

Degradation of aniline from aqueous solution by Fenton process: modeling and optimization

Seyyed Alireza Mousavi^{a,b}, Fatemeh Farrokhi^a, Nazanin Kianirad^{a,*}, Farzaneh Falahi^{a,*}

^aEnvironmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran, email: Fatemeh.Farrokhi92@gmail.com (F. Farrokhi), Raad.Nazanin123@gmail.com (N. Kianirad), falahi.farzaneh@gmail.com (F. Falahi) ^bResearch Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Science, Kermanshah, Iran, email: seyyedarm@yahoo.com (S.A. Mousavi)

Received 13 December 2017; Accepted 15 August 2018

ABSTRACT

In the present study, the influences of different parameters on aniline removal by Fenton oxidation using response surface methodology (RSM) were investigated. The central composite design (CCD) was applied in designing the experiments to observe the effects of important operating variables (initial aniline concentration, Fe^{2+} dose, H_2O_2 dose and reaction time). The process performance was evaluated with the analysis of variance. A quadratic model describes the experimental data. The experimental value and predicted value were in good agreement with $R^2 = 0.98$ and $Adj-R^2 = 0.92$, which state the correctness of the model. The optimum aniline removal of 72.57% was achieved at 1000 mg/L of aniline concentration, 1100 mg/L of H_2O_2 , 70 mg/L of Fe^{2+} and 40 min of reaction time.

Keywords: Aniline; Fenton process; Modeling; Wastewater; Optimization

1. Introduction

Aniline is a key intermediate commonly used for the manufacture of polyurethanes, dyes, rubber additives, agricultural chemicals, pesticides and pharmaceuticals [1,2]. On the other hand, aniline and its derivatives are hazardous to the human health and the environment [3]. Aniline is highly toxic and may be fatal if swallowed, inhaled or absorbed through the skin [4]. According to blacklist that has been announced by United States Environmental Protection Agency (U.S.EPA) aniline introduced as one of the 129 priority control pollutants [5]. Based on USEPA's recommendation, the maximum allowable aniline concentration in water is 5 mg/L [6]. Therefore to achieve the aforementioned standard different alternatives have been applied to treat aniline from aqueous solution such as physical adsorption [7] electrochemical oxidation [8], ozonation [9], ultrasonic degradation [10] and biodegradation [11,12]. Nevertheless, these methods have the problem of high

cost, poor efficiency, complicated maintenance, incomplete degradation and transform aniline into poisonous intermediates which cause adverse effect to water environment [13–15]. Advanced oxidation processes including Fenton, photo-Fenton, ozonation, electrochemical oxidation and photo catalysis have been widely proposed for treating of the various pollutants in waste waters [16]. Among them, Fenton process is preferred mostly because it does not require additional equipment such as ozone systems, ultraviolet lamps and expensive reagents [17]. Therefore, it is essential to develop an efficient method to degrade aniline from water and wastewater. Fenton oxidation because of its high oxidation potential, fast reaction kinetics, and relative lack of selectivity toward most organics is capable of removing the most of pollutants [18–20]. Other advantages of Fenton's process are the simplicity of equipment, mild operating conditions (atmospheric pressure and, room temperature), rapid oxidation rate, relatively low cost, and ease of operation and maintenance [3,21-23]. The Fenton oxidation includes a catalytic reaction between hydrogen peroxide (H_2O_2) and ferrous ion (Fe^{2+}) to produce hydroxyl radicals [19]. Hydroxyl radicals are very strong oxidants

^{*}Corresponding author.

^{1944-3994 / 1944-3986} $\ensuremath{\mathbb{C}}$ 2018 Desalination Publications. All rights reserved.

that rapidly decompose almost any organic pollutants [24]. According to other studies that used Fenton oxidation, this process is affected by H₂O₂ (oxidant), Fe²⁺ (catalyst), and pollutant. In addition other factors such as reaction time, pH and temperature are important parameters [25]. Consequently, optimizing the parameter has a significant effect on selecting process by operator of sewage treatment sectors. Studies for modeling and optimization of Fenton process to aniline degradation are rare and most of researches have been performed at low initial aniline concentration. The main aim of the current study was to investigate the performance of Fenton process on high concentration of aniline degradation in terms of process optimization and modeling by means of a response surface methodology. The worth of the model was monitored by the corresponding analysis of variance Prob > F and the coefficient of determination R². Central composite design (CCD) was offered for the optimization of the process with four effective variables (reaction time, initial aniline concentration, Fe^{2+} and H_2O_2 concentration).

2. Material and methods

2.1. Chemicals and artificial wastewater

Aniline ($C_6H_5NH_2$, 98%), obtained from Merck company (Germany), was dissolved with deionized water to the desired concentrations. FeSO₄:7H₂O (99%) (Merck company, Germany) was used for the formation of catalyst (Fe²⁺) in Fenton reaction. H₂O₂ (30% w/w) (Merck company, Germany) was added in the mixture for preceding the reaction. The solution's initial pH was adjusted to pH 3 by sodium hydroxide (NaOH, 1 M) and sulfuric acid (H₂SO₄, 0.5 M).

2.2. Experimental set-up and performance

30 experiments for aniline degradation were carried out at 25°C in batch reactors (250 mL Pyrex glass) with working volume of 100 mL (Fig. 1). The flaxes were filled to capacity of 100 mL by aniline solution with different concentration

Fig. 1. Experimental set-up.

(200, 600, 1000, 1400 and 1800 mg/L). Then pH value of the solutions was adjusted at 3 using a Jenway 3040 brand pH-meter. Hydrogen peroxide were added to the solutions at arranged concentration of 500, 700, 900, 1100 and 1300 mg/L. Fe²⁺ as catalysts at concentrations of 30, 50, 90, 70 and 190 mg/L were tested in this study. The samples were agitated by a shaker (ISH-OS4LD) at 150 rpm agitation speed in different reaction time (20, 30, 40 50 and 60 min). After accomplishment of each experiment supernatant was analyzed for measuring aniline degradation efficiency.

2.3. Experimental design and data analysis

The Design Expert (version 8.0.0) software was applied for the optimization of the process. Four numerical variables; initial aniline concentration (A), H_2O_2 dose (B), Fe^{2+} dose (C) and reaction time (D) were selected to analyze and optimize the process. The range and levels of the variables in coded and actual units are given in Table 1. The results were analyzed using response surface methodology (RSM) through CCD. In order to analyze the process, aniline removal efficiency as the process response was studied. The CCD is the standard RSM, which allows the use of second-degree polynomial in the estimation of relationships between the independent and dependent variables. The behavior of the obtained data in the CCD model can be described through Eq. (1) [26–28].

$$Y = \beta_{\circ} + \sum_{i=1}^{k} \beta_{i} x_{i} + \sum_{i=1}^{k} \beta_{ii} x_{i}^{2} + \sum_{i(1)$$

where *i* represents linear coefficient; *j* stands for the quadratic coefficient; β is regression coefficient; *x* represents independent variables; *k* is the number of studied and optimized factors in the experiment; and *e* is the random error. The data obtained were analyzed using analysis of variance (ANOVA).

2.4. Analytical methods

The samples were analyzed after centrifuging at 5000 rpm for 10 min and filtering through a 0.22 mm membrane filter. The aniline removal efficiency (E) was determined by the following equations as given below:

$$E(\%) = \left(\frac{(C_0 - C_1)}{C_0}\right) \times 100$$
(2)

Table 1

Experimental range and levels of the independent variables

Variable	Unit	Range and levels				
		-2	-1	0	1	2
A: Initial aniline concentration (An)	(mg/L)	200	600	1000	1400	1800
B: H_2O_2 concentration	(mg/L)	500	700	900	1100	1300
C: Fe ²⁺ concentration	(mg/L)	30	50	90	70	190
D: Reaction time (t)	(min)	20	30	40	50	60

where C_0 is the initial aniline concentration and C_1 is the final aniline concentration, respectively. The concentration of aniline in solution was detected by spectrophotometer (Jenwey 6053) by measuring the adsorption intensity at 282 nm (maximum absorption wavelength).

3. Results and discussion

3.1. Statistical analysis and mathematical modeling

The CCD with four factors in five levels as well as the results of aniline removal efficiency for Fenton process is presented in Table 2. The data of Fenton process were fitted to a quadratic model. Adequacy of the model was checked by the coefficients of regression (R-Squared), adjusted R-Squared, coefficient of variation (CV), F- value, p-value and Lack of Fit F-value. The quadratic model results for

Table 2 Experimental conditions and results

Run no.	Variables				Response	
	A: An	B: H ₂ O ₂	C: Fe ²⁺	D: t	Removal	
	(mg/L)	(mg/L)	(mg/L)	(min)	(%)	
1	1400	900	70	40	63.5	
2	200	1300	30	60	60.5	
3	1000	1100	70	40	73	
4	1800	1300	110	60	40	
5	1000	900	90	40	55.8	
6	200	500	110	60	30	
7	1000	900	50	40	71	
8	1800	1300	30	20	51	
9	1800	500	30	20	35	
10	200	1300	110	20	42.7	
11	1000	900	70	40	67	
12	1800	500	30	60	31	
13	1000	900	70	40	66	
14	1000	900	70	50	61	
15	600	900	70	40	63	
16	1800	1300	110	20	47	
17	200	1300	30	20	67.2	
18	1000	700	70	40	67	
19	200	1300	110	60	45.4	
20	1000	900	70	40	63	
21	1800	1300	30	60	43	
22	1800	500	110	60	33	
23	1000	900	70	40	65	
24	1000	900	70	40	63	
25	1000	900	70	40	68	
26	1800	500	110	20	32	
27	200	500	30	60	37.5	
28	200	500	110	20	44	
29	200	500	30	20	56.2	
30	1000	900	70	30	63.9	

aniline removal are summarized in Table 3. R² and the Adj- R^2 are significant parameters in the model. They show adequate variation of quadratic model to the experimental data. In this research, R^2 and $Adj-R^2$ values were 0.96 and 0.92, respectively. High values of R^2 , and $Adj-R^2$ (close to one) indicate the model validation [29]. The model F-value of 25.88 suggests that the model is significant. Adeq precision measures the signal to noise ratio that a ratio greater than 4 is desirable [30,31]. The adeq precision ratio in this study was 16.53, which indicates an adequate signal. Standard deviation and mean were found to be 3.81 and 53.53, respectively. The CV represents error between experimental and predicted data. It cannot be more than ten for a proper model. In the current research, the CV value was 7.12. P-value < 0.05 shows significance of the model terms while P-value > 0.05 expresses that model terms are not significant [32]. In this study A, B, C, D and AC were significant model terms. Based on the polynomial quadratic model [Eq. (3)], the predicted response (Y) for aniline removal was acquired in terms of coded factors as below:

Y = +65.80 - 4.32A + 6.13B - 4.54C - 3.40D +	
0.12AB + 3.21AC + 1.17AD - 1.62BC + 1.04BD	(3)
$+1.26CD - 11.72A^{2} + 15.28B^{2} - 10.96C^{2} - 14.92D^{2}$	

3.2. Effect of initial aniline concentration

The effects of independent variables on aniline removal were determined by three dimensional response surface and two dimensional contour plots graph. The initial concentrations of the aniline are essential to evaluate the extent of chemical degradation efficiency. According to Figs. 2a and 3a aniline decomposition efficiency increased when initial aniline concentration increased from 200 mg/L to 1000 mg/L, however at the aniline concentration values higher than 1000 mg/L the removal efficiency decreased. The results of Azizi et al. [33] and Anotaia et al. [23] studies confirm this trend. This is due to that when the initial concentration of aniline is increased but the generation of 'OH is not increased correspondingly, so a relative lower 'OH concentration resulted in the decrease of degradation efficiency of aniline [33]. From the Fig. 2a 67% aniline removal was observed at initial aniline concentration of 1000 mg/L and reaction time of 40 min when the Fe²⁺ and H₂O₂ dose were

Table 3 Quadratic model ANOVA results responses

Variable	Aniline removal
Standard deviation	3.81
(CV %)	7.12
Mean	53.53
R-Squared	0.96
Adj R- Squared	0.92
Adequate precision	16.53
F-value	25.88
P-value	< 0.0001
Probability for lack of fit	0.053

Fig. 2. Three-dimensional response surface of aniline removal in term of in depended variables: (a) initial aniline and reaction time, (b) Fe^{2+} and reaction time and (c) H_2O_2 and reaction time.

B: H202

D: 1

Fig. 3. Two-dimensional contour plots of aniline removal in term of in depended variables: (a) initial aniline and reaction time, (b) Fe^{2+} and reaction time and (c) H_2O_2 and reaction time.

B: H205

70 mg/L and 1000 mg/L respectively. In several studies have been observed that Fenton based treatment processes are limited to effluent containing high organic material. The reason associated with this is energy consumption and for the effluent treatment process, it is proportional to the amount of organics and to the number of electrons involved in the conversion of organics into CO, [34–36].

3.3. Effect of reaction time

Removal

(c)

As shown in Figs. 2 and 3a–c aniline removal was significantly influenced by the reaction time as when reaction time increased from 20 to 40 min, degradation of aniline remarkably increased, the optimal reaction time was observed at 40 min with aniline removal efficiency of 73% (Fig. 2c). This can be explained that Fenton's reaction could be accelerated by raising the time reaction, which improved the generation rate of hydroxyl radicals and, therefore, enhanced the degradation of the organic matter [37,38]. Mousavi et al. [39] investigated the effect of reaction time on degradation of Rhodamine B by Fenton oxidation. Confirmed that the reaction time had a significant effect on the process, as the reaction time increased from 20 to 80 min the removal efficiency increased from 35% to 55% in which other parameter where constant. The results of current study indicated that a further increase of reaction time (> 40 min) did not show more effects on the process efficiency. Several studies have reported that during Fenton oxidation of organic matter, increasing reaction time more than a specific limit cannot lead to improve degradation efficiency [40–42].

3.4. Effect of Fe^{2+} concentration

According to Figs. 2b and 3b the concentration of Fe^{2+} and the reaction time are important parameters for

removing aniline and aniline removal increased with increasing both Fe²⁺ dose and reaction time. The maximum aniline removal was observed 71% at Fe²⁺ dose of 70 mg/L, while it decreased at Fe^{2+} concentrations more than 70 mg/L. In the excess amounts of Fe²⁺, it can react with hydroxyl radical. Then, the hydroxyl radical in the system will decrease and the organic degradation will also reduce [43]. It has been confirmed that the H_2O_2/Fe^{2+} ratio is an important parameter in Fenton oxidation due to its direct effect on the quantum yield of °OH generation [44]. The results of Masomboon et al. [22]'s study indicated that 62% of 2, 6-dimethyl aniline removal was achieved at 84 mg/L Fe²⁺. Another study was performed by Azami et al. [45] in which Fenton process was employed to azo dye, methyl red removal from a wastewater. The results indicated that by increasing Fe2+, an increasing trend was observed in the dye removal efficiency. Result confirms dye removal dropped by increasing concentration of Fe²⁺ more than specific limit that the maximum dye removal was observed at Fe²⁺concentration of 0.3 mM. The results of studies that have been carried out by Jafari et al. [42] and Saini et al. [46] are consistent with the results of this study.

3.5. Effect of H₂O₂ concentration

Figs. 2c and 3c illustrate the removal efficiency of aniline depend on H₂O₂ dosage. Results confirm that by increasing the concentration of H₂O₂ concentration, the aniline removal increased because of more available hydroxyl radicals ('OH) [47]. The maximum aniline removal was 73% when the concentration H₂O₂ was 100 mg/L. The higher the concentration of hydrogen peroxide, the more aniline degradation, since there are more available 'OH to react with the organics in the solution [22]. For the Fenton process, the oxidation of aniline was not inhibited by increasing the concentration of hydrogen peroxide up to 1100 mg/L. The same results were also found in other research [48,49]. The reason might be that the amount of hydrogen peroxide added in this study has not yet reached the degree of inhibition when using Fenton process [50]. Babuponnusami et al. [36] represented Fenton oxidation of phenol depending on H₂O₂ concentration, that with increasing of H₂O₂ degradation efficiency of phenol improved and the maximum phenol removal was 57% at 800 mg/L of H₂O₂. Previous researches have reported that stepwise addition of H₂O₂ is more effective for degradation of organic matter [42,51].

3.6. Optimization

Graphical optimization produces an overlay plot of the contour graphs to display the area of feasible response values in the factor space. The graphical optimization results allow visual inspection to choose the optimum operating conditions. Fig. 4 shows the graphical optimization, which display the area of feasible response values (shaded portion) in the factors space. The optimum region was identified based on aniline removal, with criteria >60%. From Fig. 4, the optimum region (72.57% removal) is covered by reaction time 40 min, Fe²⁺ 70 mg/L, initial aniline 1000 mg/L and H₂O₂ 1100 mg/L.

Fig. 4. Overlay plots for the optimal region; aniline removal as a response.

4. Conclusion

Fenton process was successfully applied to aniline removal from aqueous solution with high concentration. CCD of RSM was used for modeling and optimization of the process and better understand the effect of independent variables such as initial aniline concentration, H_2O_2 and Fe^{2+} concentration and reaction time on the performance of the process. The results indicated that independent parameters play an important role on Fenton oxidation of aniline. Through RSM analysis method, the predicted optimum condition for Fenton oxidation to aniline degradation was determined as 1000 mg/L of initial aniline concentration, 70 mg/L of Fe^{2+} concentration, 1100 mg/L of H_2O_2 concentration, and 40 min of reaction time, with 72.57% of aniline removal efficiency at pH of 3.

Acknowledgment

The authors would like to thank the Faculty of Health, Kermanshah University of Medical Science for supporting this research and use of laboratory facilities.

References

- H. Tang, J. Li, Y. Bie, L. Zhu, J. Zou, Photochemical removal of aniline in aqueous solutions: Switching from photo catalytic degradation to photo-enhanced polymerization recovery, J. Hazard. Mater., 175 (2010) 977–984.
- [2] L. Zhu, M. Lv, X. Dai, X. Xu, H. Qi, Y. Yu, Reaction kinetics of the degradation of chloroanilines and aniline by aerobic granule, Biochem. Eng. J., 68 (2012) 215–220.
- [3] E. Brillas, J. Casado, Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment, Chemosphere, 47 (2002) 241–248.
- [4] O. Duman, E. Ayranci, Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon-cloth, J. Hazard. Mater., 120 (2005) 173–181.
- [5] Y.G. Bi, M.X. Huang, Analysis degradation effect of aniline wastewater by ultrasound, in advanced materials research, Trans Tech Publications, 2013, pp. 923–926.
- [6] USEPA, OPPT chemical fact sheets, Aniline fact sheet: Support document, United States, 1997.
- [7] X. Yang, Q. Guan, W. Li, Effect of template in MCM-41 on the adsorption of aniline from aqueous solution, J. Environ. Manage., 92 (2011) 2939–2943.

- [8] M. Ferreira, M. Pinto, I. Neves, A. Fonseca, O. Soares, J. Órfão, M.F.R. Pereira, J.L. Figueiredo, P. Parpot, Electrochemical oxidation of aniline at mono and bimetallic electro catalysts supported on carbon nano tubes, Chem. Eng. J., 260 (2015) 309–315.
- [9] G. Zhao, X. Lu, Y. Zhou, Aniline degradation in aqueous solution by UV-aeration and UV-microO₃ processes: efficiency, contribution of radicals and byproducts, Chem. Eng. J., 229 (2013) 436–443.
- [10] T.D. Pham, R.A. Shrestha, J. Virkutyte, M. Sillanpää, Recent studies in environmental applications of ultrasound, J. Environ. Eng. Sci., 8 (2013) 403–412.
- [11] L. Wang, S. Barrington, J.-W. Kim, Biodegradation of pentyl amine and aniline from petrochemical wastewater, J. Environ. Manage., 83 (2007) 191–197.
- [12] S.G. Pati, K. Shin, M. Skarpeli-Liati, J. Bolotin, S.N. Eustis, J.C. Spain, T.B. Hofstetter, Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine, Environ. Sci. Technol., 46 (2012) 11844–11853.
- [13] Y. Zhou, X. Gu, R. Zhang, J. Lu, Removal of aniline from aqueous solution using pine sawdust modified with citric acid and β-cyclodextrin, Ind. Eng. Chem. Res., 53 (2014) 887–894.
- [14] Y. Liu, G. Zhang, S. Fang, S. Chong, J. Zhu, Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst, J. Environ. Manage., 182 (2016) 367–373.
- [15] H. Hossaini, G. Moussavi, M. Farrokhi, The investigation of the LED-activated FeFNS-TiO₂ nanocatalyst for photo catalytic degradation and mineralization of organophosphate pesticides in water, Water Res., 59 (2014) 130–144.
- [16] S. Tunc, T. Gürkan, O. Duman, On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process, Chem. Eng. J., 181 (2012) 431–442.
- [17] S. Tunç, O. Duman, T. Gürkan, Monitoring the decolorization of Acid Orange 8 and Acid Red 44 from aqueous solution using Fenton's reagents by online spectrophotometric method: effect of operation parameters and kinetic study, Ind. Eng. Chem. Res., 52 (2013) 1414–1425.
- [18] M. Muruganandham, M. Swaminathan, Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology, Dyes Pigm., 63 (2004) 315–321.
- [19] H. Zhang, D. Zhang, J. Zhou, Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135 (2006) 106–111.
- [20] J.-H. Sun, S.-P. Sun, M.-H. Fan, H.-Q. Guo, L.-P. Qiao, R.-X. Sun, A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater., 148 (2007) 172–177.
- [21] J. Zazo, J. Casas, A. Mohedano, M. Gilarranz, J. Rodriguez, Chemical pathway and kinetics of phenol oxidation by Fenton's reagent, Environ. Sci. Technol., 39 (2005) 9295–9302.
- [22] N. Masomboon, C. Ratanatamskul, M.-C. Lu, Chemical oxidation of 2, 6-dimethylaniline in the Fenton process, Environ. Sci. Technol., 43 (2009) 8629–8634.
- [23] J. Anotai, M.-C. Lu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res., 40 (2006) 1841–1847.
- [24] L. Qiongyu, L. Taiyou, L. Hualu, P. Hongchun, Y. Haoqun, The degradation of phenolic wastewater by solar photo Fenton processes, Chongqing Environ. Sci., 4 (2003) 007.
- [25] E. Neyens, J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
- [26] R. Saini, P. Kumar, Simultaneous removal of methyl parathion and chlorpyrifos pesticides from model wastewater using coagulation/flocculation: Central composite design, J. Environ. Chem. Eng., 4 (2016) 673–680.
- [27] S.A. Mousavi, A. Almasi, Z. Kamari, F. Abdali, Z. Yosefi, Application of the central composite design and response surface methodology for the treatment of Kermanshah landfill leachate by a sequencing batch reactor, Desal. Water Treat., 56 (2015) 622–628.

- [28] S.A. Mousavi, S. Ibrahim, Application of response surface methodology (RSM) for analyzing and modeling of nitrification process using sequencing batch reactors, Desal. Water Treat., 57 (2016) 5730–5739.
- [29] A.M. Joglekar, A.T. May, Product excellence through design of experiments, Cereal Foods World (CFW), 32 (1987) 857–868.
- [30] R.H. Myers, D.C. Montgomery, G.G. Vining, C.M. Borror, S.M. Kowalski, Response surface methodology: a retrospective and literature survey, J. Qual. Technol., 36 (2004) 53.
- [31] S.F.A. Halim, A.H. Kamaruddin, W. Fernando, Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies, Bioresour Technol., 100 (2009) 710–716.
- [32] L. Mohajeri, H.A. Aziz, M.H. Isa, M.A. Zahed, A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments, Bioresour. Technol., 101 (2010) 893–900.
- [33] E. Azizi, M. Ghayebzadeh, M. Beikmohammadi, K. Sharafi, M. Pirsaheb, Oxidation of aniline with photo-Fenton advanced oxidation process from aqueous solutions in batch reactor, Tech. J. Eng. Applied. Sci., 5 (2015) 12–16.
- [34] M. Kallel, C. Belaid, R. Boussahel, M. Ksibi, A. Montiel, B. Elleuch, Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide, J. Hazard. Mater., 163 (2009) 550–554.
- [35] D. Pletcher, Indirect oxidations using electro generated hydrogen peroxide, Acta. Chem. Scand., 53 (1999) 745–750.
- [36] A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J., 183 (2012) 1–9.
- [37] W. Gernjak, T. Krutzler, A. Glaser, S. Malato, J. Caceres, R. Bauer, A. Fernández-Alba, Photo-Fenton treatment of water containing natural phenolic pollutants, Chemosphere, 50 (2003) 71–78.
- [38] M. Tokumura, A. Ohta, H.T. Znad, Y. Kawase, UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction, Water Res., 40 (2006) 3775–3784.
- [39] S.A. Mousavi, P. Sohrabi, P. Mohammadi, S.M. Daei, Investigation of the efficiency of UV/H₂O₂ process on the removal of Rhodamine B from aqueous solutions, Int. Res. J. Basic Appl. Sci., 10 (2016) 456–459.
- [40] S. Mousavi, A. Mahvi, S. Nasseri, S. Ghaffari, Effect of Fenton process (H₂O₂/Fe²⁺) on removal of linear alkylbenzene sulfonate (LAS) using centeral composite design and response surface methodology, J. Environ. Health Sci. Eng., 8 (2011) 111–116.
- [41] M.A. Baghapour, M. Dehghani, Evaluation of Fenton process in removal of Direct Red 81, J. Health Sci. Surveill. Syst., 4 (2016) 14–21.
- [42] H.J. Mansoorian, E. Bazrafshan, A. Yari, M. Alizadeh, Removal of azo dyes from aqueous solution using Fenton and modified fenton processes, Health Scope, 3 (2014) e15507.
- [43] S.A. Mousavi, S. Nazari, Applying response surface methodology to optimize the Fenton oxidation process in the removal of reactive red 2, Pol. J. Environ. Stud., 26 (2017) 765–772.
- [44] J.-H. Sun, S.-H. Shi, Y.-F. Lee, S.-P. Sun, Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution, Chem. Eng. J., 155 (2009) 680–683.
- [45] M. Azami, M. Bahram, S. Nouri, Central composite design for the optimization of removal of the azo dye, Methyl Red, from waste water using Fenton reaction, Current Chem. Lett., 2 (2013) 57–68.
- [46] R. Saini, C.V. Raghunath, P. Pandey, P. Kumar, Optimization of Fenton oxidation for the removal of methyl parathion in aqueous solution, Perspect. Sci., 8 (2016) 670–672.
- [47] A.C. Affam, M. Chaudhuri, S.R.M. Kutty, Fenton treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution, J. Environ. Sci. Technol., 5 (2012) 407–418.
- [48] J.J. Pignatello, Dark and photo assisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol., 26 (1992) 944–951.

- [49] Z. Li, S. Comfort, P. Shea, Destruction of 2, 4, 6-trinitrotoluene
- [49] Z. El, S. Connort, T. Shea, Destruction of 2, 4, 6-trimutotoidene by Fenton oxidation, J. Environ. Qual., 26 (1997) 480–487.
 [50] S. Rahhal, H.W. Richter, Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N, N, N', N", N"-pentaacetate, J. Am. Chem. Soc., 110 (1988) 3126–3133.
- [51] Y.-H. Huang, Y.-F. Huang, P.-S. Chang, C.-Y. Chen, Compar-ative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton, J. Hazard. Mater., 154 (2008) 655–662.