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a b s t r a c t
Based on their importance in UV radiation reactions, six main factors (UV wavelength, radiation time, 
radiation intensity, initial patulin concentration, pH, and depth of solution) were chosen to investi-
gate their effects on the photodegradation of patulin in apple washing water (AWW). UV radiation 
with 254 nm lamp could significantly degrade patulin in AWW, while no role on patulin with 365 nm 
lamp. Increasing the radiation time (0–40 min) could significantly reduce patulin in AWW, which 
followed a pseudo-first-order kinetic model. Increasing radiation intensity could also significantly 
decrease patulin in AWW by obeying a zero-order kinetic model. No visible effect of initial patulin 
concentration (25–500 μg/L) on its photodegradation was observed. Patulin was relatively instable 
in acidic or alkalic condition, which was beneficial to increase its photodegradation. Under the same 
radiation conditions, increasing the depth of solution obviously decreased the photodegradation effi-
ciency of patulin. These results will be helpful in developing UV photodegradation equipment of 
patulin and treating AWW.
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1. Introduction

Patulin is a secondary metabolite mainly produced by 
Penicillium expansum, which is frequently found as a post-
harvest contaminant in many fruits and their products 
[1,2]. It is a natural human toxin and therefore has geno-
toxicity, teratogenicity, mutagenicity, embryotoxicity, and 
carcinogenicity [3–5]. The International Agency for Research 
on Cancer (IARC) has classified patulin as Group 3 or as “not 
carcinogenic to humans.” Many countries, including EU 
and USA, have recommended the maximum level of patulin 
permitted in fruit juice is 50 μg/kg [6,7]. 

CAC and FAO have recommended that juice compa-
nies should adopt good agricultural practices, good manu-
facturing practices, and hazard analysis and critical control 
points to reduce the contamination of patulin throughout the 

productive chain of fruit juices [8,9]. And physical (filtering, 
adsorption, and UV radiation), chemical (ozone, ammonia, 
and sulfur dioxide), and biological (yeast fermentation) 
methods have been studied to reduce the level of patulin 
during fruit juice processing [5]. Among these detoxification 
methods, UV radiation has been widely studied to degrade 
patulin in liquid foods or mode systems in recent years 
[10–14]. UV radiation can effectively degrade patulin in 
apple-based foods and its degradation follows the first-order 
reaction model [10,11,14]. Compared with other methods, 
UV radiation has many advantages, such as high detoxify-
ing efficiency, low cost, easy operation, disinfecting role, 
and without residual of hazardous substances [10,15,16]. 
While the detoxifying efficiency of patulin by UV radiation 
can be affected by many factors, such as UV intensity, expo-
sure time, UV wavelength, juice matrix (pH, Brix, glucose, 
sucrose, ascorbic acid, tannic acid, and color), temperature, 
and initial patulin concentration in juices [13,17].

Patulin is easily soluble in water, so washing (especially 
pressure spraying) has been shown to be effective in removing 
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patulin from fruits [18–20]. During the washing process, 
patulin in apples comes into water, which cannot be reused 
or discharged into environment directly before detoxifying 
it. So the objective of this study is to reduce the patulin in 
apple washing water (AWW) by UV radiation and to explore 
the factors influencing photodegradation efficacy of patulin 
in AWW.

2. Materials and methods

2.1. Chemicals and materials

Patulin standard (>98%) was purchased from Sangon 
Biotech (Shanghai, China). HPLC-grade acetonitrile and 
formic acid were purchased from Yuwang company (Dezhou, 
China) and Kemiou chemical reagent company (Tianjin, 
China), respectively.

2.2. UV radiation treatment

The UV radiation unit self-made includes UV lamps 
with different wavelength (Cnlight lamp, 254 nm, 36 W, pipe 
diameter 17 mm, and length 411 mm; Philips lamp, 365 nm, 
36 W, pipe diameter 17 mm, and length 410 mm), glass 
plate with diameter of 11.5 cm and height of 2.5 cm, and an 
adjustable speed magnetic stirrer (Fig. 1).

Stock solution of patulin (5 μg/mL) was prepared with 
purified water and stored at 10°C in refrigerator for further 
use. Patulin solutions with different concentrations obtained 
by diluting the stock solution with AWW were used in the 
UV photodegradation experiments.

Effects of UV wavelength on photodegradation of pat-
ulin were evaluated using the two types of UV lamp earlier 
mentioned, while the UV lamp with 254 nm was used in all 
other remaining tests. Effects of UV radiation intensity on 
photodegradation of patulin were carried out at 1.37, 1.90, 
2.83, 4.31, 5.80, and 6.20 mW/cm2, respectively, which were 
measured by placing the probe of the UV light meter (Model 
UV-254A) on the horizontal position with the upper surface 
of treated water, and each UV intensity on the surface of 
treated water was the average value of three repetitions. The 
different UV radiation intensities were obtained by adjusting 

the distances between UV lamp and upper surface of treated 
water, which corresponded to the distances of 18.0, 12.5, 8.0, 
5.0, 2.0, and 0.5 cm, respectively. Effects of UV radiation time 
on photodegradation of patulin were measured at 10–40 min 
with an interval of 10 min and the radiation time of 10 min 
was used in all other tests. Effects of initial patulin concen-
tration in AWW were evaluated at 25, 50, 100, 150, 200, 250, 
300, 400, and 500 μg/L, respectively. Impacts of solution 
pH on photodegradation of patulin were assessed at 3.08, 
3.50, 4.01, 4.56, 5.02, 6.28, 7.86, and 10.10, respectively. The 
AWW itself exhibited a pH value of 6.28, which was treated 
as one of the eight cases. The other seven initial pH values 
were obtained by adjusting original pH (6.28) of AWW with 
0.1 mol/L of HCl or NaOH solution. Impacts of water depth 
on photodegradation of patulin with and without stirring 
at 200 rpm were assessed at seven different depths (2.4, 4.8, 
7.2, 9.6, 12.0, 14.4, and 19.2 mm), which were obtained by 
changing the volume of water in the same glass plate. All 
experiments were carried out at room temperature with con-
tinuous stirring at 200 rpm.

2.3. Determination of patulin concentration by HPLC

Patulin in purified water was determined using Shimadzu 
LC-20A HPLC system and Waters XBridge C18 column 
(100 × 4.6 mm, i.d. 3.5 μm). 20 μL sample was injected and 
0.1% of formic acid solution/acetonitrile (95:5, v/v) was used 
as isocratic mobile phase with a flow rate of 0.75 mL/min at 
30°C. The detector wavelength was set at 276 nm. For this 
method, the limit of detection was 2.4 μg/L and the limit of 
quantification was 8.5 μg/L. Its average recovery was 97.8% 
and the relative standard deviation (SD) was 1.3%.

2.4. Statistical analysis

Each analysis was carried out in triplicate for each sample 
and all values were expressed as means ±  SD. The differ-
ence between control and UV-treated groups was compared 
by the Student’s t-test using SPSS 18.0 software (SPSS Inc., 
Chicago, IL, USA). The results were considered significant if 
the P values were less than 0.05.

3. Results and discussion

3.1. Effects of UV wavelength and radiation time

UV radiation is classified into three types according to its 
wavelength, that is, UVA (315–400 nm), UVB (280–315 nm), 
and UVC (100–280 nm). Their differences are in their bio-
logical activity and the extent to which they can penetrate 
substance. In the reported literatures, most studies in UV 
radiation detoxification were carried out at 254 nm, which 
was the germicidal wavelength [10–13]. While a multiwave 
emitting lamp was used to degrade patulin at all the wave-
lengths from 255 to 355 nm and reduce the microbial bur-
den at 255 nm [12]. In addition, the 222 nm wavelength pos-
sessed the highest efficiency for patulin reduction in apple 
juice when compared with the reductions at 254 and 282 nm, 
that is, 222 > 282 > 254 nm [21]. In this study, UVA (365 nm) 
and UVC (254 nm) were chosen to degrade patulin in AWW, 
which were also usually used in the food industry to detox-
ify mycotoxins and other hazardous substances in foods and 

Fig. 1. UV radiation unit (1) UV lamp, (2) stirring rod, (3) AWW 
containing patulin, (4) glass plate, (5) magnetic stirrer, and (6) 
shield.
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water [22–24]. Effects of UV wavelength on patulin degrada-
tion are illustrated in Fig. 2. UVC (254 nm) radiation signifi-
cantly reduced the patulin content in AWW (P < 0.01), while 
UVA (365 nm) had not any role on it (P > 0.05) in the time 
range from 10 to 40 min. Patulin has several absorption bands 
ranged from 255 to 350 nm with different molar extinction 
coefficients (ελ), which may cause the photochemical degra-
dation of patulin. Patulin has higher ελ at UVC than UVA, 
which is the reason why UVC has a higher detoxifying effi-
ciency than that of UVA [12]. Therefore, the results in this 
study further verified that UVC can significantly degrade pat-
ulin in AWW compared with UVA (P < 0.01), which was used 
to study the degradation of patulin in AWW in the next work.

For the UV photodegradation of patulin at 254 nm, 
UV radiation time is a very important factor influencing 
the degradation of patulin in AWW. Patulin in AWW was 
degraded from initial concentration of 200.52 ± 2.21 μg/L 
to 44.14 ± 0.40 μg/L (P < 0.01) within 20 min at UV inten-
sity of 4.31 mW/cm2 and reduced by 77.99%. After being 
radiated for 40 min, patulin in AWW was decreased to 
12.55 ± 0.44 μg/L with a degradation efficiency of 93.74%. 
The decomposition of patulin in AWW at different UV radi-
ation times obeyed the pseudo-first-order kinetic model, 
that is, [C]t = [C]0 exp(–kt) or ln([C]t/[C]0) = –kt, where [C]t is 
the concentration of patulin at UV radiation time of t and 
[C]0 is the concentration at time of 0, and k is the first-order 
rate constant. According to the kinetic equation above-men-
tioned, the rate constant k is 0.067 min–1 and the correspond-
ing correlation coefficient (R2) is 0.9980. The similar results 
had been obtained using 253.7 nm UV lamp to degrade 
patulin in model solution, apple cider and apple juice [11]. 
They achieved 56.5%, 87.5%, and 94.8% reduction of patulin, 
respectively, in the media mentioned above initially spiked 
by 1.0 mg/L of patulin with UV exposure for 40 min at UV 
intensity of 3.00 mW/cm2.

3.2. Effect of UV radiation intensity

UV radiation intensity is a very important factor influenc-
ing patulin degradation. It was reported that UV exposure of 
14.2–99.4 mJ/cm2 resulted in a significant and nearly linear 
decrease in patulin contents, and patulin levels decreased by 
9.4%–43.4% in the range of UV doses tested [10]. The simi-
lar results were obtained using the UV doses ranged from 0 
to 8 J/cm2 to degrade patulin in a model apple juice system 
and in apple juice [13]. In this study, the effects of UV radi-
ation intensity on patulin decomposition were conducted 
under six levels by adjusting the distances between UV lamp 
and upper surface of treated AWW. The results are shown 
in Fig. 3. Increasing UV intensity significantly improved the 
decomposition efficiency of patulin in AWW (P < 0.01). At the 
UV intensity of 4.31 mW/cm2 for 10 min of exposure, the pat-
ulin was reduced from 199.38 ± 4.10 μg/L to 91.29 ± 2.64 μg/L, 
decreased by 54.22%, and to 38.35 ± 1.21 μg/L at 6.20 mW/cm2 
with a degradation rate of 80.77%. The UV radiation intensity 
was directly proportional to the decomposition of patulin 
in AWW (R2 = 0.9950) and it followed a zero-order kinetic 
model (Fig. 3). Therefore, reducing the distance between UV 
lamp and upper surface of treated samples contributes to 
improve the photodegradation efficiency of patulin with the 
same UV lamp.

3.3. Effects of initial patulin concentration

Based on the high contamination rates and different 
levels of patulin in AWW, the initial patulin concentration 
in AWW was set in the range of 25–500 μg/L. The effects 
of initial patulin concentration on its decomposition are 
presented in Fig. 4. The degradation efficiencies of patu-
lin in AWW with various concentrations ranged from 25 to 
500 μg/L were almost similar (P > 0.05), which were in the 
range from 55.17% to 61.05% within 10 min of UV radiation. 
Therefore, the initial patulin concentration does not have a 

Fig. 2. Effects of UV wavelength and radiation time on photo-
degradation of patulin in AWW. UV radiation conditions: 
radiation intensity was 4.31 mW/cm2, pH of AWW was 6.28, 
solution depth was 2.4 mm, and stirring at 200 rpm. (Different 
letters indicate the significant difference at P < 0.01 level between 
UV radiation times and the fitted curve equation is [C]t = 200.52 
exp (–0.067t), R2 = 0.9980).

Fig. 3. Effects of UV radiation intensity on photodegradation of 
patulin in AWW. UV radiation conditions: radiation time was 
10 min, pH of AWW was 6.28, solution depth was 2.4 mm, and 
stirring at 200 rpm. (Different letters indicate the significant 
difference at P < 0.01 level between UV radiation intensities).
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significant effect on its degradation, which is consistent with 
the reported results [13].

3.4. Effects of solution pH

Results from many reported literatures showed that 
patulin was stable in an acidic environment and was not 
destroyed during thermal processing [25,26], while it was 
instable at high pH [27]. The half-life of patulin held at 25°C 
with pH 6.0 and 8.0 were 55 and 2.6 d, respectively [28]. 
However, its stability was reduced at acidic pH, especially 
the presence of ascorbic acid [29]. Tikekar et al. explored the 
effect of pH (3.0–3.6) on UV induced degradation of patu-
lin (1,000 μg/L) and found that no significant differences in 
degradation efficiency of patulin in apple juice and model 
system due to the slight difference in pH [13]. While some 
researchers reported the photodegradation of patulin was 
higher at low pH (4.0 and 3.0) than at high pH (7.0 and 6.0) 
[12,14]. In this study, photodegradation efficiencies of pat-
ulin in acidic and alkalic conditions were all significantly 
increased (P < 0.05) and it was relatively stable to UV radi-
ation at nearly neutral pH (Fig. 5). The reason is that UVC 
radiation may obviously increase the content of OH free rad-
ical whether in acidic or alkalic conditions, which is a strong 
oxidant and accelerates the degradation of patulin in AWW 
[30,31]. The reasons will need to be further explored in the 
future work.

3.5. Effects of solution depth

It is well-known that UV light has a low power of pen-
etration, especially in the ranges of UVC. So the depth or 
thickness of radiated sample is also an important factor 
influencing the photodegradation of patulin. It was reported 
that the UV radiation (255–355 nm) entering the patulin solu-
tion was absorbed for depths of much less than 1 mm [17]. 
Ibarz et al. modeled the photodegradation of patulin with a 

solution height of 2.4 cm and found that less energy reached 
the bottom than the surface [12]. Fig. 6 depicts the effects of 
AWW depth on the photodegradation of patulin. The results 
verified the UV radiation has a low power of penetration 
and the degradation efficiency of patulin was significantly 
decreased with the increase of solution depth (P < 0.01). For 
the solution depth of 2.4 mm, the patulin was decreased 
from 212.50 ± 1.44 μg/L for the control to 93.80 ± 1.78 μg/L 
and reduced by 55.86% (P < 0.01) at the radiation intensity 
of 4.36 mW/cm2 for 10 min. While for the depth of 14.4 mm, 
it was decreased to 106.54 ± 1.03 μg/L with a reduction of 
49.86% at the same conditions. Based on the low penetration 
power of UVC, it is necessary to reduce the depth of radiated 
solution to the reasonable level for increasing the degrada-
tion efficiency of patulin.

Based on the low power of penetration of UVC radia-
tion, we considered that it was necessary to stir the AWW 
using a stirrer for improving the photodegradation of pat-
ulin. While the results were not same as what we thought 
(Fig. 7). Generally, the photodegradation efficiencies of pat-
ulin were reduced with the increase of AWW depth with 
or without stirring. When the depths of AWW were less 
than 9.6 mm, the degradation efficiencies of patulin with-
out stirring were greater than those of patulin with stirring 
at 200 rpm under the other same UV radiation conditions. 
While the depths of AWW were greater than 14.4 mm, the 
opposite results were obtained. The experiment process was 
investigated carefully and found that the stirring rod used 
to stir AWW has a diameter of 7.0 mm. When the depths of 
AWW were less or slightly greater than the diameter of the 
rod (such as the depth of 9.6 mm), the rod could not com-
pletely agitate the water, and the presence of rod restricted 
the UV photodegradation of patulin. As the depths of AWW 
were far greater than the diameter of the rod, the role of rod 
in improving the photodegradation efficiencies of patulin 
could be obtained.

Fig. 4. Effects of initial patulin concentration on UV photodeg-
radation efficiency of patulin in AWW. UV radiation conditions: 
radiation intensity was 4.31 mW/cm2, radiation time was 10 min, 
pH of AWW was 6.28, solution depth was 2.4 mm, and stirring 
at 200 rpm.

Fig. 5. Effects of pH on UV photodegradation of patulin in AWW. 
UV radiation conditions: radiation intensity was 4.31 mW/cm2, 
radiation time was 10 min, solution depth was 2.4 mm, and 
stirring at 200 rpm. (Different letters indicate the significant 
difference at P < 0.05 level between different pHs of AWW).
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4. Conclusions

UV radiation could effectively degrade patulin in AWW 
and many factors impacted the UV photodegradation of pat-
ulin. UVC could quickly degrade patulin while UVA had 
no any role on it. The photodegradation of patulin in AWW 
was time-dependent and followed the pseudo-first-order 
kinetic model. Increasing the UV radiation intensity obvi-
ously improved the decomposition of patulin, which obeyed 
a zero-order kinetic model. The initial patulin concentra-
tion (25–500 μg/L) did not have a visible influence on its 
photodegradation. Solution pH showed profound impacts 
on photodegradation of patulin. Both acidic and alkalic 
environments could all reduce the stability of patulin in 

AWW, which contributes to increasing the photodegrada-
tion efficiencies of patulin. Based on the low penetration of 
UVC, the depth of AWW should be decreased to a reason-
able level for effective photodegradation of patulin. Stirring 
might greatly improve the UV photodegradation of patulin 
when the depth of water was far greater than the diameter of 
the stirring rod, which could completely agitate the solution. 
The pH of AWW was indirectly responsible for the reduction 
in photodegradation of patulin in it.
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