
* Corresponding author.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2018.22380

Presented at the 3rd International Conference on Recent Advancements in Chemical, Environmental and Energy Engineering, 
15–16 February, Chennai, India, 2018.
1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.

121 (2018) 158–165
July

ANN modeling for scale-up of green synthesis of iron oxide nanoparticle 
and its application for decolorization of dye effluent

K. Sathyaa, R. Saravanathamizhana,*, G. Baskarb

aDepartment of Chemical Engineering, A.C. Tech., Anna University, Chennai 600025, India, Tel. +91 44 22359237; 
email: thamizhan79@rediffmail.com (R. Saravanathamizhan), Tel. +91 44 22359237, 
email: satyakarunakaran@gmail.com (K. Sathya) 
bDepartment of Bio Technology, St. Joseph’s College of Engineering, Chennai 600119, India, Tel. +91 9443678571; 
email: basg2004@gmail.com (G. Baskar)

Received 23 February 2018; Accepted 9 April 2018

a b s t r a c t
Nanomaterials are synthesized in the laboratory scale and converting it to industrial scale is still a chal-
lenge. In this work, green synthesis of iron oxide nanoparticle has been carried out using Coriandrum 
sativum leaf extract as a reducing agent, and the experimental operating parameters such as time, 
temperature, ferric chloride concentration, and stirring speed for the yield of nanoparticles were opti-
mized. Using this laboratory data, an artificial neural network (ANN) model has been used to deter-
mine the yield of iron oxide nanoparticle. It is observed from this work that ANN model is a useful 
tool to scale up the production of iron oxide nanoparticle from lab-scale to industrial-scale application. 
The neural network configuration of one hidden layer with six neurons (4-6-1) matches well with the 
experimental values. Further the photocatalytic decolorization of direct red dye wastewater has been 
reported using the green-synthesized iron oxide nanoparticle. The iron oxide nanoparticle showed 
maximum decolorization efficiency of 87% at 10 mg L–1 concentration of direct red dye.
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1. Introduction

The particles ranging from 1 to 100 nm in size are called
nanoparticles. Due to their size and surface area, it has totally 
different characteristics and properties [1]. Nanomaterials 
are widely used in many fields such as biomedicine [2], cos-
metics [3], and electronics [4]; in food industry as antimicro-
bial and food preservative agent [5]; and in environment for 
dye removal and heavy metal removal [6].

Different methods such as chemical [7], physical [8], and 
biological [9] are used for the synthesis of nanomaterials. 
However, the usage of toxic reducing agent, high cost of pro-
duction, energy requirement, etc. [10] adds to the disadvan-
tage of chemical and physical method. Hence, the biological 

method acts as an eco-friendly alternative for the above meth-
ods. The biological methods include usage of microbes [11] 
and plant sources [12–15] for the synthesis of nanomateri-
als. The plant-mediated synthesis is considered to be more 
advantageous over other methods because microbe-mediated 
synthesis consumes time and requires aseptic conditions [16].

There are more number of works reported earlier based 
on the plant-mediated synthesis of metal oxide nanoparticles. 
For example, ZnO synthesized from leaf extracts of Anisochilus 
carnosus [17]; Plectranthus amboinicus [18], and Vitex negundo 
[19]; iron oxide nanomaterials synthesized from soybean 
sprouts [20]; Syzygium cumini seed extract [21]; Ocimum sanctum 
leaf extract [22]; plantain peel extract [23]; and palladium 
nanoparticles from Terminalia chebula leaf extract [24]. Among 
the nanomaterials synthesized, magnetic nanoparticles play a 
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significant role in targeted drug delivery and treatment, pho-
tocatalytic property, magnetic resonance imaging, and com-
puter tomography imaging due to their unique magnetic and 
catalytic properties. Photocatalytic activity of iron nanopar-
ticles synthesized from Amaranthus dubius leaf extract was 
reported by Harshiny et al. [25]. The effect of process param-
eters, such as pH, temperature, concentration, and time on 
antioxidant property and synthesis process has been studied, 
and the author reported that green-synthesized nanoparticle 
is spherical in shape with cubic phase structure and the diam-
eter ranges from 43 to 220 nm. It shows better methyl orange 
decolorization efficiency of 81% than that in the nanoparticle 
prepared from chemical method. Shahwan et al. [26] syn-
thesized iron nanoparticles from green tea leaf extract. They 
compared the degradation efficiency of chemical and green- 
synthesized nanoparticles using cationic and anionic dyes. 
They have reported that green-synthesized iron nanoparticle 
shows better degradation efficiency of 100% at 10 mg L–1 con-
centration compared with iron nanoparticle synthesized by 
chemical method. The hybrid technique for synthesis of iron 
nanoparticle from eucalyptus leaf extract and encapsulation 
in chitosan beads was reported by Martinez-Cabanas et al. 
[27]. The authors have reported that the synthesized magnetic 
hybrid beads were effective in the removal of arsenic with short 
equilibrium time and good adsorption capacity at normal pH.

Though the biological- and plant-mediated synthesis of 
nanomaterials is considered to be booming in lab scale, it is 
essential to scale up the process to industry level. For this 
purpose, artificial neural network (ANN) modeling has been 
used to scale up the process to industrial scale. ANN has been 
successfully used to solve environmental engineering prob-
lems. ANNs have wide range of applications such as speech 
recognition, fault detection and diagnosis, pollutant-removal 
studies, etc. Different applications of ANN modeling have 
been reported in the previous literatures. The performance 
of chemical oxygen demand removal in the batch reactor 
was predicted using ANN by Basha et al. [28]; removal of 
chromium from polluted solutions by electrocoagulation was 
modeled using ANN [29]; ANNs were used to predict methyl 
orange dye adsorption on polyaniline nano-adsorbent [30]; 
the process optimization and modeling for pollutant removal 
from water using response surface methodology (RSM) and 
artificial neural network-genetic algorithm by Sweta et al. 
[31]; and Tahani et al. [32] used the ANN modeling for study-
ing the thermal conductivity of graphene oxide nanoplate-
letes/deionized water nanofluids. They have found that the 
ANN model can predict the thermal behavior of the nano-
fluid precisely. The electrooxidation of simulated wastewater 
using continuous stirred tank electrochemical reactor was 
done using RSM and ANN modeling by Saravanathamizhan 
et al. [33]. The authors reported that ANN model results were 
in good agreement with experimental values.

Modeling of nanoparticle synthesis has also been reported 
in the literature. Sakthivel and Pitchumani [34] studied the 
effect of nanoparticle size using RSM. Shabanzadeh et al. 
[35] predicted nanoparticle size synthesized using chemical 
reduction method using ANN modeling. It was found that 
ANN modeling is helpful in predicting the results [36–39]. 
The lab-scale production is very less, hence in this work, green 
synthesis of iron oxide nanomaterial has been attempted to 
scale up to industrial level using ANN modeling.

1.1. Artificial neural networks

The objective of a neural network is to compute out-
put values from input values by some internal calculations. 
ANNs are biologically inspired computer programs designed 
to simulate the way in which the human brain processes 
information. ANNs gather their knowledge by detecting the 
patterns and relationships in data, and learn (or train) from 
experience and not from programming.

The processing elements of the ANNs are known as 
“neurons” that are the processing elements of ANNs con-
nected to each other and function concurrently [40,41]. The 
ANN includes three layers—input layer, one or more hidden 
layer, and output layer. The information received by a neuron 
from the other neuron is processed, and the signal is passed 
to the consecutive neurons. These neurons are connected 
with coefficients (weights), which form the neural structure 
which has been organized in layers. Connecting the neurons 
in a network is important for neural network modeling. Each 
neuron has weighted inputs, transfer function, and one out-
put. The transfer functions of neurons, the learning rule, and 
the architecture determine the behavior of a neural network 
[42]. The activation of the neuron is based on the weighed 
sum of the inputs. Single output of the neuron is obtained 
by giving the activation signal through transfer function 
which introduces nonlinearity to the network [43]. The error 
in predictions is minimized until interunit connections are 
optimized till it reaches accuracy, and new input information 
is given to predict the output. Different types of neural net-
works have been reported earlier and new types of networks 
are developed frequently, but they can be described by the 
transfer functions of their neurons by the learning rule and 
connection formula.

The backpropagation (BP) neural network is widely 
used for the modeling in order to minimize the error. This 
algorithm is used in layered feed-forward ANNs [44]. In this 
network, signals are send forward then the errors signals are 
propagated backwards. The network receives input in the 
input layer, the internal calculation is done in the hidden 
layers by neurons, and output network by output layer. The 
idea of the BP algorithm is to reduce this error, until the ANN 
learns the training data. The training begins with random 
weights, and the goal is to adjust them so that the error will 
be minimal.

There are 14 training function available in the MATLAB 7 
toolbox. Trainlm and trainscg functions are commonly used 
training functions, and tan-sigmoid (tansig), log-sigmoidal 
(logsig), and linear (purelin) functions are commonly used 
transfer functions in the ANN modeling.

The training function and transfer functions trainlm 
and tansig are chosen, respectively, for this work based on 
trial and error method. All inputs and outputs were linearly 
normalized before entering in ANN, using the following 
equation [29]:

A
X X
X X

r r ri =
( )

( )
( ) +i min

max min
max min min

−
−

−  (1)

where Xi is input or output of the network; Ai is the nor-
malized value of Xi; Xmin, and Xmax are extreme values of Xi; 
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and rmin and rmax define the limits of the range where Xi is 
scaled. In this work, input and output data are normalized 
between 0.1 and 0.9. After modeling, results were converted 
to original state.

The various steps in developing a neural network mod-
els are shown in the flowchart (Fig. 1). The first step in the 
neural network modeling is data collection. For the various 
input variables, the experimental data have been collected 
and fed as an input to the neural network. The entire set of 
data is split in to three categories, namely training, testing, 
and validation. The training set is the largest set and is used 
by neural network to learn patterns present in the data. The 
testing set is used to evaluate the generalization ability of a 
clearly trained network. A final check on the performance of 
the trained network is made using the validation set.

2. Materials and methods

2.1. Chemicals

Ferric chloride, hydrochloric acid, sodium hydroxide 
pellets, 2,2-diphenyl-1-picrylhydrazyl, and ethanol were pro-
cured from SRL Pvt. Ltd., India, and were used without any 
further purification.

2.2. Preparation of Coriandrum sativum leaf extract

Fresh leaves were collected and washed several times by 
using distilled water. The leaf extract was prepared by tak-
ing 30 g of finely cut leaves and then homogenized using 
blender, centrifuged and the supernatant was collected, 
made up to 100 mL by distilled water, and stored at 4°C for 
further use.

2.3. Synthesis of iron oxide nanoparticles

A total of 50 mL of freshly prepared homogenized leaf 
extract was added dropwise to 50 mL of 0.5 M ferric chloride 
solution under continuous stirring. The pH of the solution 
was adjusted using 0.1 N HCl and 0.1 N NaOH. The change in 
color of the solution and formation of black precipitate indi-
cates the synthesis of iron oxide nanoparticle. The iron oxide 
nanoparticle precipitate formed was centrifuged, dried, and 
stored for characterization. The formation of nanoparticle was 
observed by UV spectra. The details about instrumentation 
and characterization results were presented in our previous 
paper [45]. Band gap energy of the nanoparticle is estimated 
using ultraviolet-diffuse reflection spectroscopy. The band 
gap has been calculated using the formula (E = 1240/λ where, 
λ is the wave length) and found to be 2.26 eV.

2.4. Feed-forward BPNN model

In the feed-forward backpropagation neural network 
model (BPNN), signals are sent forward then the errors 
signals are propagated backward, hence the error get min-
imized. Generally, ANN requires three types of layers: 
input, hidden, and output layer. A typical neural network 
configuration is shown in Fig. 2. The input is given to the 
input layer, output layer is the response, and the hidden 
layer is the feature predictor of the model. The hidden 
layer contains the neurons. The hidden layer and number 
of neuron selection for the model were done by trial and 
error method. All these calculation for this study has been 
carried out using Neural Network Toolbox of MATLAB 7. 
The training is repeated until the convergence is reached by 
changing the number of neurons and hidden layers. Each 
network is tested for its ability in predicting the perfor-
mance of the process by comparing prediction with exper-
imental observations. Sum of squared error (SSE), mean 
squared error (MSE), and mean absolute error (MAE) are 
expressed as follows [46]:

SSE = −
=∑ ( )t ai ii

N 2
1

 (2)

MSE = −
=∑1 2

1N
t ai ii

N ( )  (3)

MAE = −
=∑1

1N
t ai ii

N  (4)

where N is the total number of data, ti is the target value, and 
ai is the network output value.

Fig. 1. Flow chart for ANN modeling.
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2.5. Photocatalytic activity

The photocatalytic activity of the iron oxide nanoparticle 
prepared was performed by decolorization of direct red dye 
solution under UV irradiation. The photocatalytic apparatus 
consists of three 300 W xenon lamps, magnetic stirrer, and 
cooling fans. The magnetic stirrer is used for maintaining 
uniform mixing, and the cooling fans are provided to main-
tain temperature. A total of 0.1 g of nanoparticle was added 
to 50 mL of 10, 20, 30, 40, and 50 mg L–1 aqueous dye solu-
tion and kept in the chamber. The samples were collected 
at the end of 2 h of time and analyzed using a UV-visible 
spectrophotometer with a wavelength range of 200–900 nm. 
The decolorization of direct red dye is calculated using the 
following formula:

Color removal % =
C Co t−

×
Co

100  (5)

where Co and Ct are the initial concentration and the concen-
tration after time t of direct red dye solution, respectively.

2.6. Mechanism of decolorization and its influencing factors

In the photocatalytic oxidation using iron oxide nanopar-
ticle, the light illumination produces excited high-energy 
states of electron and hole pairs (e−/h+). Part of the photo-
generated carriers recombine and migrate to the surface of 
particles, where the holes act as oxidizing agent and the elec-
trons as powerful reductants, which lead to complete miner-
alization of the dyes. The HO• radicals formed are extremely 
powerful oxidizing agents that nonselectively attack the 
adsorbed organic molecules or those close to the catalyst sur-
face, resulting in the decolorization of dye effluent.

3. Result and discussions

3.1. Effect of operating parameters

The effect of operating parameters such as time, salt 
concentration, temperature, and string speed on per-
centage yield of iron oxide nanoparticle are presented in 
Figs. 3–6. The effect of time for 500 and 800 rpm on iron 
oxide nanoparticle yield is shown in Fig. 3. It is observed 
from Fig. 3 that the yield increases with increase in time 
and stirring speed. The formation of nuclei for nanopar-
ticle is increased with increase in time and stirring speed 
which results the increase of nanoparticle yield. The effect 
of temperature for 500 and 800 rpm on iron oxide nanopar-
ticle yield is shown in Fig. 4. It is observed from figure 
that the yield decreases with increase in temperature. The 
maximum yield is obtained just above room temperature. 
The higher temperature affects the yield of nanoparticle, 
size, and structure. At higher temperature, the solution 
evaporates rapidly which leads to decrease in the yield 
of nanoparticle, further at optimum temperature only the 
reduction iron salt to form iron oxide nanoparticle will be 
more. The salt concentration also plays an important role 
in the yield of the nanoparticle. The effect of salt concentra-
tion for 500 and 800 rpm on iron oxide nanoparticle yield 
is shown in Fig. 5. Increase in salt concentration leads to 
increase in the yield. Maximum yield is obtained for 0.5 M 
salt concentration. This is due to the availability of salt 
to be reduced by plant extract. Fig. 6 shows that effect of 
stirring speed on nanoparticle yield for 0.1 and 0.5 M salt 
concentration. The particle size reduces with the increase 
in stirring speed; there will be formation of small nuclei 
during mixing because of rapid nucleation process which 
increases the yield. These results are in good agreement 
with the results obtained by Babou-Kammoe et al. [47] and 
Agnihotri et al. [48].

Fig. 2. The typical neural network architecture for modeling.
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3.2. Simulation and scale-up using ANN

In this work, around 200 data were used. The data split in 
to three sets for training, testing, and validation. These data 
were collected for different combination of operating parame-
ters, such as time, salt concentration, stirring speed, and tem-
perature. Various neural networks were selected and trained 
for the trial and error method and checked with the available 
data. The number of hidden layer and neurons selected for this 
study is shown in Table 1. The trial started with the case of sin-
gle hidden layer. The number of neurons in the hidden layer is 
varied for 2, 4, 5, 6, 7, 8, and 9; the corresponding networks are 
notated N1, N2, N3, N4, N5, N6, N7, and N8, respectively. The 
test results along with their performance terms SSE, MSE, and 
MAE are presented in Table 1. Experimental and simulated 
results for the different time, temperature, concentration, and 
stirring speed are presented in Table 2, for the various network 
configurations (N1, N2, N3, N4, N5, N6, N7, and N8). It can 
be observed from tables that one hidden layer network with 
the 4-6-1 configuration show less SSE, MSE, and MAE value.

3.3. Decolorization of direct red dye

The photocatalytic degradation of direct dye wastewater 
using the iron oxide nanocatalyst is shown in Fig. 7. It is 
observed from the figure that the percentage decolorization 
decreases with increase in dye concentration. This is due to 
that the amount of catalyst for the constant light source at 

higher concentration is difficult to decolorize the dye. The 
maximum decolorization of 87% is achieved for the present 
condition.

4. Conclusions

Iron oxide nanoparticle has been synthesized using 
Coriandrum sativum leaf extract as a reducing agent. Effect 
of operating parameters, such as time, ferric chloride con-
centration, stirring speed, and temperature on the yield of 
iron oxide nanoparticles has been studied. The ANN mod-
eling has been attempted to model and scale up the yield 

Fig. 3. Effect of time on yield of iron oxide nanoparticle (salt 
concentration, 0.5 M and temperature, 30°C).

Fig. 4. Effect of temperature on yield of iron oxide nanoparticle 
(salt concentration, 0.5 M and time, 3 h).

Fig. 5. Effect of salt concentration on yield of iron oxide 
nanoparticle (time, 3 h and temperature, 30°C).

Fig. 6. Effect of stirring rate on yield of iron oxide nanoparticle 
(time, 3 h and temperature, 30°C).

Table 1
Configurations of the neural networks studied

BPNN abbreviation Configuration SSE MSE MAE

N1 4-2-1 0.66 0.0247 0.1283
N2 4-3-1 1.06 0.0393 0.1600
N3 4-4-1 0.25 0.0094 0.0795
N4 4-5-1 0.23 0.0085 0.0730
N5 4-6-1 0.20 0.0075 0.0723
N6 4-7-1 0.66 0.0246 0.118
N7 4-8-1 0.21 0.0079 0.0715
N8 4-9-1 0.81 0.0299 0.141
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of the nanoparticle. The configuration of one hidden layer 
with six neurons (4-6-1) matches well with the experimen-
tal values. It is observed from the present investigation that 
ANN model is a useful tool to scale up the production of iron 
oxide nanoparticle from lab-scale to industrial-scale appli-
cation. The photocatalytic decolorization of direct red dye 

wastewater has been reported using the green-synthesized 
iron oxide nanoparticle. It is observed that maximum decol-
orization efficiency of 87% was achieved at 10 mg L–1 concen-
tration of direct red dye.
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