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a b s t r a c t

Accurate screening of sewer conditions from monitoring data contributes to maintaining their oper-
ations (in terms of water quality and quantity) safe as well as reducing their associated costs (for 
operation and maintenance). This study was designed to assess the performance deterioration in 
sewer systems using a series of data classification tools, namely classical classification and novel 
supervised learning algorithms. The hydraulic data available for four sewer systems at Jinju City in 
Korea in a daily format during the monitoring period of 2013–2017 were provided as example data 
sets to those algorithms, which were evaluated independently with 70% training and 30% test data 
sets randomly divided. A self-organizing map (SOM) with a specialty in extracting hidden patterns 
in data was used to classify the data sets into three warning levels in the absence of any definite 
warning criteria for individual parameters. Our findings showed that three supervised learning 
algorithms achieved comparable performance in predicting warning levels defined from SOM to 
exiting classification algorithm in terms of accuracy and error rate. The network architecture opti-
mized for supervised learning algorithms, in fact, varied significantly depending on the data sets, 
including that with additional variables on top of the original data set. In contrast, exiting classifica-
tion algorithm unexpectedly produced high error rates in case that the hydraulic parameters had low 
coefficient of variation values reaching as high as 16%. Overall, these results demonstrated that novel 
supervised learning algorithms were more universally applicable for the assessment of hydraulic 
and/or water quality conditions in sewer systems than classical classification algorithm, regardless 
of the amount of variability in the data sets.
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1. Introduction

Public health and the environment depend on the sus-
tainability of sewer infrastructure [1–3]. Sewer deficiencies 
resulted from pipe deterioration and failures often led to 
overflows and flooding, exposing the public to diverse 
pollutants (e.g., bacteria, viruses, and inorganic ions) that 
caused water-borne disease outbreaks as well as contam-
inating nearby environmental media (e.g., surface waters, 

soils,and groundwaters) [1,3]. Proper sanitation services 
also enhance the national economy and social welfare by 
reducing the costs for rehabilitation (i.e., repair and renewal) 
and property damages as well as the incidents of untreated 
sewer release to recreational water bodies [3,4]. Previous 
study in the United Kingdom has discovered that a gross 
replacement cost reached as much as 104 billion for 302,000 
km of sewer pipes [4]. The cost spending on water and 
wastewater infrastructure in the United States for 2007 has 
more than doubled since the 1956 estimate of 12.5 billion for 
about 1,300,000 km-long sewer line as of 2009 [3].Therefore, 
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operation and maintenance (O&M) programs are of signifi-
cant importance to sustainable sewer infrastructure. 

Numerical simulation models are capable of describing 
the deterioration or capacity deficiencies of sewer pipes, 
thus providing guidance on implementing O&M and 
safety planning [5]. Factors to affect sewer replacement 
and/or rehabilitation included pipe characteristics (e.g., 
shape, materials, depth, and slope), soil and groundwater 
conditions (e.g., infiltration and groundwater table), sewer 
location (e.g., street and private property), service area 
characteristics (e.g., the number of connections, tributary 
area and meteorological conditions), and so on (https://
www.resourcerecoverydata.org/weffactsheets.htm). Sim-
ulation accuracy was strongly affected by the availability 
of those data, otherwise all important parameter settings in 
the models needed to be optimized through inverse mod-
eling techniques [5]. On the other hand, statistical models, 
in addition to machine learning models, relate monitoring 
data to environmental information available (or even them-
selves) to provide valuable insight into the deterioration 
processes of sewer lines in the absence of full site-specific 
parameters [5–10]. More specifically, statistical models (e.g., 
Cohort survival and Markov chain models as well as logis-
tic regression and discriminant analyses) played an import-
ant role in explaining the uncertainty associated with asset 
deterioration and failure [5]. Conversely, machine learning 
models (e.g., random forest and artificial neural networks) 
were best adopted to identify the sewer line condition in 
discrete classes, which were useful for the short and mid-
term planning processes [5,6]. Note that both models can be 
applicable to either network or pipe levels as well as either 
hydraulic or structural aspects of assessment [5–10].

As compared to earlier studies, this study was motivated 
to assess the hydraulic conditions of sewer pipes using 
classical classification and novel supervised learning algo-
rithms released recently as independent toolboxes which 
were implementable in MATLAB software [11–17]. From 
the (five-year) monitoring data sets observed for four sewer 
systems at Jinju City in Korea, the specific objectives of this 

research were 1) to classify the dynamic hydraulic behavior 
of sewer systems into discrete classes (i.e., warning levels) 
using unsupervised learning algorithm (either provided as 
a parallel tool or available within supervised learning algo-
rithms), to assess the predictive ability of defined classes 
by 2) classification and 3) supervised learning algorithms, 
and 4) to compare their performance under conditions of 
different dimensions of variables as well as different levels 
of variable variability. We hope that this preliminary study 
help address sewer pipes in critical condition for O&M and 
safety planning from the hydraulic and water quality data 
measured in real-time.

2. Materials and Methods

2.1. Data sets at local sewer systems

Fig. 1 shows sewer service areas (i.e., Insa-dong, Chi-
ram-dong, and Sangpyeong-dong) operated by a particular 
private company under the Build-Transfer-Lease (namely, 
BTL) scheme in Jinju City (see Fig. 1a), including one exam-
ple sewer network installed at Insa-dong (see Fig. 1b). The 
company monitored hydraulic and water quality param-
eters at the final outlet of four sewer systems (IS-1, CA-1, 
CA-2, and SP-1) to ensure proper functioning and opera-
tional control of the pipe networks as well as to implement 
a successful maintenance strategy using the simulation 
model Stormwater Management Model (namely, SWMM) 
with monitored data [18]. During the monitoring, the 
hydraulic parameters such as flow rate, velocity, and water 
level were recorded at 10-min intervals, whereas biochem-
ical oxygen demand measured every 2 h was selected to 
rapidly detect and prevent water quality degradation in 
the sewer networks. Table 1 presents the total number of 
data collected at individual sewer networks during the 
five-year monitoring period (between 2013 and 2017). Out 
of the parameters monitored, only hydraulic parameters 
were provided as inputs to both unsupervised [19–22] 
and supervised learning algorithms [14–17], in addition to 

Fig. 1. (a) Four sewer systems monitored in Jinju City and (b) example sewer pipe network at the sewer system MS-1. Note that an 
open circle with blue color in (b) indicates the final outlet of the sewer pipe network, which monitors hydraulic parameters (i.e., flow 
rate, velocity, and water level) in discrete time intervals (i.e., 10 min), at IS-1.
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classification tool [11–13] which was evaluated separately 
to compare its performance against supervised learning. 
While the data set collected from IS-1 recorded the highest 
flow rate and water level among sewer systems, the largest 
velocity was observed in CA-1 (see Table 1). Interestingly, 
IS-1 also showed the largest amount of variation in water 
level, as compared to other monitoring parameters in dif-
ferent sewer systems (compare the coefficients of variation). 
Detailed information on time series data patterns, including 
monitoring devices, is available in the operational reports 
of sewer systems released quarterly [18].

2.2. Data partitioning from unsupervised learning 

The data sets compiled from four sewer systems were 
analyzed in two different steps. The first procedure was 
to partition an entire dataset (of each sewer system) into 
smaller subgroups, i.e., different warning levels, using 
unsupervised learning algorithm. In this step, each data set 
was classified into three warning levels (i.e., the strongest, 
moderate, and weakest warnings) based on similarities 
of hydraulic properties rather than classes assigned arbi-
trarily (by end-users). Note that as there are no strict crite-
ria for determining the degree of warning from individual 
hydraulic parameters, warning levels defined from this pro-
cess play a role in assessing the prediction performance of 
classification and supervised learning algorithms described 
in Section 2.3. However, in case clear standards exist, the 
original data set should be split according to the criteria 
for multiple parameters that are intended to diagnose the 
hydraulic performance (or capacity) of local sewer systems. 
SOM toolbox (version 2.0), downloadable at http://www.
cis.hut.fi/somtoolbox/, was specifically used for grouping 
hydraulic data into three warning levels [19]. The self-orga-

nizing map (SOM), in fact, has gained popularity in robust 
data classification without relying on any prior knowledge 
on data structure as well as in the presence of large noise 
and outliers [19–22]. Default parameter settings, except for 
the range normalization of the raw data, linear initializa-
tion, and batch training, were adopted in the training of 
SOM with MATLAB software (version 2016b). More infor-
mation on theory, algorithms and applications of the SOM, 
including data handling procedures, is introduced well in 
earlier studies [19–22].

2.3.Class prediction from supervised learning 

In the second step, two additional tools, classification 
toolbox (version 5.0) as well as Kohonen and CP-ANN tool-
box (version 3.8), were used to compare the predictive ability 
of warning levels defined from SOM. Those toolboxes, which 
were also implementable in MATLAB, contained a series of 
modules for classifying data patterns in a supervised man-
ner. The current classification toolbox included 8 different 
multivariate models [11–13], whereas 3 supervised learning 
algorithms were embedded in the Kohonen and CP-ANN 
toolbox, along with unsupervised learning algorithm 
Kohonen Map (namely, SOM) [14–17]. Specifically, partial 
least squares-discriminant analysis (PLS-DA) in classifica-
tion toolbox, a variant of PLS regression which projected 
(categorical) dependent and (continuous) independent vari-
ables into new orthogonal axes, was selected for comparison 
to supervised learning algorithms [11]. Counter propagation 
artificial neural network (CP-ANN), supervised Kohonen 
network (SKN), and XY-fused network (XY-F), all of which 
effectively predicted class membership with non-linear 
boundaries, were employed to assign warning levels accord-
ing to hydraulic data monitored [14]. Three supervised 

Table 1
The quality of self-organizing map (SOM) for data sets collected from different sewer systems from January 1, 2013 to December 
31, 2017

Sewer 
systems

Total number 
of data

Mean ± standard deviation Coefficient of 
variation

Quantization 
error

Topographic 
error

Map size

CA-1 1,824 2,776.49 ± 865.82 (F, m3/d)b

2.06 ± 0.24 (V, m/s)
7.15 ± 6.65 (L, cm)

0.31 (F)
0.11 (V)
0.93 (L)

0.019 0.019 18 × 12

CA-2 1,826 2,569.38 ± 409.76 (F, m3/d)
0.58 ± 0.04 (V, m/s)
13.01 ± 1.46 (L, cm)

0.16 (F)
0.06 (V)
0.11 (L)

0.010 0.035 21 × 10

IS-1 1,816 6,526.46 ± 1,489.48 (F, m3/d)
1.14 ± 0.18 (V, m/s)
21.67 ± 47.64 (L, cm)

0.23 (F)
0.16 (V)
2.20 (L)

0.012 0.046 19 × 11

SP-1 1,819 1,472.22 ± 241.55 (F, m3/d)
0.55 ± 0.07 (V, m/s)
12.30 ± 4.94 (L, cm)

0.16 (F)
0.13 (V)
0.40 (L)

0.007 0.229 23 × 9

IS-1_9a 1,816 – – 0.057 0.049 21 × 10

aThe data set included 6 additional variables (i.e., 1- and 2-day antecedent variables for each parameter) derived from 3 original 
variables (i.e., flow rate, velocity, and water level) during the study period at the sewer system IS-1. Note that descriptive statistics of 
this data set are not shown due to their similarity to the original data set. 
bThe capital letters F, V, and L indicate the parameters flow rate, velocity, and water level, respectively.
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learning algorithms slightly differed in that how Kohonen 
and output layers were working together. For example, the 
output layer was attached to the Kohonen layer during the 
training phase for SKN, different similarity distances cal-
culated separately in the Kohonen and output layers were 
merged to search winner neurons for XY-F, and winner neu-
rons in the Kohonen layer were designed to select their corre-
sponding position in the output layer for CP-ANN [14]. The 
data sets were randomly divided into two partitions, 70% for 
training data and 30% for test data. As described in unsuper-
vised learning algorithm, all supervised learning algorithms 
were run using default parameter settings, except for the 
auto-scaling transformation of the raw data and cross-valida-
tion based on venetian blinds with 3 to 5 cancellation groups. 
Note that all supervised learning algorithms adopted for 
this study, including their theories or network architecture, 
are described extensively in literature [11–17]. The toolboxes 
for classification and Kohonen and CP-ANN are available 
at http://michem.disat.unimib.it/chm/download/classi-
ficationinfo.htm and http://michem.disat.unimib.it/chm/
download/kohoneninfo.htm, respectively.

3. Results and discussion

3.1. Determining warning levels from unsupervised learning

Fig. 2 displays the results of data partitioning to deter-
mine warning levels in different sewer systems, CA-1 for 
(a), CA-2 for (b), IS-1 for (c), and SP-1 for (d).The left panels 
of individual figures show Davies–Bouldin (D-B) index-
which is used to determine the optimal number of clusters 
in each data set, whereas subgroups (i.e., groups 1 to 3) sep-
arated by D-B index are exhibited in the right panels. Note 
that the SOM algorithm assigns random colors to individ-
ual subgroups that are ranked from weakest (for group 1) 
through moderate (for group 2) to strongest warning levels 
(for group 3) in terms of hydraulic parameters in the right 
panels of the figures. From the left panels of the figures, it 
was shown that while D-B index varied slightly accord-
ing to the number of clusters from 2 to 7, three subgroups 
were sufficient enough to explain the variation in hydraulic 
parameters observed in different sewer systems during the 
monitoring period. This implied that individual data sets 
were successfully categorized into three warning levels 

Fig. 2. The partitioning results of data sets for four sewer systems, (a) CA-1, (b) CA-2, (c) IS-1, and (d) SP-1, using the unsupervised 
learning algorithm SOM. Note that D-B index in the left panels of each figure is the abbreviation for the Davies–Bouldin index 
which assesses the quality of resulting clusters (i.e., the lower the better). Different colors in the right panels of each figure were 
randomly assigned to individual groups rather than relying on groups ranked from weakest to strongest based on three hydraulic 
parameters.
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by SOM. In addition, from the right panels of the figures, 
total neurons (or cells) allocated to group 3 (i.e., the stron-
gest warning level) were found to be always less than those 
of other groups in the component plane of SOM, although 
the relative amount of cells occupied differed from group 
to group. It should be noted that SOM yields the lowest 
quantification and topographic errors when the map size is 
determined automatically in the given data sets under three 
subgroups partitioned (see Table 1). There is no consider-
able change in the map size of SOM, except for quantifi-
cation and topographic errors, when additional antecedent 
(hydraulic) variables were added to the original data set 
(compare IS-1 vs IS-1_9 in Table 1).

3.2. Prediction of warning levels by classification toolbox

Fig. 3 shows the performance of PLS-DA, embedded in 
classification toolbox, in two sewer systems, CA-2 and SP-1.

The scaled data averaged for each class are exhibited in Fig. 
3a, where warning levels are inversely assigned to class 
labels only in classification toolbox (that is, class 1 is equiv-
alent to group 3). As displayed in the figure, the hydrau-
lic parameters at CA-2 were effectively split into separate 
classes by auto-scaling process, among which class 1 (i.e., 
the strongest warning level) was characterized by high val-
ues of flow rate, velocity, and water level. This was also con-
firmed from receiver operating characteristic (ROC) curves 
that all classes (i.e., warning levels) were separated clearly 
when considering specificity and sensitivity (Fig. 3b). Fig. 3c 
illustrates score plot of the first principal component (PC) 
versus Q residuals at CA-2. Each neuron arranged in SOM 
was represented with colored circles according to classes 
in score plot, where asterisk symbols represented the test 
data sets. Except for very few outliers and overlap cases in 
the test data sets, all training and test data were allocated 
within class boundaries represented by solid line in differ-

Fig. 3. The performance of the classification algorithm PLS-DA for two different data sets. Shown in (a) is the mean of scaled data 
for three monitored variables in CA-2 (used as inputs to the algorithm), whereas (b) and (c) display their corresponding outputs, 
the ROC curves of the classes and score plot, respectively. (d) is the score plot resulted from the data set SP-1. The solid circles and 
asterisk symbols in (c) and (d) indicate the training and test data sets, respectively.
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ent colors, indicating that PLS-DA predicted warning lev-
els correctly for the data set of CA-2. Shown in Fig. 3d is 
also score plot for the first two PCs at SP-1, which implies 
that warning levels are addressed accurately by PLS-DA, 
excluding extremely a few cases. Note that while only the 
first PC accounting for 68% of the total variance is selected 
for CA-2, 67.11% of the variance is explained by two PCs 
for SP-1.

3.3. Prediction of warning levels by Kohonen and CP-ANN 
toolbox

Fig. 4 illustrates the prediction results of warning levels 
by two supervised learning algorithms, CP-ANN (at CA-1) 
and XY-F (at CA-2), which are obtained based on optimiza-
tion of network architecture (e.g., the number of neurons 
and epochs) from genetic algorithms. Note that unlike 
PLS-DA, class labels in supervised learning are correctly 
provided to individual warning levels (in other words, class 

1 corresponds to group 1). As can be seen in Fig. 4a, the ROC 
curves for all classes are very closely located in the top-left 
corner, indicating ideal performance that three warning lev-
els at CA-1 are accurately predicted by CP-ANN with little 
or no false alarms. However, the ROC curves in XY-F are 
slightly apart from the top-left corner for some classes (e.g., 
classes 2 and 3), implying that the prediction performance 
of XY-F at CA-2 is slightly lower than that of CP-ANN at 
CA-1. It turned out from the previous studies [14,17] that the 
network size and the number of training epochs required 
(for supervised learning algorithms) increased with the size 
and color intensity of bubbles (i.e., circles), respectively. In 
addition, the best architecture ensuring relatively good pre-
diction performance as well as high frequency selection (by 
genetic algorithms) should be found on the top-right side 
in the plot of optimization results (see bubbles in red color 
at Figs. 4c and d). Based on these findings, the optimal net-
work size and epoch value determined were 14 × 14 and 100 
for CP-ANN at CA-1 as well as 16 × 16 and 50 for XY-F at 
CA-2, respectively. 

Fig. 4. The performance of two supervised learning algorithms in different data sets. Shown in (a) and (b) are the ROC curves of 
the classes and optimization results of CP-ANN for the data set CA-1, respectively. (b) and (d) represent those of XY-F for the data 
set CA-2.
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3.4. Performance comparison between different tool boxes

Table 2 compares the performance of PLS-DA and three 
supervised learning algorithms (i.e., CP-ANN, SKN, and 
XY-F) at all monitored sewer systems. In the table, the per-
centage of not-assigned samples is only given for PLS-DA 
because of the difference in output results (directly pro-
vided) between tool boxes. The table also includes the 
performance assessment results of all prediction algo-
rithms for the data set (namely, IS-1_9) which incorpo-
rates 6 antecedent variables on top of the original data set 
(IS-1, see also Table 1). From the table, it was found that 
all tested algorithms showed excellent prediction perfor-
mance (of three warning levels), reaching generally over 
95% accuracy, during the fitting and either validation (for 
PLS-DA) or cross-validation processes (for CP-ANN, SKN, 
and XY-F), except for a few cases. In addition, their per-
formance appeared to be maintained successfully during 
the prediction step (i.e., (external) test data) although they 
suffered from a slight decrease in performance (see Sec-
tion 2.3). The highest error rate only occurred for PLS-DA 
at CA-2, which reached a maximum of 0.360 (36%) during 
the prediction phase. In contrast, the remaining supervised 
learning algorithms showed slightly lower error rates, 
which reached as high as 0.170 (17%) for XY-F at SP-1, than 
PLS-DA. The high error rates of PLS-DA at CA-2 appeared 
to be associated with low coefficients of variation in the 

hydraulic parameters, as compared to those noticed in 
other data sets (see Table 1). All these results demonstrated 
that while the performance of all prediction algorithms 
slightly varied depending on the data sets, 1) we observed 
an abrupt increase in error rate for PLS-DA and 2) CP-ANN 
generally outperformed its peers (i.e., SKN and XY-F) in 
terms of accuracy and error rate.

Fig. 5 also provides more detailed information on two 
example outputs for PLS-DA and SKN at the modified data 
set IS-1_9. As shown in Fig. 5a, the error rate and percent-
age of not-assigned samples were not significantly reduced 
when PLS-DA included more additional variables. Only a 
few outliers were observed for PLS-DA (see Fig. 5c), but 
those minor errors seemed to be truncated in the error rate 
observed during the prediction phase (see Table 2). Like 
PLS-DA, SKN also showed outstanding prediction perfor-
mance of three warning levels (see Fig. 5b) when its archi-
tecture was optimized with respect to the network size of 12 
× 12 and epoch value of 100 (see Fig. 5d). The optimal archi-
tectures of PLS-DA as well as CP-ANN, SKN, and XY-F for 
all data sets are summarized in Table 3. Inclusion of addi-
tional variables did not help improve the prediction per-
formance in terms of accuracy and error rate (for all tested 
algorithms, see Table 2), but appeared to reduce the number 
of neurons and epochs (required for three supervised learn-
ing algorithms) remarkably, as displayed in the table.

Table 2
Performance assessment of classification versus supervised learning algorithms for data sets collected from different sewer systems 
plus that with additional variables

Sewer 
systems

Algorithms Fitting Validation/Cross-validation Prediction

Error 
rate

Accuracy Not-assigned Error 
rate

Accuracy Not-assigned Error 
rate

Accuracy Not-assigned

CA-1 PLS-DA 0 0.990 0.070 0.010 0.990 0.070 0.010 0.990 0.080
CP-ANN 0.021 0.992 – 0.054 0.978 – 0.077 0.923 –
SKN 0.015 0.990 – 0.075 0.971 – 0.098 0.902 –
XY-F 0.080 0.973 – 0.090 0.942 – 0.115 0.885 –

CA-2 PLS-DA 0.350 0.970 0.070 0.350 0.980 0.080 0.360 0.960 0.070
CP-ANN 0.028 0.974 – 0.079 0.974 – 0.020 0.980 –
SKN 0.065 0.950 – 0.070 0.943 – 0.103 0.897 –
XY-F 0.059 0.929 – 0.124 0.937 – 0.129 0.871 –

IS-1 PLS-DA 0 1 0 0 1 0 0 1 0.010
CP-ANN 0 0.999 – 0.001 0.999 – 0.042 0.958 –
SKN 0.001 0.999 – 0.007 0.995 – 0.003 0.997 –
XY-F 0.003 0.998 – 0.005 0.996 – 0.042 0.958 –

SP-1 PLS-DA 0.040 0.970 0.080 0.040 0.970 0.080 0.050 0.960 0.080
CP-ANN 0.011 0.995 – 0.050 0.987 – 0.063 0.937 –
SKN 0.056 0.972 – 0.071 0.974 – 0.071 0.929 –
XY-F 0.102 0.978 – 0.072 0.985 – 0.170 0.830 –

IS-1_9 a PLS-DA 0 1 – 0 1 0 0 1 0
CP-ANN 0 1 – 0 0.999 – 0.048 0.952 –
SKN 0 1 – 0.002 0.998 – 0.101 0.899 –
XY-F 0 1 – 0 0.999 – 0.101 0.899 –

aThe data set included 6 additional variables on top of 3 original variables at IS-1 (see Table 1).
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4. Conclusion

This study aimed to identify the best classification algo-
rithm(s) in screening the hydraulic conditions at local sewer 
systems. The data sets, recorded at 10-min intervals for 
four sewer systems (CA-1, CA-2, IS-1, SP-1) at Jinju City in 
Korea during the five years between 2013 and 2017, served 
as inputs for classification (PLS-DA) and supervised learn-
ing algorithms (CP-ANN, SKN, and XY-F) after aggregated 
into the daily average. The aggregated data sets were also 
provided to the unsupervised learning algorithm SOM to 
classify each data set into three warning levels (from weak-
est through moderate to strongest), in the absence of any 
guidelines for classification criteria for individual hydraulic 
parameters (i.e., flow rate, velocity, and water level). A sum-
mary of our main findings are follows.

•	 The unsupervised learning algorithm SOM allowed 
the data sets to be separated into three homogenous 

sub-groups (namely, warning levels) based on simi-
larities of hydraulic parameters. The map size in SOM 
was still maintained even if the data set included more 
antecedent variables. 

•	 PLS-DA achieved good classification results in pre-
dicting three warning levels even though some outli-
ers and overlapping samples between different classes 
(i.e., warning levels) were observed for 30% of the test 
data. A couple of PCs were selected to elucidate a large 
amount of variation in the data sets.

•	 The prediction performance of CP-ANN (at CA-1) was 
superior to that of XY-F (at CA-2), when considering 
ROC curves for three classes (i.e., warning levels). The 
network size and epoch value determined by the opti-
mization process were sensitive to supervised learning 
algorithms as well as data sets.

•	 Outstanding prediction performance was typically 
observed in all tested algorithms (PLS-DA, CP-ANN, 

Fig. 5. The performance of classification (PLS-DA for (a) and (c)) and supervised learning algorithms (SKN for (b) and (d)) for the 
data set IS-1_9 (see Table 1). The error rate and ratio of non-assigned samples changed in response to the number of variables are 
exhibited in top and bottom panels at (a), respectively. Also, refer to captions for Figs. 3 and 4 for interpretation of (b), (c), and (d).
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SKN, and XY-F), except for one particular case that PLS-DA 
yielded high error rates of about 36% at CA-2. Antecedent 
variables added to the original data set did not affect their 
prediction performance. Rather, those played a role in 
decreasing their network sizes and epoch values.
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Table 3
Summary of the optimization results for three supervised 
learning algorithms evaluated at data sets collected from 
different sewer systems plus that with additional variables

Sewer 
systems

Algorithms Neurons Epochs Frequency Optimal 
criterion

CA-1 CP-ANN 14 × 14 100 0.800 0.960
SKN 16 × 16 350 1.000 0.911
XY-F 16 × 16 300 1.000 0.898

CA-2 CP-ANN 12 × 12 200 1.000 0.918
SKN 14 × 14 50 1.000 0.908
XY-F 16 × 16 50 1.000 0.904

IS-1 CP-ANN 16 × 16 100 1.000 0.998
SKN 16 × 16 350 1.000 0.998
XY-F 16 × 16 100 1.000 0.997

SP-1 CP-ANN 10 × 10 350 0.667 0.978
SKN 14 × 14 250 0.667 0.930
XY-F 12 × 12 50 1.000 0.887

IS-1_9 a CP-ANN 12 × 12 150 0.667 1.000
SKN 12 × 12 100 1.000 0.999
XY-F 12 × 12 50 1.000 0.999

aThe data set included 6 additional variables on top of 3 original 
variables at IS-1 (see Table 1)


