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a b s t r a c t
Ag-ZnO nanocomposites were synthesized in an effective manner to produce uniformly structured 
nanowires. These nanocomposites were then used for mercury(II) reduction. Synthesis conditions, 
heat treatment, and other factors that affect the structure properties of the nanocomposite were 
extensively studied to optimize the synthesis conditions. Ag-ZnO nanocomposites were prepared by 
a sol-gel route. The specific surface area values for ZnO (Z), 0.4 wt % Ag-ZnO (AGZ-0.4), 0.8 wt % 
Ag-ZnO (AGZ-0.8), 1.2 wt % Ag-ZnO (AGZ-1.2) and 1.6 wt % Ag-ZnO (AGZ-1.6) nanocomposites 
were determined to be 60, 56, 53, 50 and 48 m2/g, respectively. The reduction of mercury(II) under 
visible light was used to study the photocatalytic performance of the nanocomposites. In terms of 
photocatalytic performance for mercury(II) reduction, AGZ-1.2 outperforms AGZ-1.6 by 0.99 times, 
AGZ-0.8 by 1.2 times, AGZ-0.4 by 1.98 times, and Z by 24.75 times.
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1. Introduction

Many industries, such as the electronic, electrical indus-
try and chlorine-alkali industry, use mercury. Mercury 
compounds are used as catalysts in petrochemical and 
chemical industries for many processes, such as dehydroge-
nation, hydrogenation, chlorination, oxidation, sulfonation, 
and plastics production [1]. The toxicity of mercury com-
pounds is very high. Mercury compounds affect the central 
nervous system in both humans and animals [2]. Mercury 
compounds cause pollution to human health. Many of the 
fisheries are contaminated by a high level of mercury due 
to inhalation of mercury vapor through fish consumption 
[3,4]. To protect the populations from mercury poisoning, 
most governments on Earth have suggested safe levels for 
fish consumption and also adopted seafood consumption 
advisories [5]. Additionally, the rate of natural degrada-
tion for mercury is very low. Therefore, the contamination 
by mercury must be removed. The most famous methods 
used for removal of mercury(II) are based on adsorption, 

ion exchange, reduction and precipitation as sulfide [1,6,7]. 
Recently, a photocatalysis process has been used for removal 
of mercury using titanium dioxide as photocatalyst [8–12]. 
In this process, the removal of mercury was realized by con-
version of divalent mercury species to elemental mercury 
via a reduction process using photogenerated electrons in 
titanium dioxide [10,12]. Additionally, no removal of mer-
cury was found in the absence of titanium dioxide and 
presence of ultraviolet (UV) light [10,12]. In the presence of 
methanol, formic and citric acid as an organic scavenger, the 
removal of mercury was increased due to the scavenger-in-
duced prevention or reduction in e−–h+ pair recombination 
[13]. Although, TiO2 is a well-known photocatalyst, its 
commercialization is hindered by two problems: first, is its 
absorption in the UV region and second the agglomeration 
of nanoparticles [14]. Many methods have been used to over-
come these two problems. One such method is to convert the 
absorption of titanium dioxide from the UV region to the 
visible region by doping of metals or nonmetals [15–28]. In 
this work, the agglomeration of zinc oxide was overcome by 
preparing zinc-oxide nanowires. The wide bandgap of zinc 
oxide was overcome by silver doping zinc oxide. Zinc oxide 
and Ag-ZnO nanowires were characterized using many 
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different characterization techniques and the photocatalyst 
performance was studied for the reduction of mercury 
species. 

2. Experimental

2.1. Preparation of ZnO nanowires

0.3 mol of zinc methoxide is dissolved in deionized water 
(10 mL) and 30 mL of methanol followed by the addition of 
ethylene glycol and citric acid (molar ratio = 4:1) for form-
ing the polymeric matrix. The citric acid to total metal ions 
molar ratio was kept constant at 1:1. Ammonium hydroxide 
solution was used to adjust the solution pH to 8.0. A trans-
parent sol was obtained after continuous stirring of the above 
mixture for 2 h at 303 K. The gel was formed after aging a 
transparent sol at room temperature. ZnO nanowires were 
obtained after drying the gel for 24 h at 353 K followed by 
calcination for 3 h at 873 K.

2.2. Ag-ZnO nanowires

Ag-ZnO nanowires were prepared using a photoas-
sisted deposition method. Different weight percents of sil-
ver nitrate were dissolved in deionized water (100 mL) to 
obtain different weight percent of silver such as 0.4, 0.8, 1.2, 
or 1.6 wt % Ag. Then, 1 g of ZnO was dispersed in an aque-
ous solution of silver nitrate. A UV lamp was used to irra-
diate the obtained mixture for 24 h. The Ag-ZnO nanowires 
were obtained after drying the obtained materials for 24 h 
at 353 K.

2.3. Characterization of the photocatalysts

A JEOL-JEM-1230 transmission electron microscope 
(TEM) was used to obtain the morphology and sample 
dimensions for the prepared materials. To obtain the TEM 
images, samples were ultrasonicated for 30 min after sus-
pension in ethanol. A small portion of the suspended sample 
was dried on a carbon-coated copper grid and loaded into 
the spectrometer.

The structure morphology for ZnO and Ag/ZnO nanow-
ires was measured using a scanning electron microscope 
(SEM) model: JEOL-JSM-5410.

The surface area was calculated from N2-adsorption mea-
surements for the sample at 77 K using a Nova 2000 series 
Chromatech apparatus. Samples were heated at 453 K under 
vacuum for 2 h to complete this measurement.

A Bruker axis D8 X-ray diffraction (XRD) system was used 
to observe the crystalline phase of the nanocomposites. XRD 
was performed by utilizing Cu Kα radiation (λ = 1.540 Å) at 
room temperature. 

A Thermo-Scientific K-ALPHA spectrometer was used 
to obtain X-ray photoelectron spectroscopy (XPS) measure-
ments. A UV-Vis-NIR spectrophotometer (V-570, Jasco, 
Japan) was used to measure ultraviolet-visible diffuse reflec-
tance spectra (UV-Vis-DRS); these spectra were observed at 
room temperature over an absorption range of 200–800 nm. 
The bandgap performance was determined from the observed 
UV-Vis-DRS. A Shimadzu RF-5301 fluorescence spectropho-
tometer was used to record the photoluminescence emission 
spectra (PL).

2.4. Photocatalytic tests

The efficiency of the prepared nanocomposites was tested 
for the reduction of mercury ions. For this purpose, a known 
weight of the photocatalyst was ultrasonically dispersed in 
500 mL of mercury(II) chloride solution with an initial con-
centration of mercury(II) of 100 ppm. The reaction mixture 
was illuminated under artificial visible light produced from 
a 500 W Xenon lamp mounted on a photocatalytic reactor. A 
λ > 420 nm cutoff filter was used and a running water tube 
was exploited to prevent heating, which enabled the reaction 
solution temperature to be kept constant at approximately 
303 K. The sealed quartz reactor was placed 11 cm from 
the light source. Before illumination, dissolved oxygen was 
flushed from the solution by nitrogen for 0.5 h. The illumi-
nation time was set to 1 h for each experiment. After expo-
sure, samples were drawn from the reactor, centrifuged at 
7,000 rpm for 20 min and then finally filtered through a 0.2-
µm Millipore filter to remove any residual particles. A UV/
Vis/NIR spectrophotometer model: V-570, JASCO, Japan 
was used to analyze the remaining mercury(II) following the 
reduction process.

3. Results and discussion

3.1. Characterization of materials

Fig. 1 shows XRD patterns for Z, AGZ-0.4, AGZ-0.8, 
AGZ-1.2, and AGZ-1.6 samples. The broad peaks at 31.8°, 
34.5°, 36.3°, 47.6°, 56.7°, 62.9°, 67.0°, and 68.1° suggest a zinc 
oxide phase structure for Z and AGZ samples. No peaks for 
silver or silver oxide were observed for the AGZ samples 
due to a high dispersion of silver on the zinc oxide surface. 
Additionally, the decrease in intensity of the characteris-
tic peaks of ZnO phase in the spectra for the AGZ samples 
suggests that the doping of silver decreases the crystallite 
sizes in the ZnO phase.

Fig. 2 shows SEM images for Z, AGZ-0.4, AGZ-0.8, AGZ-
1.2, and AGZ-1.6 samples. Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, 
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Fig. 1. XRD patterns for the Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, and 
AGZ-1.6 samples.
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and AGZ-1.6 samples show a nanowire shape. However, 
AGZ-0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples are 
nanowires in shape and also covered by silver. It is clear 
that the addition of silver decreases the size of the ZnO 
nanowires.

Fig. 3 shows TEM images for the Z and AGZ-1.2 sam-
ples. The Z and AGZ-1.2 samples are nanowires in shape. 
The addition of silver to ZnO decreases the size of the ZnO 
sample and silver appears as a dot on the surface of the ZnO 
nanowires.

XPS spectra for Ag3d for the AGZ-1.2 sample are shown 
in Fig. 4. The presence of two binding peaks for Ag3d5/2 and 
Ag3d5/2 at 367.5 and 368.1 eV indicate that the silver is metal-
lic silver [29].

The specific surface area for the Z, AGZ-0.4, AGZ-0.8, 
AGZ-1.2, and AGZ-1.6 samples was also measured. Z, AGZ-
0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples were mea-
sured by a Nova 2000 resulting in values of 60, 56, 53, 50, 
and 48 m2/g, respectively, as shown in Table 1. Therefore, 
the nanowire structure for the zinc oxide increases the BET 
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Fig. 2. SEM images for the Z (a), AGZ-0.4 (b), AGZ-0.8 (c), AGZ-1.2 (d), and AGZ-1.6 (e) samples.
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surface area for zinc oxide. These results show that there are 
two factors affecting the photocatalytic activity of zinc oxide, 
namely the higher surface area due to the nanowire structure 
and the decrease in the bandgap by the doping of silver onto 
the zinc oxide surface as discussed in the next paragraph. 
Additionally, the addition of silver on the zinc oxide surface 
decreases BET by blocking some of the pores in the zinc oxide. 

Fig. 5 shows the UV-Vis spectra for the Z, AGZ-0.4, 
AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples. These data show 
that the ZnO absorbs in the UV region and that the addi-
tion of silver to the zinc oxide nanowires leads to a shift in 
the absorption band for the zinc oxide from the UV region 
to the visible region. The values for the bandgap energies 
were calculated using the UV-Vis spectra measured for the 
Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples. The 
bandgaps for the Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, and AGZ-
1.6 samples are 3.20, 2.80, 2.70, 2.62, and 2.61 eV, respectively 
as shown in Table 2.

Fig. 6 shows PL spectra for the Z, AGZ-0.4, AGZ-0.8, 
AGZ-1.2, and AGZ-1.6 samples. The Z sample shows a high 
PL peak intensity, with the addition of silver to the ZnO 
nanowires decreasing the position and intensity of the PL 
peak. The values for the bandgap energies for the Z, AGZ-
0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples calculated from 
their PL emission spectra are 3.21, 2.81, 2.71, 2.63, and 2.62, 
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Fig. 3. TEM images for the Z (a) and AGZ-1.2 (b) samples.
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Fig. 4. XPS spectra for Ag3d in the AGZ-1.2 sample.

Table 1
BET surface area for the Z and AGZ samples

Sample SBET (m2/g)

Z 60
AGZ-0.4 56
AGZ-0.8 53
AGZ-1.2 50
AGZ-1.6 48
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Fig. 5. UV-Vis spectra for the Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, and 
AGZ-1.6 samples.



K.S. Al-Namshah / Desalination and Water Treatment 123 (2018) 224–229228

respectively. These values are very close to those obtained 
from the UV-Vis spectra as discussed in the previous 
paragraph.

3.2. Photocatalytic performance

As mentioned earlier, the reduction of the mercury ion 
was utilized to test the synthesized photocatalyst. Fig. 7 
shows the effect of the silver weight percent on the mercury 
ion reduction. The photocatalytic reduction of the mercury 
ion with use of the Z sample is very small (4%); this can be 
explained by the fact that the Z sample absorbs only in the 
UV region while the light source used covers the visible 
region. The photocatalytic reduction of the mercury ion with 
use of the AGZ-0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples 
were at 50%, 85%, 99%, and 100%, respectively. It is clear that 
the addition of silver increases the photocatalytic reduction 
of the mercury ion. The AGZ-1.2 sample exhibits superior 
efficiency with an approximately 99% conversion.

The effect of the amount of catalyst added to the reaction 
was also studied. Fig. 8 shows the effect of the dose of the 
AGZ-1.2 photocatalyst on the photocatalytic reduction of 
the mercury ion. By increasing the dose from 0.3 to 0.6 g/L, 
the photocatalytic reduction of the mercury ion increased 
from 65% to 99%, respectively. By increasing the dose of the 
AGZ-1.2 photocatalyst from 0.6 to 1.2 g/L, the reaction time 

required for a complete photocatalytic reduction of the mer-
cury ion decreased from 60 to 30 min, respectively. This may 
be due to an increased number of available active sites due 
to the increased photocatalyst dose. If the dose was raised 
above 1.2 g/L to a value of 1.5 g/L, the reaction time required 
for complete photocatalytic reduction of the mercury ion 
increased from 30 to 55 min. Increasing the dose of the pho-
tocatalyst beyond a certain point may hinder the penetration 
of light to reach all the active sites on the photocatalyst.

A test for the possibility of the reuse of the catalyst was 
also performed. Fig. 9 shows recycling and reuse of the 
AGZ-1.2 photocatalyst for the photocatalytic reduction of the 
mercury ion. This figure shows that the photocatalytic reduc-
tion of the mercury ion remains constant even if the catalyst 
is reused five times, indicating great stability for the AGZ-1.2 
photocatalyst.

Table 2
Bandgap energy for the Z and AGZ samples

Sample SBET (m2/g)

Z 3.2
AGZ-0.4 2.80
AGZ-0.8 2.70
AGZ-1.2 2.62
AGZ-1.6 2.61
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Fig. 6. PL spectra for the Z, AGZ-0.4, AGZ-0.8, AGZ-1.2, and 
AGZ-1.6 samples.
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Fig. 7. Effect of varying the weight percent of silver on photocat-
alytic reduction of the mercury ion.
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Fig. 8. Effect of the dose of the AGZ-1.2 photocatalyst for photo-
catalytic reduction of the mercury ion.
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4. Conclusions

Uniform Z and AGZ nanowire samples were produced 
by a sol-gel method. The reduction of mercury ions was 
utilized to test the synthesized photocatalysts under visible 
light. The values for the specific surface area of the Z, AGZ-
0.4, AGZ-0.8, AGZ-1.2, and AGZ-1.6 samples were deter-
mined to be 60, 56, 53, 50, and 48 m2/g, respectively, which 
indicate that the Z sample shows a higher BET surface area 
compared with the AGZ samples. The Z and AGZ samples 
show a nanowire shape, as determined by TEM. The pho-
tocatalytic performance for the nanocomposites was studied 
by mercury(II) reduction under visible light. In terms of pho-
tocatalytic performance for mercury(II) reduction, AGZ-1.2 
outperforms AGZ-1.6 by 0.99 times, AGZ-0.8 by 1.2 times, 
AGZ-0.4 by 1.98 times, and Z by 24.75 times.
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