water quality parameter.

Release/adsorption of MPs from/onto the sorbents was assessed by calculating the MP removal efficiency (RE_{MPs}). The removal efficiencies were corrected for potential levels of the MPs in the system according to:

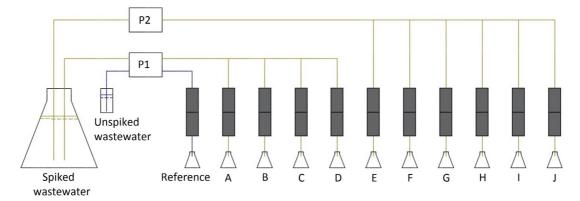


Fig. 1. Schematic of the column experiment including five organic and five inorganic sorbents (note: not to scale). Name of the sorbents (from left to right): (A) Filtrasorb[®]300, (B) sand, (C) Xylit, (D) Filtra[®]N, (E) lignite, (F) Filtralite[®]P, (G) Zugol[®], (H) Sorbulite[®], (I) Envirocarb[™] 207EA, (J) Polonite[®].

$$C_{ch} = C_{in} - C_{eff\,0} \tag{2}$$

where C_{ch} is the changed concentration of the MP in the outflow of the reference column, C_{in} is the influent concentration of the MP, and C_{eff0} is the effluent concentration of the MP in the reference column. RE_{MPs} was calculated according to:

$$RE_{MPs} = \left(1 - \frac{C_{eff}}{C_{insp} - C_{ch}}\right) \times 100\%$$
(3)

where C_{eff} is the concentration of the MP in the outflow from respective column C_{insp} is the concentration of the MP in spiked influent wastewater, and C_{ch} is the changed concentration of the MP in the outflow of the reference column.

Experimental results were statistically evaluated using SPSS (IBM). Principal component analysis (PCA) was performed to evaluate the variation in removal behavior of the studied chemicals by the ten sorbents. Cronbach's alpha was calculated to test the reliability of the extracted components. One-way ANOVA and Least Significant Difference (LSD) post-hoc test were performed to test whether the removal efficiency differed between sorbents and chemicals. Negative removals were considered as zero removals. The removal efficiency was considered as the dependent variable, while spiked MPs and sorbents were the independent variables. The relation between MP removal and pore size and surface area of the sorbents was tested using Spearman's rank correlation.

2.6. QA/QC

The equipment was run for one week with unspiked wastewater before the experiment started in order to condition the filters and test the function of the set-up. The equipment contained some plastic and silicon materials, e.g., in pumping tubes, which could not be avoided. Since the manufacturing process of these materials was unknown, there was a risk that they contained chemicals that could have contaminated the effluent water samples. The impact of this on the experimental set-up was checked by measuring the compounds in the influent and effluent water of the reference column.

A large amount of n-BBSA was released into the outflow from the pumps and experimental columns, therefore the removal of n-BBSA was not considered in the analysis and evaluation of filter materials. The release and adsorption of other chemicals were minor compared with the spiked concentration (\leq 5%).

For Standard Mixture 1 compounds, method validation results for the GC-MS analysis including recovery experiments, linearity, and precision can be found in Blum et al. [6]. Laboratory blanks were extracted in parallel to the samples. In general, the blank levels were below the limit-of-quantification (LOQ) except for TMDD (37 ng L⁻¹) and α TPA (19 ng L⁻¹). For Standard Mixture 2 compounds, method performance parameters for the compounds analyzed by UHPLC-QTOF included recovery efficiencies, linearity, method precision, method detection (MDLs) and quantification limits (MQLs) as well. These parameters can be found in Gros et al. [7]. Compounds quantification was performed by using linear regression calibration curves and the internal standard approach, to account for possible matrix effects. Internal standards used for each compound are indicated in Table S1. Calibration standards were measured at the beginning and at the end of each sequence, and one calibration standard was measured repeatedly throughout the sequence, after every 20–25 samples to check for signal stability. Method blanks were performed to account for any background levels of the analytes investigated, and they consisted of Milli-Q water, and these blanks were analyzed following the same extraction procedure as real samples.

3. Results and discussion

3.1. Water quality parameters

After spiking with the case chemicals, the DOC concentration of the original feed increased from 10 mg L⁻¹ to 440 mg L⁻¹, which means the 98% of the DOC came from the solvent of the mixtures of MPs. The organic sorbents GAC Filtrasorb[®]300 and GAC Envirocarb[™]207EA achieved the best removal of DOC among all sorbents (Fig. 2A), with an average removal efficiency of 97% and 95%, respectively. Among the other organic filter materials, lignite and Xylit showed intermediate performances, with average DOC removal of 32% and 52%, respectively, while Zugol® removed only 3.0%. This low removal may be due to the pine bark release constituent carbon into the water. Thus, based on the DOC results, GACs had the best potential to remove MPs, whereas Zugol® had the worst removal potential. The effluent concentrations of DOC were quite similar for all inorganic sorbents, which may indicate that they also remove MPs to a similar degree.

The feed water from soil bed effluent contained low levels of $NH_4\text{-}N$ (3.8 mg L^{-1} on average) and ranged from 0.3 mg L^{-1} to 1.3 mg L^{-1} in the column effluent (Fig. 2B). The removal of NH₄-N in the sorbents was likely caused by ion exchange or biological nitrification. Zeolite is well known to remove ammonium from wastewater by ion exchange [34]. Filtra® N that consists of zeolite, achieved 90% removal of NH₄-N, thus performed best among all sorbents. Biological nitrification can be impacted by several factors, for instance temperature, pH, and dissolved oxygen level [35]. The temperature during the experiment was around 15°C, which is optimal for nitrification and the optimal pH for nitrification is between 7.5 and 8 [35]. The pH of the lignite was 4, while Polonite[®] and Filtralite[®]P had pH values > 10, which can inhibit the nitrification [35]. The impact of pH was reflected in NH₄-N removal, as lignite, Polonite[®], and Filtralite[®]P had the lowest removal efficiency (50%, 71%, and 74%, respectively). Other sorbents had pH values between 7 and 9 and achieved an average removal rate of around $87\% \pm 2\%$. The oxygen content in the feed water was about 6 mg L-1, which provided sufficient oxygen for nitrification.

The inorganic sorbents were more effective in removing phosphorus than the organic sorbents (Fig. 2C). Sorbents with a high content of calcium, such as Sorbulite[®] (19% Ca) and Polonite[®] (25%) [36] achieved good phosphorus removal rates (above 95%), as they were able to provide sufficient Ca²⁺ and OH⁻ for the formation of calcium phosphate (Ca-PO₄) precipitates [37]. Among the organic sorbents, Zugol[®] and lignite removed a large proportion of phosphorus, e.g., the P_{tot} removal rate was 94% and 89%, respec-

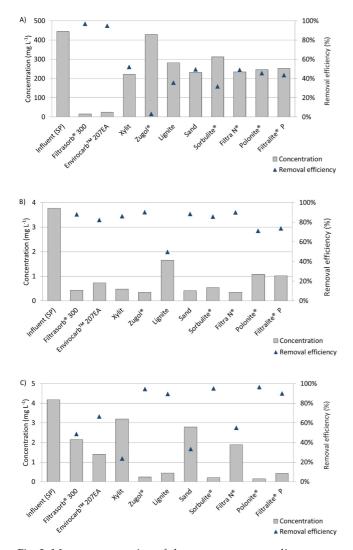


Fig. 2. Mean concentration of three wastewater quality parameters for two weeks: (A) dissolved organic carbon (DOC); (B) ammonium-nitrogen (NH_4 -N); (C) total phosphorus (P_{tot}) in the spiked influent and in effluent from the 10 sorbents during two weeks of the experiment. The removal efficiency (RE) at the end of the experiment is shown as blue triangles.

tively. Zugol[®] contains 20% calcium and lignite contains 14% iron [38], which is beneficial for phosphorus precipitation. The GAC sorbents, Xylit, Filtra[®] N, and sand were not able to remove phosphorus, so removal when using these materials was probably only due to biological processes. Filtrasorb[®]300, EnvirocarbTM207EA and Xylit achieved only 49%, 66%, and 22% reduction in P_{tot}, respectively. Sand, the most commonly used filter medium in soil based system, achieved only 33% removal of P_{tot}.

3.2. Removal of micropollutants (MPs)

Removal efficiencies varied considerably between MPs depending on the sorbent (Fig. 3). Coal-based organic sorbents Filtrasorb[®]300, Envirocarb[™]207EA, lignite and Xylit achieved the best removal, with average overall removal

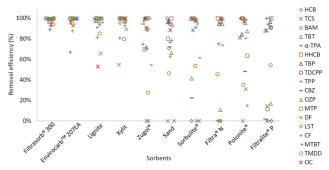


Fig. 3. Average removal efficiency (%) of individual MPs by the 10 sorbents.

efficiencies between 90% and 97%. Natural wood fiber (Zugol[®]) was less efficient (on average 74%), while the inorganic sorbents were even less efficient in reducing MP levels, with average overall removal efficiencies ranging from 53% to 73%. Sorbent type and chemical characteristics significantly influenced the removal efficiency (p < 0.05; one-way ANOVA, Table S3 and Table S4 in the Supporting information).

The individual removal of the MPs by GAC ranged from 88% and 100%, except for α -TPA (78%). The average removal efficiency was 97% for Filtrasorb®300 and 95% for Envirocarb[™] 207EA. Lignite and Xylit achieved good removal for most MPs, with average removal efficiencies of 92% and 93%, respectively, except for DF, BAM and OC, which were moderately well removed (Fig. 3), the average removal of the three compounds by Xylit and lignite was 81% and 73%, respectively. Inorganic sorbents showed good removal of several MPs; e.g., both HCB and HHCB were 100% removed by all inorganic sorbents and the average removal of TCS, TBP, TDCPP, TPP and TBT was 95%. However, the other MPs were poorly to moderately removed by inorganic sorbents. For instance, the average removal of CBZ, CF,DF, LST, MTP and OZP was 29%, 53%, 9%, 34%, 70% and 46%, respectively. Filtralite®P showed significantly (p < 0.05) lower removal efficiencies (average 53%) than sand, Polonite and all organic sorbents (Table S3). In total 8 out of the 18 tested MPs were poorly removed by Filtralite[®]P, i.e. less than 20% (Fig. 3).

DF and BAM were significantly different from that of the rest of the MPs (p < 0.05; Table S4) with low removal efficiencies by Zugol[®] and all tested inorganic sorbents, with average removal efficiencies of 8% (DF) and 0% (BAM), respectively. α -TPA, MEP, OC, HCB, TCS, HHCB, TBP, TDCPP, TPP and TBT were significantly different from the rest of the chemicals (p < 0.05; Table S4) because of high overall removal efficiencies by coal-based sorbents.

Principal component analysis was carried out to explore the variation in MP removal efficiencies between the different sorbents. The two first principal components (PC1 and PC2) explained 50% and 24% of the variation, respectively (Fig. 4). The Cronbach's alpha value was found to be 0.85 for PC1 and 0.77 for PC2, indicating that the accuracy was acceptable.

In the score plot, the sorbents were clearly divided into two groups. Group 1 contained the organic sorbents GAC EnvirocarbTM207EA, GAC Filtrasorb[®]300, and lignite, and

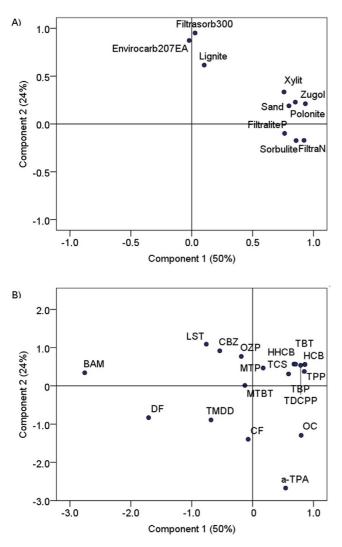


Fig. 4. (A) Scoreplot and (B) loading plot of the MP removal efficiencies using the five organic and five inorganic sorbents.

Group 2 contained all five inorganic sorbents, in addition to the organic sorbents Xylit and Zugol[®], demonstrating different removal behavior for the different sorbents.

The chemicals in the upper right corner of Fig. 4B include the biocides (HCB and TCS), organophosphate (TBP, TDCPP, and TPP), a fragrance (HHCB), and a pesticide (TBT). These compounds were well removed by all sorbents, with an average removal efficiency of 97%. In filter bed OSSFs, these chemicals were found to be good to moderately well removed with e.g. average removal of TCS and HHCB above 90%, whereas the remaining chemicals were between 64% and 87% [6], except TBT that achieved only 24% removal [7]. The reason for the high removal was most likely due to the hydrophobicity of the chemicals that affects their sorption potential. Chemicals with log K_{am} higher than 4 have high sorption potentials to solids and could thus be efficiently removed [1]. For instance, the removal in soil beds was previously found to be correlated to compounds' hydrophobicity [6]. Biodegradation could also be a significant removal mechanism for certain chemicals. For instance, some biocides and biocide metabolites, including

TBT, were well removed in activated soil-biofilters with biodegradation as the main removal mechanisms, showing average removal efficiencies between 82% to 100% [39], and a recent study indicated that both adsorption and biodegradation contributed to the removal of CBZ in biochar filter [40]. Field sampling protocols may influence the results as well. For example, the hydraulic retention varies between each soil bed, and it is difficult to sample effluent water that corresponds to the influent water. This may explain the low removal of TBT in the field sampling despite the good removal in the present column experiment study.

A few MPs were located close to the intersection point in the loading plot (Fig. 4B) including a rubber additive (MTBT) and some pharmaceuticals (CBZ, OZP, MTP, and LST). These compounds were better removed by Group 1 sorbents, with average removal efficiency of around 96%. Xylit and Zugol in Group 2 removed 85% of the MPs, while the inorganic sorbents could only remove 48%. The better performances of these compounds when using organic sorbents compared to inorganic materials could be explained by the influence of the functional groups present on the surface of the materials [41], the pore sizes of the sorbents (see section 3.3) and the hydrophobicity of the chemicals [6]. Surface functional groups on organic sorbents, such as GAC, usually consist of acidic and basic groups, which affect the surface charge and adsorption properties, whereas inorganic sorbents often possess surface functional groups containing metal elements [41]. The surface functional groups of GAC contribute significantly towards its adsorption ability [42]. Indeed, the better adsorption capacity of GAC sorbents over most inorganic sorbents has already been reported. For instance, the removal of several organic MPs (including multiple-class pharmaceuticals) in sand and GAC filters were comparatively assessed, and the latter exhibited higher adsorption capacity compared to sand for all tested compounds [43]. Besides, desorption of MPs from sand may occur, as was shown for pharmaceuticals temporarily retained on sand, consequently even causing negative removal efficiency [40].

A few compounds (OC, α-TPA, CF, TMDD, BAM and DF) separated from the two groups of compounds mentioned above (Fig. 4B). OC and α -TPA are quite hydrophobic chemicals and showed high removal efficiencies (median removal efficiency \geq 90%) in a previous OSSF field sampling study [6]. Both MPs were generally well removed by most tested sorbents, as the removal efficiencies ranged from 67% to 100%. CF was poorly removed by Polonite® and Filtralite® P (15% and 0% respectively), but were well removed by other sorbents with average removal efficiencies between 62% and 97%. The removal of the surfactant (TMDD) by coal based sorbents was above 80%, Zugol® had a much lower removal efficiency which was 28%. However, inorganic sorbents showed moderate removal (47% in average). The pesticide BAM and the pharmaceutical DF were well removed by group 1 (92%) but showed almost no removal by group 2 sorbents (4%) except Xylit, which achieved 72% removal efficiency.

3.3. Impact of pore size and surface area on compound removal

The pore size of sorbents plays an important role in determining the sorption capacity of various MPs. Most of

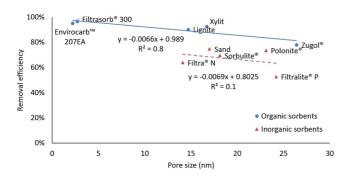


Fig. 5. Relationship between average removal efficiency of the analyzed MPs (n = 19) and sorbent pore size of the tested materials (n = 10).

the sorption takes place in the micropores (<2 nm), while mesopores (2-50 nm) and macropores (>50 nm) serve as passages for the sorbate to reach micropores [43-45]. The average pore size of Filtrasorb 300 and Envirocarb 207EA are in a beneficial range for the removal of MPs (2.7 nm and 2.2 nm; Table 1) in contrast to the other sorbents (Table 1). These two sorbents also have significantly higher fractions of pore volumes per mass unit (0.519 cm³ g⁻¹ and 0.507 cm³ g^{-1} ; Table 1), which is of essential importance for sorption. Since the functional groups of the sorbents' surface differ, also the main removal mechanisms of the MPs can differ between organic and inorganic sorbents. The impact of pore size on the removal efficiency was therefore considered separately for these two groups of sorbents. The correlation coefficient (R^2) between removal of MPs by organic sorbent and pore size was 0.8. On the contrary, the correlation coefficient between removal of MPs by inorganic sorbent and pore size was very low (0.1). The presence of small micropores is important for the removal of organic MPs from aqueous solution since the adsorption strength increased with decreasing pore size [47]. However, previous studies showed also that a coal-based activated carbon obtained a slightly better adsorption rate than a coconut-based carbon that has smaller pores attributed to a larger volume of mesopores [48]. Therefore, variation in surface properties within the sorbent appears to contribute to a good adsorption rate [44].

The total surface area may also contribute to differences between sorbents. When surface reactions dominate the sorption process, a varied surface and larger specific surface area will contribute to higher sorption rate [44,49]. For the organic sorbents, a slight tendency was observed with increasing removal efficiency by increasing surface area (Fig. 6). The two GAC materials (Filtrasorb[®]300 and Envirocarb[™]207EA), which had the largest surface areas (780 m² g⁻¹ and 910 m²g⁻¹, respectively), showed the highest removal efficiencies. The other sorbents had a surface area ranging from 0.5 m² g⁻¹ to 20 m² g⁻¹. Since the maximum adsorption capacity was not reached in this short-term experiment, the sorbent surface area was not a strong factor affecting the removal. For instance, Xylit (surface area 2.5 m²g⁻¹) achieved higher removal efficiency than lignite (surface area 5.3 m² g⁻¹). Moreover, Filtra[®] N and Sorbulite[®], which had a surface area of around 20 m² g⁻¹, showed similar removal efficiency to Polonite[®] and sand (surface area 3.8 m² g⁻¹ and 0.6 m² g⁻¹, respectively). Removal efficiencies and surface area were

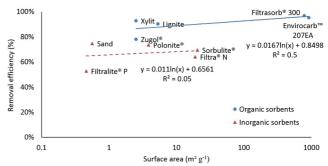


Fig. 6. Relationship between average removal efficiency of the analyzed MPs(n = 19) and sorbent surface area of the tested materials (n = 10).

not significantly correlated (Spearman's rank correlation $R^2_{organic} = 0.6$, $R^2_{inorganic} = 0.1$) The lifetime of sorbents can also be influenced by the total surface area, since large surface area provides more surface functional groups involved in the interactions with MPs, which may yield a larger capacity and longer lifetime of the sorbent. Aivalioti et al. [26] showed that the adsorption capacity of BTEX, MTBE and TAME was enhanced after thermal treatment of raw lignite that increased the surface area by up to 835%.

4. Conclusions

In general, the coal-based organic sorbents performed better than the inorganic sorbents in MP removal, with on average 20% higher removal efficiency. Filtrasorb®300 and EnvirocarbTM207EA achieved 97% and 95% average removal, respectively. No significant differences were observed between the two types of GAC, indicating that particle size was not a relevant factor for MP removal under the conditions used in the present study. Xylit and lignite proved to have good potential to remove various MPs, with average removal efficiencies above 90%. The GACs, Xylit and lignite showed significantly higher average removal efficiency of MPs than the rest of the sorbents, while Filtralite P obtained the lowest removal efficiency of all sorbents (ANOVA, p < 0.05).

HCB, TCS, TBP, TDCPP, TPP, HHCB and TBT were almost totally removed by all sorbents, while BAM and DF were poorly removed by the inorganic sorbents (ANOVA, p < 0.05). The surface area of the organic sorbents was significantly correlated with the removal efficiency. However, the relationships between the sorbents' surface functional groups and the MPs' physicochemical properties, warrants further studies to identify molecular level understanding of the removal mechanisms.

Organic sorbents with a high calcium or iron content, e.g., Zugol[®], lignite, and most inorganic sorbents (except sand) were good at removing phosphorus, while the organic sorbents Xylit, Filtrasorb[®]300, and Envirocarb[™]207EA showed low removal of phosphorus (24–66%). Ammonium-nitrogen was well removed when the pH value in the column was between 7 and 9. To achieve good removal efficiency for conventional water quality parameters as well as MPs, a combined filter system for wastewater treatments on OSSFs should be investigated.

The findings from this short-term column experiment should be followed up by a long-term column experiment and a practical field investigation.

Acknowledgement

This study was supported by the Swedish Research Council FORMAS through the project RedMic. The authors acknowledge the facilities and technical assistance of the Umeå Core Facility for Electron Microscopy (UCEM) at the Chemical Biological Centre (KBC), Umeå University and Shiromini Gamage for conducting the BET analysis and sharing data on surface area, pore volume, and average pore size of the 10 sorbents.

List of symbols

- *C*_{in} Influent concentration
- C Spiked influent concentration
- C_{aff} Effluent concentration
- $C_{eff0}^{(j)}$ Effluent concentration of the MP in the reference column
- *C*_{*dt} Changed* concentration of the MP in the outflow of the reference column</sub>
- RE Removal efficiency

RE_{MPs} — Removal efficiency of the MPs

References

- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–614.
- [2] C.G. Pan, Y.S. Liu, G.G. Ying, Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk, Water Res., 106 (2016) 562–570.
- [3] P. Guerra, M. Kim, A. Shah, M. Alaee, S.A. Smyth, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, Sci. Total Environ., 473–474 (2014) 235–243.
- [4] M. Petrovic, S. Gonzalez, D. Barcelo, Analysis and removal of emerging contaminants in wastewater and drinking water, Trends Anal. Chem., 22 (2003) 685–696.
- [5] M. Olshammar, M. Ek, L. Rosenquist, H. Ejhed, A. Sidvall, S. Svanström, Uppdatering av kunskapslägetoch statistic försmåavloppsanläggningar (Update of knowledge and statistic for small wastewater facilities). Report for the Marine and Water Authority, Sweden. SMED Report No. 166 (2015).
- [6] K. Blum, P.L. Andersson, G. Renman, L. Ahrens, M. Gros, K. Wiberg, P. Haglund, Non-target screening and prioritization of potentially persistent, bioaccumulation and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants, Sci. Total Environ., 575 (2017) 265–275.
- [7] M. Gros, K. Blum, H. Jernstedt, G. Renman, S. Rodriguez-Mozaz, P. Haglund, P.L. Andersson, K. Wiberg, L. Ahrens, Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities, J. Hazard. Mater., 328 (2017) 37–45.
- [8] M. D'Alessio, B. Yoneyama, M. Kirs, V. Kisand, C. Ray, Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal, Sci. Total Environ., 524–525 (2015) 124–135.

- [9] J. Teerlink, V. Maritinez-Hernandez, C.P. Higgins, J.E. Drewes, Removal of trace organic chemicals in onsite wastewater soil treatment units: Alaboratory experiment, Water Res., 46 (2012) 5174–5148.
- [10] J. Sipma, B. Osuna, N. Collado, H. Monclus, G. Ferrero, J. Comas, I. Rodriguez-Rdoa, Comparison of removal of pharmaceuticals in MBR and activated sludge systems, Desalination, 250 (2010) 653–659.
- [11] C. Abegglen, A. Joss, S. McArdell Christa, G. Fink, M. Schlüsener, A. Ternes Thomas, H. Siegrist, The fate of selected micropollutants in a single-house MBR, Water Res., 43 (2009) 2036–2046.
- [12] M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res., 39 (2005) 4797–4807.
- [13] W. Li, R. Wu, J. Duan, P. Saint Christopher, D. Mulcahy, Overlooked effects of organic solvents from sample preparation on reaction constants of micropollutants in UV-based advanced oxidation processes, Chem. Eng. J., 313 (2017) 801–806.
- [4] I.A. Katsoyiannis, S. Canonica, U. Gunten, Efficiency and energy requirements for the transformation of organic micropollutants by ozon, O₃/H₂O₂ and UV/H₂O₂, Water Res., 45 (2011) 3811–3822.
- [15] V. Kårelid, G. Larsson, B. Björlenius, Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants, J. Environ. Manage., 193 (2017) 491–502.
- [16] D. Stalter, A. Magdeburg, J. Oehlmann, Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery, Water Res., 44 (2010) 2610–2620.
- [17] M. Petala, P. Samaras, A. Zouboulis, A. Kungolos, GP. Sakellaropoulos, Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents, Water Res., 42 (2008) 4929–4940.
- [18] M. Olshammar, M. Ek, L. Rosenquist, H. Ejhed, A. Sidvall, S. Svanström, Uppdatering av kunskapsläget och statistic för små avloppsanläggningar (Update of knowledge and statistic for small wastewater facilities). Report for the Marine and Water Authority, Sweden. SMED Report No. 166 2015.
- [19] M. Hubinette, Tillsynpåminireningsverk inclusive m\u00e4tning av function (Supervision of mini treatment plant including measuring function). Report for the County Administrative Board of West G\u00f6taland 2009:07.
- [20] D. Serrano, S. Suarez, J.M. Lema, F. Omil, Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor, Water Res., 45 (2011) 5323–5333.
- [21] M. Ek, C. Baresel, J. Magnér, R. Bergström, M. Harding, Activated carbon for the removal of pharmaceutical residues from treated wastewater, Water Sci. Technol., 69 (2014) 2372–2380.
- [22] A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski, A. Swiatkowski, B. Buczek, Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers, Chem. Eng. J., 308 (2017) 408–418.
- [23] V. Ochoa-Herrera, R. Sierra-Alvarez, Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge, Chemosphere, 72 (2008) 1588–1593.
- [24] P. McCleaf, S. Englund, A. Östlund, K. Lindegren, K. Wiberg, L. Ahrens, Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests, Water Res., 120 (2017) 77–87.
- [25] X. Wei, N. Gao, C. Li, J. Deng, Y. Zhu, Q. Wang, Adsorption of bentazon on two kinds of granular activated carbons: equilibrium, kinetic and thermodynamic studies, Desal. Water Treat., 57 (2016) 28762–28775.
- [26] M. Aivalioti, D. Pothoulaki, P. Papoulias, E. Gidarakos, Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite, J. Hazard. Mater., 207–208 (2012) 136–146.

- [27] A. Rossner, S.A. Snyder, R.U. Knappe Detlef, Removal of emerging contaminants of concern by alternative adsorbents, Water Res., 43 (2009) 3787–3796.
- [28] A.M. Redding, F.S. Cannon, The role of mesopores in MTBE removal with granular activated carbon, Water Res., 56 (2014) 214–224.
- [29] S. Kleineidam, C. Schüth, P. Grathwohl, Solubility-Normalized combined adsorption-Partitioning sorption isotherms for organic pollutants, Environ. Sci. Technol., 36 (2002) 4689–4697.
- [30] A.V. Dordio, S. Miranda, J.P. Prates Ramalho, A.J. Palace Carvalho, Mechanisms of removal of three widespread pharmaceuticals by two clay materials, J. Hazard. Mater., 323 (2017) 575–583.
- [31] K. Styszko, K. Nosek, M. Motak, K. Bester, Preliminary selection of clay minerals for the removal of pharmaceuticals, bisphenol A and triclosan in acidic and neutral aqueous solutions, C. R. Chimie, 18 (2015) 1134–1142.
- [32] J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. García, Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: batch and fixed-bed column operation, Water Air Soil Poll., 244 (2013) 1–15.
- [33] A. Rossner, D.R.U. Knappe, MTBE adsorption on alternative adsorbents and packed bed adsorber performance, Water Res., 42 (2008) 2287–2299.
- [34] A.R. Rahmani, A.H. Mahvi, Use of ion exchange for removal of ammonium: a biological regeneration of zeolite, Global NEST J., 8 (2006) 146–150.
- [35] Metcalf & Eddy, Wastewater Engineering Treatment and Reuse, 4th ed., pp. 611–623.
- [36] C. Nilsson, R. Lakshmanan, G. Renman, K.G. Rajarao, Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal – column experiment in recirculation batch mode, Water Res., 47 (2013) 5165–5175.
- [37] M. Zuo, G. Renman, J.P. Gustafsson, A. Renman, Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburization slag designed for wastewater treatment, Water Res., 87 (2015) 271–281.
- [38] Gamage M.G.D.S. Reduction of organic micro-pollutants in sewage water – a structure-adsorption relationship study and detailed characterization of natural adsorbent. (2017) DiVA. org: umu-130409.

- [39] K. Bester, S. Banzhaf, M. Burkhardt, N. Janzen, B. Niederstrasser, Activated soil filters for removal of biocides from contaminated run-off and waste-waters, Chemosphere, 85 (2011) 1233–1240.
- [40] S. Dalahmeh, L. Ahrens, M. Gros, K. Wiberg, M. Pell, Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm, Sci. Total Environ., 612 (2018) 192–201.
- [41] E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
- [42] M. Valix, W.H. Cheung, K. Zhang, Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters, J. Hazard. Mater. B, 135 (2006) 395–405.
- [43] L. Paredes, E. Fernandes-Fontaina, J.M. Lema, F. Omil, M. Carballa, Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems, Sci. Total Environ., 551–552 (2016) 640–648.
- [44] S. Swapna Priya, K.V. Radha, A review on the adsorption studies of tetracycline onto various types of adsorbents, Chem. Eng. Commun., 204 (2017) 821–839.
- [45] E.F. Mohamed, C. Andriantsiferana, A.M. Wilhelm, H. Delmas, Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon, Environ. Technol., 32 (2011) 1325–1336.
- [46] H. Kose, The effects of physical factors on the adsorption of synthetic organic compounds by activated carbons and activated carbon fibers. All Theses. Paper 930.
- [47] L. Li, P.A. Quinlivan, Detlef R.U. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
- [48] K.J. Choi, S.G. Kim, S.H. Kim, Removal of antibiotics by coagulation and granular activated carbon filration, J. Hazard. Mater, 151 (2008) 38–43.
- [49] M. Brigante, P.C. Schulz, Remotion of the antibiotic tetracycline by titania and titania-silica composed materials, J. Hazard. Mater., 192 (2011) 1579–1608.

Supporting information

Fig. S1. Appearance of the 10 filter media selected for this study.

Fig. S2. Photo of the column experiment in operation.

Table S1

Native analytes and their	r corresponding internal	l standard for isotope o	dilution quantification

Native analyte	Corresponding internal standard		
2-(Methylthio)benzothiazole	Benzothiazole-D ₄		
2,4,7,9-Tetramethyl-5-decyn-4,7-diol	2,4,7,9-Tetramethyl-5-decyne-4,7-diol-D ₁₀		
2,6-dichlorobenzamide	Isoproturon-d ₆		
Caffeine			
Carbamazepine	Carbamazepine-(carboxamide ¹³ C, ¹⁵ N)		
Diclofenac	Diclofenac- ¹³ C ₆		
Galaxolide Tonalide-D ₃			
Hexachlorobenzene	Hexachlorobenzene- ¹³ C ₆		
Losartan	Irbesartan-d ₇		
Metoprolol	Atenolol_d7		
N-Butylbenzenesulfonamide	N-Butylbenzenesulfonamide- D_9		
Octocrylene	Octocrylene-D ₁₅		
Oxazepam	Diazepam_d5		
Terbutryn	Isoproturon-d ₆		
Tributylphosphate	Tributyl phosphate-D ₂₇		
Triclosan	Triclosan-D ₃		
Triphenylphosphate	Triphenylphosphate-D ₁₅		
Tris-(1,3-dichloro-2-propyl)phosphate	Tris-(1,3-dichloro-2-propyl) phosphate-D ₁₅		
α-Tocopheryl acetate	α Tocopheryl acetate-D ₉		

Table S2 Concentration of MPs to the spiked 10 L feed water in $\mu g \; L^{\mbox{-}1}$

Compound	Standard mixture (µgL ⁻¹)	Measured concentration in the feed water ($\mu g L^{-1}$)
2-(Methylthio)benzothiazole	3580	1.1
2,4,7,9-Tetramethyl-5-decyn-4,7-diol	37100	11
2,6-dichlorobenzamide	24400	12
Caffeine	21300	11
Carbamazepine	25100	13
Diclofenac	24500	12
Galaxolide	77200	23
Hexachlorobenzene	1850	0.55
Losartan	19900	9.9
Metoprolol	13900	6.9
N-Butylbenzenesulfonamide	6480	1.9
Octocrylene	116000	35
Oxazepam	19600	9.8
Terbutryn	19300	9.7
Tributylphosphate	5060	1.5
Triclosan	57000	17
Triphenylphosphate	5010	1.5
Tris-(1,3-dichloro-2-propyl)phosphate	33100	9.9
α-Tocopheryl acetate	37500	11

Table S3 Least Significant Difference (LSD) test –for individual sorbents

Dependent variable:							
Source	Type III Sum	of Squares	d_f	Μ	ean square	F	Sig.
Corrected model	3.735ª		9	.4	15	4.656	.000
Intercept	112.196		1	11	2.196	1258.600	.000
Filter	3.735		9	.41	15	4.656	.000
Error	15.154		170	.0	89		
Total	131.085		180				
Corrected total	18.889		179				
a. R Squared = .198 (A	djusted R Squared = .155	5)					
Multiple comparisor Dependent variable:							
LSD	Temovai						
(I) Filter	(J) Filter	Mean Dif	foronco	Std. Error	Sig.	95% Confidence	ointorval
(1) 1 111111	()) Filter	(I-J)	lefence	Stu. Error	oig.	Lower bound	Upper bound
Envirocarb207EA	FiltralitaD			00052	000		
Envirocard207EA	FiltraliteP	.4372*		.09952	.000	.2408	.6337
	FiltraN	.3078*		.09952	.002	.1113	.5042
	Filtrasorb300	0117		.09952	.907	2081	.1848
	Lignite	.0433		.09952	.664	1531	.2398
	Polonite	.2317*		.09952	.021	.0352	.4281
	Rådasand	.2311*		.09952	.021	.0347	.4276
	Sorbulite	.2722*		.09952	.007	.0758	.4687
	Xylit	.0289		.09952	.772	1676	.2253
	Zugol	.2089*		.09952	.037	.0124	.4053
FiltraliteP	Envirocarb207EA	4372*		.09952	.000	6337	2408
	FiltraN	1294		.09952	.195	3259	.0670
	Filtrasorb300	4489*		.09952	.000	6453	2524
	Lignite	3939*		.09952	.000	5903	1974
	Polonite	2056*		.09952	.040	4020	0091
	Rådasand	2061*		.09952	.040	4026	0097
	Sorbulite	1650		.09952	.099	3615	.0315
	Xylit	4083^{*}		.09952	.000	6048	2119
	Zugol	2283 [*]		.09952	.023	4248	0319
FiltraN	Envirocarb207EA	3078*		.09952	.002	5042	1113
	FiltraliteP	.1294		.09952	.195	0670	.3259
	Filtrasorb300	3194*		.09952	.002	5159	1230
	Lignite	2644*		.09952	.009	4609	0680
	Polonite	0761		.09952	.445	2726	.1203
	Rådasand	0767		.09952	.442	2731	.1198
	Sorbulite	0356		.09952	.721	2320	.1609
	Xylit	2789*		.09952	.006	4753	0824
	Zugol	0989		.09952	.322	2953	.0976
Filtrasorb300	Envirocarb207EA	.0117		.09952	.907	1848	.2081
11110010000	FiltraliteP	.4489*		.09952	.000	.2524	.6453
	FiltraN	.3194*		.09952	.002	.1230	.5159
	Lignite	.0550		.09952	.581	1415	.2515
	Polonite	.0330 .2433*		.09952	.016	.0469	.4398
	Rådasand						
		.2428*		.09952	.016	.0463	.4392
	Sorbulite	.2839*		.09952	.005	.0874	.4803
	Xylit	.0406		.09952	.684	1559	.2370
	Zugol	.2206*		.09952	.028	.0241	.4170

100

Table S3 (Continu		0.422	00050	// 4	2200	4504
Lignite	Envirocarb207EA	0433	.09952	.664	2398	.1531
	FiltraliteP	.3939*	.09952	.000	.1974	.5903
	FiltraN	.2644*	.09952	.009	.0680	.4609
	Filtrasorb300	0550	.09952	.581	2515	.1415
	Polonite	.1883	.09952	.060	0081	.3848
	Rådasand	.1878	.09952	.061	0087	.3842
	Sorbulite	.2289*	.09952	.023	.0324	.4253
	Xylit	0144	.09952	.885	2109	.1820
	Zugol	.1656	.09952	.098	0309	.3620
Polonite	Envirocarb207EA	2317*	.09952	.021	4281	0352
	FiltraliteP	.2056*	.09952	.040	.0091	.4020
	FiltraN	.0761	.09952	.445	1203	.2726
	Filtrasorb300	2433*	.09952	.016	4398	0469
	Lignite	1883	.09952	.060	3848	.0081
	Rådasand	0006	.09952	.996	1970	.1959
	Sorbulite	.0406	.09952	.684	1559	.2370
	Xylit	2028*	.09952	.043	3992	0063
	Zugol	0228	.09952	.819	2192	.1737
Rådasand	Envirocarb207EA	2311*	.09952	.021	4276	0347
	FiltraliteP	.2061*	.09952	.040	.0097	.4026
	FiltraN	.0767	.09952	.442	1198	.2731
	Filtrasorb300	2428*	.09952	.016	4392	0463
	Lignite	1878	.09952	.061	3842	.0087
	Polonite	.0006	.09952	.996	1959	.1970
	Sorbulite	.0411	.09952	.680	1553	.2376
	Xylit	2022*	.09952	.044	3987	0058
	Zugol	0222	.09952	.824	2187	.1742
Sorbulite	Envirocarb207EA	2722*	.09952	.007	4687	0758
	FiltraliteP	.1650	.09952	.099	0315	.3615
	FiltraN	.0356	.09952	.721	1609	.2320
	Filtrasorb300	2839*	.09952	.005	4803	0874
	Lignite	2289*	.09952	.023	4253	0324
	Polonite	0406	.09952	.684	2370	.1559
	Rådasand	0411	.09952	.680	2376	.1553
	Xylit	2433*	.09952	.016	4398	0469
	Zugol	0633	.09952	.525	2598	.1331
Xylit	Envirocarb207EA	0289	.09952	.772	2253	.1676
(y iii	FiltraliteP	.4083*	.09952	.000	.2119	.6048
	FiltraN	.2789*	.09952	.006	.0824	.4753
	Filtrasorb300	0406	.09952	.684	2370	.1559
	Lignite	.0144	.09952	.885	1820	.2109
	Polonite	.2028*	.09952	.043	.0063	.3992
	Rådasand	.2022*	.09952	.044	.0058	.3987
	Sorbulite	.2433*	.09952	.014	.0469	.4398
	Zugol	.1800	.09952	.072	0165	.3765
Zugol	Envirocarb207EA	2089*	.09952	.072	4053	0124
Jugoi	FiltraliteP	.2283*	.09952	.023	.0319	.4248
	FiltraN	.0989	.09952	.322	0976	.2953
	Filtrasorb300	2206*	.09952	.028	4170	.2955 0241
	Lignite	2206 1656	.09952	.028	3620	0241 .0309
	Polonite		.09952	.098	3620 1737	.0309 .2192
	Rådasand	.0228 .0222	.09952	.819	1737 1742	.2192 .2187
	Sorbulite	.0222	.09952	.824 .525	1742 1331	.2187 .2598

Based on observed means.

The error term is Mean Square (Error) = .089. *. The mean difference is significant at the 0.05 level.

Table S4 Least significant difference (LSD) test – for individual MPs

	ween-subjects						
	variable: RE						
Source		Type III Sum of Squares	d_{f}		Mean square	F	Sig.
Corrected r	nodel	6.957ª	17		.409	5.558	.000
Intercept		112.112	1		112.112	1522.573	.000
MPs		6.957	17		.409	5.558	.000
Error		11.929	162		.074		
Total		130.997	180				
Corrected t		18.886	179				
a. R Squared	d = .368 (Adjuste	ed R Squared = .302)					
Multiple cor							
	variable: RE						
LSD							
(I) MPs	(J) MPs	Mean differe	ence (I-J)	Std. error	Sig.	95% Confidence	
TDA		407700*		1010500	000	Lower bound	Upper bound
aTPA	BAM	.487720*		.1213533	.000	.248082	.727358
	CBZ	.204360		.1213533	.094	035278	.443998
	CF	.123450		.1213533	.311	116188	.363088
	DF	.452280*		.1213533	.000	.212642	.691918
	HCB	158640		.1213533	.193	398278	.080998
	HHCB	158290		.1213533	.194	397928	.081348
	LST	.187110		.1213533	.125	052528	.426748
	MEP	.021060		.1213533	.862	218578	.260698
	MTBT	.109350		.1213533	.369	130288	.348988
	OC	063190		.1213533	.603	302828	.176448
	OZP	.126430		.1213533	.299	113208	.366068
	TBP	095890		.1213533	.431	335528	.143748
	TBT	120040		.1213533	.324	359678	.119598
	TCS	114860		.1213533	.345	354498	.124778
	TDCPP	139090		.1213533	.253	378728	.100548
	TMDD	.223630		.1213533	.067	016008	.463268
	TPP	146580		.1213533	.229	386218	.093058
BAM	aTPA	487720*		.1213533	.000	727358	248082
	CBZ	283360*		.1213533	.021	522998	043722
	CF	364270*		.1213533	.003	603908	124632
	DF	035440		.1213533	.771	275078	.204198
	HCB	646360*		.1213533	.000	885998	406722
	HHCB	646010*		.1213533	.000	885648	406372
	LST	300610*		.1213533	.014	540248	060972
	MEP	466660*		.1213533	.000	706298	227022
	MTBT	378370*		.1213533	.002	618008	138732
	OC	550910*		.1213533	.000	790548	311272
	OZP	361290*		.1213533	.003	600928	121652
	TBP	583610*		.1213533	.000	823248	343972
	TBT	607760*		.1213533	.000	847398	368122
	TCS	602580*		.1213533	.000	842218	362942
	TDCPP	626810*		.1213533	.000	866448	387172
	TMDD	264090*			.000		
	TPP	264090 634300*		.1213533	.031	503728	024452

(Continued)

Table S4 ((Continued)

Table S4 (0 CBZ	aTPA	204360	.1213533	.094	443998	.035278
LDZ	BAM	204300 .283360*	.1213533	.021	.043722	.522998
	CF	080910	.1213533	.506	320548	.158728
	DF	080910 .247920*	.1213533	.043	.008282	.487558
	HCB	363000*		.043		
			.1213533		602638	123362
	HHCB	362650*	.1213533	.003	602288	123012
	LST	017250	.1213533	.887	256888	.222388
	MEP	183300	.1213533	.133	422938	.056338
	MTBT	095010	.1213533	.435	334648	.144628
	OC	267550*	.1213533	.029	507188	027912
	OZP	077930	.1213533	.522	317568	.161708
	TBP	300250*	.1213533	.014	539888	060612
	TBT	324400*	.1213533	.008	564038	084762
	TCS	319220*	.1213533	.009	558858	079582
	TDCPP	343450*	.1213533	.005	583088	103812
	TMDD	.019270	.1213533	.874	220368	.258908
	TPP	350940*	.1213533	.004	590578	111302
CF	aTPA	123450	.1213533	.311	363088	.116188
	BAM	.364270*	.1213533	.003	.124632	.603908
	CBZ	.080910	.1213533	.506	158728	.320548
	DF	.328830*	.1213533	.007	.089192	.568468
	HCB	282090*	.1213533	.021	521728	042452
	HHCB	281740*	.1213533	.021	521378	042102
	LST	.063660	.1213533	.601	175978	.303298
	MEP	102390	.1213533	.400	342028	.137248
	MTBT	014100	.1213533	.908	253738	.225538
	OC	186640	.1213533	.126	426278	.052998
	OZP	.002980	.1213533	.980	236658	.242618
	TBP	219340	.1213533	.073	458978	.020298
	TBT	243490*	.1213533	.046	483128	003852
	TCS	238310	.1213533	.051	477948	.001328
	TDCPP	262540*	.1213533	.032	502178	022902
	TMDD	.100180	.1213533	.410	139458	.339818
	TPP	270030*	.1213533	.027	509668	030392
DF	aTPA	452280 [*]	.1213533	.000	691918	212642
	BAM	.035440	.1213533	.771	204198	.275078
	CBZ	247920*	.1213533	.043	487558	008282
	CF	328830*	.1213533	.007	568468	089192
	НСВ	610920*	.1213533	.000	850558	371282
	ННСВ	610570*	.1213533	.000	850208	370932
	LST	265170*	.1213533	.030	504808	025532
	MEP	431220*	.1213533	.000	670858	191582
	MTBT	342930*	.1213533	.005	582568	103292
	OC	515470*	.1213533	.000	755108	275832
	OZP	325850*	.1213533	.000	565488	086212
	TBP	525850 548170*	.1213533	.008	787808	
						308532
	TBT	572320*	.1213533	.000	811958	332682
	TCS	567140*	.1213533	.000	806778	327502
	TDCPP	591370*	.1213533	.000	831008	351732
	TMDD	228650	.1213533	.061	468288	.010988
	TPP	598860*	.1213533	.000	838498	359222

HCB	aTPA	.158640	.1213533	.193	080998	.398278
TICD	BAM	.646360*	.1213533	.000	.406722	.885998
	CBZ	.363000*	.1213533	.003	.123362	.602638
	CF	.282090*	.1213533	.005	.042452	.521728
	DF	.610920*	.1213533	.000	.371282	.850558
	ННСВ	.000350	.1213533	.998	239288	.239988
	LST	.345750*	.1213533	.005	.106112	
						.585388
	MEP	.179700	.1213533	.141	059938	.419338
	MTBT	.267990*	.1213533	.029	.028352	.507628
	OC	.095450	.1213533	.433	144188	.335088
	OZP	.285070*	.1213533	.020	.045432	.524708
	TBP	.062750	.1213533	.606	176888	.302388
	TBT	.038600	.1213533	.751	201038	.278238
	TCS	.043780	.1213533	.719	195858	.283418
	TDCPP	.019550	.1213533	.872	220088	.259188
	TMDD	.382270*	.1213533	.002	.142632	.621908
	TPP	.012060	.1213533	.921	227578	.251698
ННСВ	aTPA	.158290	.1213533	.194	081348	.397928
	BAM	.646010*	.1213533	.000	.406372	.885648
	CBZ	.362650*	.1213533	.003	.123012	.602288
	CF	.281740*	.1213533	.021	.042102	.521378
	DF	.610570*	.1213533	.000	.370932	.850208
	HCB	000350	.1213533	.998	239988	.239288
	LST	.345400*	.1213533	.005	.105762	.585038
	MEP	.179350	.1213533	.141	060288	.418988
	MTBT	.267640*	.1213533	.029	.028002	.507278
	OC	.095100	.1213533	.434	144538	.334738
	OZP	.284720*	.1213533	.020	.045082	.524358
	TBP	.062400	.1213533	.608	177238	.302038
	TBT	.038250	.1213533	.753	201388	.277888
	TCS	.043430	.1213533	.721	196208	.283068
	TDCPP	.019200	.1213533	.874	220438	.258838
	TMDD	.381920*	.1213533	.002	.142282	.621558
	TPP	.011710	.1213533	.923	227928	.251348
LST	aTPA	187110	.1213533	.125	426748	.052528
	BAM	.300610*	.1213533	.014	.060972	.540248
	CBZ	.017250	.1213533	.887	222388	.256888
	CF	063660	.1213533	.601	303298	.175978
	DF	.265170*	.1213533	.030	.025532	.504808
	HCB	345750*	.1213533	.005	585388	106112
	HHCB	345400*	.1213533	.005	585038	105762
	MEP	166050	.1213533	.173	405688	.073588
	MTBT	077760	.1213533	.523	317398	.161878
	OC	250300*	.1213533	.041	489938	010662
	OZP	060680	.1213533	.618	300318	.178958
	TBP	283000*	.1213533	.021	522638	043362
	TBT	307150*	.1213533	.012	546788	067512
	TCS	301970*	.1213533	.012	541608	062332
	TDCPP	326200*	.1213533	.008	565838	086562
	TMDD	.036520	.1213533	.764	203118	.276158
	TPP	333690*	.1213533	.007	573328	094052

Table S4 (*Continued*)

MEP	aTPA	021060	.1213533	.862	260698	.218578
	BAM	$.466660^{*}$.1213533	.000	.227022	.706298
	CBZ	.183300	.1213533	.133	056338	.422938
	CF	.102390	.1213533	.400	137248	.342028
	DF	.431220*	.1213533	.000	.191582	.670858
	HCB	179700	.1213533	.141	419338	.059938
	HHCB	179350	.1213533	.141	418988	.060288
	LST	.166050	.1213533	.173	073588	.405688
	MTBT	.088290	.1213533	.468	151348	.327928
	OC	084250	.1213533	.489	323888	.155388
	OZP	.105370	.1213533	.387	134268	.345008
	TBP	116950	.1213533	.337	356588	.122688
	TBT	141100	.1213533	.247	380738	.098538
	TCS	135920	.1213533	.264	375558	.103718
	TDCPP	160150	.1213533	.189	399788	.079488
	TMDD	.202570	.1213533	.097	037068	.442208
	TPP	167640	.1213533	.169	407278	.071998
ITBT	aTPA	109350	.1213533	.369	348988	.130288
	BAM	.378370*	.1213533	.002	.138732	.618008
	CBZ	.095010	.1213533	.435	144628	.334648
	CF	.014100	.1213533	.908	225538	.253738
	DF	.342930*	.1213533	.005	.103292	.582568
	HCB	267990*	.1213533	.029	507628	028352
	ННСВ	267640*	.1213533	.029	507278	028002
	LST	.077760	.1213533	.523	161878	.317398
	MEP	088290	.1213533	.468	327928	
	OC	172540	.1213533	.468	412178	.151348 .067098
	OZP	.017080	.1213533	.888	222558	.256718
	TBP	205240	.1213533	.093	444878	
	TBT					.034398
		229390	.1213533	.061	469028	.010248
	TCS	224210	.1213533	.066	463848	.015428
	TDCPP	248440*	.1213533	.042	488078	008802
	TMDD	.114280	.1213533	.348	125358	.353918
	TPP	255930*	.1213533	.036	495568	016292
C	aTPA	.063190	.1213533	.603	176448	.302828
	BAM	.550910*	.1213533	.000	.311272	.790548
	CBZ	.267550*	.1213533	.029	.027912	.507188
	CF	.186640	.1213533	.126	052998	.426278
	DF	.515470*	.1213533	.000	.275832	.755108
	HCB	095450	.1213533	.433	335088	.144188
	HHCB	095100	.1213533	.434	334738	.144538
	LST	.250300*	.1213533	.041	.010662	.489938
	MEP	.084250	.1213533	.489	155388	.323888
	MTBT	.172540	.1213533	.157	067098	.412178
	OZP	.189620	.1213533	.120	050018	.429258
	TBP	032700	.1213533	.788	272338	.206938
	TBT	056850	.1213533	.640	296488	.182788
	TCS	051670	.1213533	.671	291308	.187968
	TDCPP	075900	.1213533	.533	315538	.163738
	TMDD	.286820*	.1213533	.019	.047182	.526458
	TPP	083390	.1213533	.493	323028	.156248

Table S4 (Con	tinued)
---------------	---------

106

OZP	aTPA	126430	.1213533	.299	366068	.113208
	BAM	.361290*	.1213533	.003	.121652	.600928
	CBZ	.077930	.1213533	.522	161708	.317568
	CF	002980	.1213533	.980	242618	.236658
	DF	.325850*	.1213533	.008	.086212	.565488
	HCB	285070^{*}	.1213533	.020	524708	045432
	HHCB	284720^{*}	.1213533	.020	524358	045082
	LST	.060680	.1213533	.618	178958	.300318
	MEP	105370	.1213533	.387	345008	.134268
	MTBT	017080	.1213533	.888	256718	.222558
	OC	189620	.1213533	.120	429258	.050018
	TBP	222320	.1213533	.069	461958	.017318
	TBT	246470*	.1213533	.044	486108	006832
	TCS	241290*	.1213533	.048	480928	001652
	TDCPP	265520*	.1213533	.030	505158	025882
	TMDD	.097200	.1213533	.424	142438	.336838
	TPP	273010*	.1213533	.026	512648	033372
BP	aTPA	.095890	.1213533	.431	143748	.335528
DI	BAM	.583610*	.1213533	.000	.343972	.823248
	CBZ	.300250*		.000		.539888
	CF		.1213533		.060612	
	DF	.219340	.1213533	.073	020298	.458978
		.548170*	.1213533	.000	.308532	.787808
	HCB	062750	.1213533	.606	302388	.176888
	HHCB	062400	.1213533	.608	302038	.177238
	LST	.283000*	.1213533	.021	.043362	.522638
	MEP	.116950	.1213533	.337	122688	.356588
	MTBT	.205240	.1213533	.093	034398	.444878
	OC	.032700	.1213533	.788	206938	.272338
	OZP	.222320	.1213533	.069	017318	.461958
	TBT	024150	.1213533	.843	263788	.215488
	TCS	018970	.1213533	.876	258608	.220668
	TDCPP	043200	.1213533	.722	282838	.196438
	TMDD	.319520*	.1213533	.009	.079882	.559158
	TPP	050690	.1213533	.677	290328	.188948
BT	aTPA	.120040	.1213533	.324	119598	.359678
	BAM	$.607760^{*}$.1213533	.000	.368122	.847398
	CBZ	.324400*	.1213533	.008	.084762	.564038
	CF	.243490*	.1213533	.046	.003852	.483128
	DF	.572320*	.1213533	.000	.332682	.811958
	HCB	038600	.1213533	.751	278238	.201038
	HHCB	038250	.1213533	.753	277888	.201388
	LST	$.307150^{*}$.1213533	.012	.067512	.546788
	MEP	.141100	.1213533	.247	098538	.380738
	MTBT	.229390	.1213533	.061	010248	.469028
	OC	.056850	.1213533	.640	182788	.296488
	OZP	$.246470^{*}$.1213533	.044	.006832	.486108
	TBP	.024150	.1213533	.843	215488	.263788
	TCS	.005180	.1213533	.966	234458	.244818
	TDCPP	019050	.1213533	.875	258688	.220588
	TMDD	.343670*	.1213533	.005	.104032	.583308
	TPP	026540	.1213533	.827	266178	.213098

Table S4 (Continued)

Table S4 (C						
TCS	aTPA	.114860	.1213533	.345	124778	.354498
	BAM	.602580*	.1213533	.000	.362942	.842218
	CBZ	.319220*	.1213533	.009	.079582	.558858
	CF	.238310	.1213533	.051	001328	.477948
	DF	$.567140^{*}$.1213533	.000	.327502	.806778
	HCB	043780	.1213533	.719	283418	.195858
	HHCB	043430	.1213533	.721	283068	.196208
	LST	$.301970^{*}$.1213533	.014	.062332	.541608
	MEP	.135920	.1213533	.264	103718	.375558
	MTBT	.224210	.1213533	.066	015428	.463848
	OC	.051670	.1213533	.671	187968	.291308
	OZP	.241290*	.1213533	.048	.001652	.480928
	TBP	.018970	.1213533	.876	220668	.258608
	TBT	005180	.1213533	.966	244818	.234458
	TDCPP	024230	.1213533	.842	263868	.215408
	TMDD	.338490*	.1213533	.006	.098852	.578128
	TPP	031720	.1213533	.794	271358	.207918
DCPP	aTPA	.139090	.1213533	.253	100548	.378728
	BAM	.626810*	.1213533	.000	.387172	.866448
	CBZ	.343450*	.1213533	.005	.103812	.583088
	CF	.262540*	.1213533	.032	.022902	.502178
	DF	.591370*	.1213533	.000	.351732	.831008
	HCB	019550	.1213533	.872	259188	.220088
	ННСВ	019200	.1213533	.874	258838	.220438
	LST	.326200*	.1213533	.008	.086562	.565838
	MEP	.160150	.1213533	.189	079488	.399788
	MTBT	.248440*	.1213533	.042	.008802	.488078
	OC	.075900	.1213533	.533	163738	.315538
	OZP	.265520*	.1213533	.030	.025882	.505158
	TBP	.043200	.1213533	.722	196438	.282838
	TBT	.019050	.1213533	.875	220588	
	TCS		.1213533			.258688
	TMDD	.024230 262720*		.842	215408	.263868
		.362720*	.1213533	.003	.123082	.602358
	TPP	007490	.1213533	.951	247128	.232148
ГMDD	aTPA	223630	.1213533	.067	463268	.016008
	BAM	.264090*	.1213533	.031	.024452	.503728
	CBZ	019270	.1213533	.874	258908	.220368
	CF	100180	.1213533	.410	339818	.139458
	DF	.228650	.1213533	.061	010988	.468288
	HCB	382270*	.1213533	.002	621908	142632
	HHCB	381920*	.1213533	.002	621558	142282
	LST	036520	.1213533	.764	276158	.203118
	MEP	202570	.1213533	.097	442208	.037068
	MTBT	114280	.1213533	.348	353918	.125358
	OC	286820^{*}	.1213533	.019	526458	047182
	OZP	097200	.1213533	.424	336838	.142438
	TBP	319520*	.1213533	.009	559158	079882
	TBT	343670*	.1213533	.005	583308	104032
	TCS	338490*	.1213533	.006	578128	098852
	TDCPP	362720*	.1213533	.003	602358	123082
	TPP	370210*	.1213533	.003	609848	130572

Table S4 (Continued)					
TPP	aTPA	.146580	.1213533	.229	093058	.386218
	BAM	.634300*	.1213533	.000	.394662	.873938
	CBZ	.350940*	.1213533	.004	.111302	.590578
	CF	.270030*	.1213533	.027	.030392	.509668
	DF	$.598860^{*}$.1213533	.000	.359222	.838498
	HCB	012060	.1213533	.921	251698	.227578
	HHCB	011710	.1213533	.923	251348	.227928
	LST	.333690*	.1213533	.007	.094052	.573328
	MEP	.167640	.1213533	.169	071998	.407278
	MTBT	.255930*	.1213533	.036	.016292	.495568
	OC	.083390	.1213533	.493	156248	.323028
	OZP	.273010*	.1213533	.026	.033372	.512648
	TBP	.050690	.1213533	.677	188948	.290328
	TBT	.026540	.1213533	.827	213098	.266178
	TCS	.031720	.1213533	.794	207918	.271358
	TDCPP	.007490	.1213533	.951	232148	.247128
	TMDD	.370210*	.1213533	.003	.130572	.609848

Based on observed means. The error term is Mean Square(Error) = .074.

*. The mean difference is significant at the 0.05 level.