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a b s t r a c t
Influenced by combined effects of climate change and human activities, groundwater system shows 
varieties of uncertain properties, such as stochastic, fuzzy, gray, unascertained and chaotic character-
istics. Based on shortages of distributed parameter model and lumped parameter model in ground-
water level prediction, considering current researches of time series application with set pair analysis, 
groundwater level prediction model was established with set pair analysis based on rules of maxi-
mum similarity forecast (SPA-MSF). On the basis of theory of similarity forecast, maximum connection 
degree is used to measure the similarities among historical samples of groundwater level quantita-
tively with time series consistency analysis. Steps of modeling and solving a five-element connection 
degree model for groundwater level prediction was applied in monthly and inter-annual depth fore-
cast at Shandanqiao observation well, Zhangye Heihe River basin. The results indicated that goodness 
of fit and trend between predictive value and measured value were optimal. Besides, the SPA-MSF 
model was proved to be of high prediction accuracy and better generalization with posterior variance 
test.
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1. Introduction

The dynamic prediction of groundwater level refers
to forecasting of any possible changes of water level in a 
specific period in the future based on the change of mea-
sured data and the evolution of groundwater system and 
combined with theories and methods of hydrology and 
hydrogeology, in a bid to enable the system decisions more 
scientific and proactive and to have important theoretical 
and practical values. Currently there are many methods to 
predict the dynamic changes of groundwater level, and they 

are generally divided into the distributed model based on 
finite difference method, finite element method and other 
numerical methods and the lumped model based on nonlin-
ear time series prediction theories including artificial neural 
networks model, threshold autoregressive model and chaos 
theory. It should be noted that, the distributed model breaks 
the restrictions of isotropic homogeneous aquifer, structural 
rule and infinite distribution required in analytic method to 
some extent, but the model building needs to be supported 
by a large amount of hydrogeological data, and the model 
is strongly sensitive to initial conditions and boundary con-
ditions, adding uncertainty to the predicting results of the 
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model; while as for the nonlinear method for dynamic pre-
diction of groundwater level with time as univariate element, 
the determination of time delay τ and embedded dimension 
m in phase-space reconstruction [1], the optimal design of 
network parameters and network structure in BP neural net-
work model [2], and the selection of a priori knowledge and 
suitable kernel function in support vector machines [3] also 
affect the prediction accuracy of the model.

The set pair analysis (SPA) theory, as a new method for 
analysis of uncertainties of hydrology and water resources, 
provides a new approach for dynamic prediction of ground-
water level. However, less literature is about the applica-
tion of SPA to time series model prediction, and traditional 
researches on the application of SPA to time series prediction 
mainly concentrate on the coupling of neural network model, 
autoregressive model and other non-linear theories [4–10]. 
In addition, the model structure and computational process 
are relatively complicated, and impose certain limitations to 
the time series that is short of long-term measured data and 
that the impact factor relation is complicated and uncertain, 
and the annual dynamic prediction of groundwater level 
has not been involved in any research. This paper attempts 
to introduce the SPA theory to the dynamic prediction of 
groundwater level and explores the groundwater level pre-
diction based on SPA and maximum similarity forecast (SPA-
MSF), to provide new research ideas for dynamic prediction 
of groundwater level.

2. Basic principles of set pair analysis 

The SPA method, first put forward by Chinese Scholar 
Zhao Keqin on the basis of unity of opposites and univer-
sal relations in philosophy at the National Conference on 
Systems Theory and Regional Planning in Baotou, Inner 
Mongolia in 1989, is a new method to analyze uncertainty 
relations.

The core of the SPA: construct a set pair for two related 
sets in an uncertain system, analyze the identity, difference 
and contrariety of a particular attribute of the set pair, and 
describe the identical discrepancy contrary (IDC) relations of 
the set pair with the connection degree. Supposed that the 
related sets A and B form a set pair H(A,B), the connection 
degree used to describe H(A,B) relations is defined as follows: 
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where S is the number of identity, S/N is the identical degree, 
abbreviated as a; F is the number of difference, F/N is the dif-
ferent degree, abbreviated as b; P is the number of contrari-
ety, P/N is the contrary degree, abbreviated as c; S + F + P = N; 
I is the difference coefficient, and can be assigned to a value 
within [–1, 1]; J is contrariety coefficient, J ≡ –1. 

From the certain–uncertain system theory, the connec-
tion degree has a hierarchical and deployable structure. 
Therefore, the extensibility of a, bI, cJ can derive K element 
connection degree on the basis of commonly-used connec-
tion degree: 
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Generally the above formula can be simplified as the 
following when the identity and contrariety structures are 
not refined: 
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where a + b1 + b2+ … + bK – 2 + c = 1; b1, b2, …, bK – 2 represent 
difference components; I1, I2, …, IK – 2 represent component 
factors with uncertain difference.

3. SPA-MSF modeling for dynamic prediction of 
groundwater level

Similar prediction method is a kind of non-parameter 
prediction method that aims to find one or more samples that 
are most similar to the present sample as the pre-set forecast-
ing results under the principle of “like causes produce like 
results”. Use the IDC of SPA to measure the similarity among 
historical samples of groundwater level time series, and 
make the weighted average of groundwater level in several 
most similar historical samples as the pre-set predicted value 
of groundwater level; thus, the similar prediction model of 
groundwater level based on SPA is built.

Supposed that the groundwater level time series is  
Y = {x(t)} (t = 1, 2, …, n); considering the delayed response of 
dynamic evolution of groundwater level in aquifer system, 
the groundwater level x(t) in the t year depends on its front 
m sample values x(t – 1), x(t – 2), …, x(t – m + 1), x(t – m), 
and the predicted value of the defined set At = (x(t), x(t + 1), 
…, x(t + m – 1)) (t = 1, 2, …, n – m) is the subsequent value 
x(t + m) of At. It can be simply interpreted as: the predicted 
value x(t + m) of groundwater level in the (t + m) year, as a 
dependent variable, is the function of m independent vari-
ables (impact factor) in the set At: 

x t m f x t x t x t m x t m( ) ( ( ), ( ), , ( ), ( ))+ = + + + −1 1  (4)

While for the subsequent predicted value of ground-
water level x(n + 1) in the (n + 1) year, the SPA based on 
the maximum similarity for dynamic prediction of ground-
water level can be adopted to analyze the identical degree, 
different degree and contrary degree between the set 
An + 1 = (x(n – m + 1), x(n – m + 2), …, x(n – 1), x(n)) and At. 
Here are the modeling processes:

Step 1: Build sets A1, A2, An – m and An + 1 and their subse-
quent values x(m + 1), x(m + 2), …, x(n) and x(n + 1), as shown 
in Table 1. m value cannot be made too small, otherwise it 
cannot objectively reflect the lag effect of dynamic changes of 
groundwater level; m value cannot be made too large either, 
otherwise, the non-linear relation of groundwater level time 
series cannot be accurately expressed, and meanwhile it can 
lead to strong dependency among variables. m value is rec-
ommended to be within 4–6.

Step 2: Convert all elements in sets A1, A2, …, An – m, and  
An + 1 into corresponding symbols, respectively, accord-
ing to a certain classification criterion. This paper adopts 
mean-standard deviation method to calculate the mean 
Xj and standard deviation Sj of the same element (impact 
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factor) xj(t) j = (1, 2, …, m) in a set, and then classifies the ele-
ments in the set At into I, II, III, IV and V which correspond 
to intervals [0,Xj – 0.9Sj], [Xj – 0.9Sj, Xj – 0.3Sj], [Xj – 0.3Sj, 
Xj + 0.3Sj], [Xj + 0.3Sj, Xj + 0.9Sj] and [Xj+ 0.9Sj, + ∞], respectively.

Step 3: Quantize with symbol the set An + 1 = (x(n – m + 1), 
x(n – m + 2), … x(n – 1), x(n)) that the predicted groundwater 
level x(n + 1) corresponds to in the (n + 1) year according 
to the established classification criterion. Use set An + 1 and 
(n – m) sets At to build set pair H(An + 1, At) t = (1, 2, …, n – m), 
respectively, and analyze the IDC of elements in sets An + 1 
– At. Count the number of identical symbols (identity) as S; 
count the number of different symbols with one level (partial 
difference) as F1; count the number of different symbols with 
two levels (whole difference) as F2; count the number of dif-
ferent symbols with three levels (inverse difference) as F3; 
count the number of different symbols with four levels (con-
trariety) as P. Calculate the connection degree µt(An + 1, At) of 
set pairs H(An + 1, At).

Step 4: Determine the correlate µt(An + 1, At) of set pair 
H(An + 1, At). Assign suitable values to factors I1, I2, I3, with 
uncertain difference. In this paper, different factors are 
assigned to –0.5, 0, 0.5 by using particular value method; the 
contrariety factor is J = –1. 

Step 5: Arrange correlates µt(An + 1, At) in descending order. 
Agreed as follows: the larger the correlate is, the higher the 
similarity between set An + 1 and set At = (x(t), x(t + 1), …, 
x(t + m – 1)) (t = 1, 2, …, n – m) is; and vice versa. Select the 
weighted average of subsequent values of K similar sets as 
the predicted value of groundwater level x(n + 1) in the (n + 1) 
year.
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where ωk is the weight of K similar sets to the set An + 1, and 
equals to the ratio of the mean value of elements in set An + 1 to 
the mean value of elements in set At.

4. Case study

4.1. Overview of study area

Heihe River, originating from the middle part of 
Qilian Mountain, is the second largest inland river in 
arid and semi-arid region of Northwest China. It is about 
821 km and flows into east and west Juyan Lake basins 
[11]. Shandanqiao observation well is located in Zhangye 
basin, nearby the junction of Heihe River (main stream) 
and Shandanhe River, major tributary of Heihe River. 
The groundwater is low in buried depth with great with-
drawal; the groundwater level is largely affected by 
human exploration and dynamically changes upon runoff 
and mining quantity. To fully demonstrate the effective-
ness of SPA-MSF model in predicting groundwater level, 
this thesis chooses monthly data of shallow groundwater 
level of Shandanqiao observation well during 1981–2004 
from Zhangye Hydrographic and Water Resources Survey 
Bureau to build time series, and uses time-series data from 
1981 to 2002 to build SPA-MSF model and from 2003 to 2004 
to verify SPA-MSF model.

4.2, Dynamic prediction of groundwater depth

4.2.1. Consistency analysis of time series 

The premise of similarity forecast model of groundwater 
depth based on SPA is that the similar condition will gener-
ate similar result. Thus, the SPA-MSF model must be built 
with consistency analysis of time series data. The overall 
trend of buried depth over time is shown in Fig. 1 and the 
trend line slanting rate is –6.7 × 10–4 according to linear regres-
sion analysis of time series of monthly groundwater depth 
at Shandanqiao observation well during 1981–2002. The 
result shows that groundwater depth series at Shandanqiao 
observation well achieves a dynamic balance with good 
consistency.

In the meanwhile, change-point locations at Yingluoxia 
Station, a major hydrologic control station dividing the 
upstream and midstream of Heihe River trunk, during 
long-series runoff process can be a basis data of dynamic 
groundwater depth in Zhangye basin along Heihe River [12]. 
A study by Zou et al. [12] adopts both residual mass curve 
and rank test to identify the changing points of groundwater 
depth along Heihe River during 1947–2006 and then verify 
their veracity by Brown-Forsythe method, sequential clus-
tering method and Slide-F-Test. The mathematical statistics 
shows that 1959 and 1979 are the time points when hydrolog-
ical run-off of Heihe River changed.

Therefore, it keeps a consistency in time series when 
choosing monthly shallow groundwater depth data during 
1981–2002 to build SPA-MSF model and to predict the 
monthly groundwater depth during 2003–2004. It meets the 
premise of similarity forecast and is feasible in theory.

4.2.2. Intra-annual dynamic prediction of groundwater depth

SPA-MSF model for monthly groundwater depth values 
in 2003 is built on monthly time series of 1981–2002; SPA-
MSF model for monthly groundwater depth values 2004 is 
built on monthly time series of 1981–2003 and particularly, 
the monthly groundwater depth data in 2003 should be the 
measured values so as to maximize the effectiveness of mea-
sured value. Limited by the article length, this thesis takes the 
groundwater depth in January 2004 as an example to specify 
the prediction process of groundwater level based on SPA 
and maximum similarity forecast.

1. Use January data during 1981–2003 to build 18 sets 
(A1~A18) and current Set An + 1 (A19) (Table 1). For example, 

Fig. 1. Time series of groundwater depth at Shandanqiao 
observation well (1981–2002).
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Set A1 = (5.40, 5.37, 5.30, 5.36, 5.54) corresponds to January 
data during 1981–1985, and the subsequent value 
x(6) = 5.66 corresponds to groundwater depth value of 
January in 1986, and so on.

2. Classify and symbolize the same element xj(t) upon level 
in Set At(t = 1, 2, …, 18) through mean-standard deviation 
method. See Table 2 for the calculation results of mean 
value Xj and standard deviation Sj of xj(t).

3. Symbolize the current Set An + 1(A19) = (5.54, 5.49, 5.43, 
5.26, 5.36) to A19 = (4, 3, 3, 1, 2) according to the classi-
fication criteria established based on the table. Then, 
respectively, set pair of A19with A1, A1, …, A18 and calcu-
late the connection number. For example, the detailed 
calculation process of connection number of Set A19 and 
Set A12 is: A12 = (5.60, 5.39, 5.29, 5.44, 5.48) and symbol-
ize it to A12 = (4, 2, 2, 3, 3). Compare and analyze the 
similarities and differences of matching elements in 
set pair H(A19, A12), and then the number of identical 
symbols (identity), symbols with one-level difference 
(partial difference), symbols with two-level difference 
(whole difference), symbols with three-level differ-
ence (inverse difference) and symbols with four-level 
difference (contrariety) are, respectively, 1, 3, 1, 0 and 0. 
Finally calculate the connection degree of set pair H(A19, 
A12) and the result is µt(A19, A12) =

1
5

3
5

1
5

0 01 2 3+ + + ⋅ + ⋅I I I J .
4. Set I1 = 0.5, I2 = 0, I3 = –0.5 and J = –1 and then calculate 

connection degree µt(A19, At) of each set pair and get 
Set A10, A11 and A15 which are the most similar (with the 
largest connection number) with current Set An + 1(A19) 
(Table 3).

5. According to formula (1), the predictive value x(24) of 
January groundwater depth in 2004 based on SPA-MSF 
model is easily calculated to be 5.44 m. And, the predic-
tive values of groundwater depth in other months during 
2003–2004 could also be worked out in a similar way. 
The results are shown in Table 4. Figs. 2 and 3 visually 
show the monthly predictive value and measured value 
of groundwater depth during 2003–2004 based on SPA-
MSF model.

Table 4 shows that in the fitting sequence of the predicted 
and measured values of groundwater depth in the total 24 
months of 2003 ~ 2004, the relative error |δ| is all within 20%, 
which complies with the requirements of the Standard for 
Hydrological Information and Hydrological Forecasting (SL 
250-2000) [13]. The number of |δ| ≤ 5% is 12, accounting for 
50%; the number of 5% < |δ| ≤ 10% is 7, accounting for 29.2%; 
the number of 10% < |δ| ≤ 15% is 3, accounting for 12.5%; 
the number of 15% < |δ| ≤ 20% is 2, accounting for 8.3%. 

Moreover, it can be seen from Figs. 2 and 3 that the 
monthly predicted value and measured value of the ground-
water depth at Shandanqiao in 2003 ~ 2004 using dynamic 
SPA-MSF model have good goodness of fit and both show a 
strong tendency, that is, the groundwater depth reaches the 
maximum in July each year, which is dominated by the artifi-
cial mining, and the groundwater depth reaches the minimum 
in September when the surface water supplies the shallow 
groundwater. The average absolute error of groundwater 
depth is 0.26 m; the minimum absolute error was 0.04 m only 
while the maximum absolute error reached 0.70 m in August 
of 2003 and 0.87 m in August of 2004, which was because 
August is between the peak (July and September), and in this 
period, the groundwater recharge-runoff-discharge system 
shows more complicated properties under the influence of 
human activities, which correspond to the sudden change of 
the random factor caused by the peak shift. The model thus 
produces a large systematic error.

4.2.3. SPA-MSF model verification

The validity and reliability of the model can be verified 
through the analysis of the absolute error, relative error and 
percentage of eligible points of the predicted value and mea-
sured value from the established groundwater level time 
series model. In this paper, the posterior variance test method 
is used to verify the validity and reliability of the model [14]. 
The posterior variance test is performed with the monthly 
measured data of the groundwater depth of Shandanqiao 
observation well in 2003 ~ 2004 and the predicted data of 
PA-MSF model as the examples, and the test result is shown 
in Table 5.

It can be obtained from Table 5 that the value of C is 
smaller than 0.35 and the small error probability P is greater 
than 0.9 when the SPA-MSF method is used in the prediction 
of groundwater depth of Shandanqiao observation well in 
2003 ~ 2004. The model has good generalization ability and 
so the prediction accuracy is high.

Table 1
Table of sets constituted by groundwater level time series

Set Set element Subsequent value

A1 x(1) x(2) x(3) … x(m) x(m + 1)
A2 x(2) x(3) x(4) … x(m + 1) x(m + 2)
… … … … … … …
A(n – m) x(n – m) x(n – m + 1) x(n – m + 1) … x(n – 1) x(n)
An + 1 x(n – m + 1) x(n – m + 2) x(n – m + 3) … x(n) x(n + 1)

Table 2
Prediction accuracy grades by mean-standard deviation method 

Prediction accuracy grades Xj Sj

x1 5.463 0.209
x2 5.471 0.209
x3 5.477 0.207
x4 5.484 0.203
x5 5.479 0.208
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4.3. Result analysis

(1) The five-element connection degree model proposed 
in this paper characterizes the complex nonlinear relationship 

of the identical degree, different degree and contrary degree 
of H(An +1, At). Uncertainties can be quantitatively expressed. 
For example, in the groundwater depth prediction for 
Shandanqiao observation well in January of 2004 (Table 4), 
the IDC connection degree vector (0.6, 0.2, 0.2, 0, 0) of the set 
An + 1(A19) and the set A15 indicates under the level of the stan-
dard deviation of the mean of the corresponding elements, 
the identical degree of the elements with the same level in 
the set H(A19, A15) is 0.6, the different degree of the elements 
with the difference level of 1 is 0.2, the different degree of the 
elements with the difference level of 2 is 0.2, and the different 
degree of the elements with the difference level of 3 and the 
contrary degree of the elements with the difference level of 4 
are both 0.

(2) The SPA-MSF model measures the similarity between 
historical samples of time series of groundwater level from the 
perspective of IDC connection degree and takes the ground-
water level of the most similar historical samples as the pre-
dicted value of the groundwater level in the set month (year), 
providing a novel research idea for the dynamic prediction of 
groundwater level. In addition, the groundwater depth SPA-
MSF model improves the traditional statistical forecasting 
model, that is, the form of forecasting function changes with 
the change of historical data. Therefore, the prediction model 

Table 3
Similar set and connection degree (number) of Set A19

Set x1 x2 x3 x4 x5 Mean value within 
the Set

Subsequent  
value

Connection Degree 
Vector

Connection  
Number

A10 5.56 5.64 5.60 5.39 5.29 5.49 5.44 (0.4, 0.6, 0, 0, 0) 0.7
A11 5.64 5.60 5.39 5.29 5.44 5.47 5.48 (0.4, 0.6, 0, 0, 0) 0.7
A15 5.44 5.48 5.44 4.83 5.54 5.35 5.49 (0.6, 0.2, 0,2, 0, 0) 0.7
A19 5.54 5.49 5.43 5.26 5.36 5.41 5.12 – –

Table 4
Monthly predictive value vs. measured value of groundwater depth during 2003–2004 at Shandanqiao observation well based on 
SPA-MSF model

Year Project Month 
1 2 3 4 5 6 7 8 9 10 11 12

2003 Measured value (m) 5.36 5.43 5.47 5.58 5.47 5.55 5.99 4.60 4.01 4.90 4.53 5.17
Predictive value (m) 5.54 5.62 5.66 5.64 5.43 5.35 5.52 5.30 4.16 5.06 4.96 5.49
Absolute error (m) 0.18 0.19 0.19 0.06 –0.04 –0.20 –0.47 0.70 0.15 0.16 0.43 0.32
Relative error (%) 3.38 3.58 3.53 1.17 –0.64 –3.52 –7.83 15.19 3.82 3.22 9.54 6.21

2004 Measured value (m) 5.12 5.32 5.38 5.49 4.82 5.48 6.46 4.45 3.82 3.95 3.87 4.62
Predictive value (m) 5.44 5.54 5.67 5.64 5.38 5.34 5.99 5.32 3.86 4.26 4.36 5.15
Absolute error (m) 0.32 0.22 0.29 0.15 0.56 –0.14 –0.47 0.87 0.04 0.31 0.49 0.53
Relative error (%) 6.23 4.19 5.35 2.81 11.66 –2.54 –7.26 19.66 1.05 7.93 12.75 11.50

Fig. 2. Comparison of the predicted value and the measured 
value of groundwater depth of Shandanqiao observation well in 
2003 month by month.

Fig. 3. Comparison of the predicted value and the measured 
value of groundwater depth of Shandanqiao observation well in 
2004 month by month.

Table 5
Posterior variance test result of SPA-MSF

Year 2003 2004

S1 0.5332 0.7636
S2 0.1825 0.2207
C 0.3422 0.2891
P 0.9167 1
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based on the maximum similarity between the samples meets 
the actual evolution of the groundwater system. Table 4 
shows the application of SPA-MSF model has high precision 
in the prediction of groundwater depth from the perspective 
of absolute error – relative error and meets requirements of 
relevant specifications. Figs. 2 and 3 show that the predicted 
value and the measured value have a good goodness of fit 
and the tendency of the month of the maximum depth and 
the month of the minimum depth are basically consistent, 
meeting the characteristics of the recharge-runoff-discharge 
regime of groundwater and dynamic changes. Generally 
speaking, the theoretical basis of SPA-MSF method for pre-
dicting groundwater level is reasonable, and the calculation 
process is simple and effective, so it has a good application 
prospect in time series analysis and prediction.

5. Conclusion

The application of the SPA-MSF in the dynamic predic-
tion of groundwater level proposed in this paper describes 
the similarity between samples in quantitative form. The 
key to improving the precision of dynamic prediction of 
groundwater level is how to quantify the connection degree 
more accurately and objectively. However, the value of the 
coefficient I with uncertain difference is worth exploring in 
depth. This chapter focuses on the application study of the 
SPA in the dynamic prediction of groundwater level. For 
convenience, the values of the coefficients I1, I2, and I3 with 
uncertain difference are, respectively, –0.5, 0 and 0.5 using 
the special value method. But the special value method may 
cause the relative error higher and the prediction accuracy 
lower in the dynamic forecast of groundwater level. Taking 
the prediction of the depth value of Shandanqiao observation 
well in August of 2004 as the example, the absolute error is 
0.87 m and the relative error reaches 19.66%. The maximum 
similarity (correlate) between the historical samples is 0.4, 
but it is debatable whether the correlate 0.4 is the maximum 
similarity. Therefore, the triangular fuzzy number method 
[15], the trapezoidal fuzzy number method [16] and Markov 
theory of optimization of coefficients with uncertain differ-
ence and other methods proposed in a study by Liu et al. 
[4] provide theoretical guidance for further research on the 
reasonable value of I. At the same time, this chapter classifies 
and symbolizes each element in set At based on mean stan-
dard deviation method, and the identical degree, different 
degree and contrary degree of the set pair H(An + 1, At) are 
defined on this basis. However, there is a lack of a solid scien-
tific foundation and an in-depth exploration of the principle 
of set pair analysis.
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