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a b s t r a c t
A series of polystyrene-supported polyethylene glycols (PS-PEG), as a new kind of water insoluble 
antibacterial resins, were obtained through graft-polymerization between chloromethylated poly-
styrene (CMPS) and PEG. The resins after adsorbing iodine showed excellent antibiotic activities on 
Escherichia coli and Staphylococcus aureus by adopting plate counting method. The antibiotic abilities 
were directly influenced by iodine adsorption capacity and the molecular weight of PEG. The resins 
under the wet state show more efficiency than those under dry state. Among these resins, PS-4-PEG800 
has the strongest bactericidal ability under the wet state, which could inhibit 99.3% and 93.8% on the 
E. coli and S. aureus, respectively. Furthermore, it is also a kind of environment-friendly material and 
can be easily separated from the sterilized water.
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1. Introduction

Antibacterial materials such as quaternary ammonium 
compounds [1], metal ions/oxides [2], antibiotics [3] and anti-
microbial peptides [4] are becoming more and more import-
ant in our life [5–7]. Because they can effectively protect 
against numerous kinds of pollutants [8–10]. Although these 
materials achieved great success, they face various disadvan-
tages, for example, organic antibacterial materials [11–13] 
have strong bactericidal abilities and abundant resource, 
but they suffer from some drawbacks such as poor thermal 
resistance and easy hydrolyzation. Chitin micropowder that 
was extracted and purified from natural plants and ani-
mals is a kind of natural antimicrobial material [14,15], but 
its heat-resistant performance is poor. Among the various 

antibiotic materials, iodine adsorbing materials, which could 
effectively remove the bacteria, viruses, and parasites [16,17] 
from water, are widely used as bactericides and viricides. 
Furthermore, the materials are economical and environment 
friendly since it can be re-used for several times. With these 
advantages, in the last decades, many investigations have 
been carried out in order to obtain high-performance iodine 
adsorption material. In 2012, Klimaviciute et al. [18] prepared 
cationic cross-linked starch–iodine complexes with differ-
ent contents of cationic quaternary ammonium groups and 
iodine to evaluate their antimicrobial properties. Singhal and 
Ray [19] imparted the antibacterial property to nylon-6 by 
adsorption of iodine. Aoki et al. [20] successfully synthesized 
the antimicrobial fabric by radiation-induced graft polym-
erization of N-vinyl pyrrolidone onto polyolefin nonwoven 
fabric and subsequent adsorption of iodine.



217X. Liu et al. / Desalination and Water Treatment 126 (2018) 216–223

Meanwhile, the water-insoluble bactericidal materials 
to conduct water disinfection became a new emerging ster-
ilization technique [21], which can be used on daily drink-
ing water treatment, the disinfection of aquaculture, the 
sterilization of industrial water, and so on [22]. For exam-
ple, the water-insoluble antibacterial materials with sur-
face-grafted material PSt/SiO2 have been prepared and the 
test results showed that the materials’ antibacterial ability is 
closely related to their structure [23]. Meanwhile, Zuo et al. 
[24] successfully synthesized poly[2-(tert-butylamino)ethyl 
methacrylate] by solution blending and solvent evaporation 
methods.

On the other hand, because of ready availability, facile 
functionalization, low cost and chemical inertness, polysty-
rene (PS) are widely used in organic synthetic chemistry [25]. 
Nevertheless, the applications of PS are limited for its wetta-
bility, brittleness, and relative low glass transition tempera-
ture [26,27]. In order to improve its physical and chemical 
properties, increasing number of researchers has devoted to 
the chemical modification of PS [28,29]. Because polyethylene 
glycols (PEG) own various advantages, such as non-toxicity, 
water-solubility, they can be widely used in foodstuffs, cos-
metics, and pharmaceutical products [30–32]. Recently, PS 
modified with PEG has been prepared to improve the perfor-
mances by solid-phase peptide synthesis [33,34], and chro-
matographic packing [35–37].

Based on above studies, we try to synthesize a new 
water insoluble antibacterial PS-PEG resin with the high 
specific surface area, excellent mechanical properties, and 
thermal stability. For this kind of material, PS provided the 
basic matrix, which was not soluble in the water, and PEG 
provided oxygen atoms for absorption of iodine. The bacte-
ricidal properties of the resins after adsorbing iodine against 
E. coli and S. aureus were studied by adopting colony count 
method.

2. Experimental setup

2.1. Materials and instruments

Nutrient agar was obtained from Luqiao Limited Liability 
Company (Beijing, China). Tryptone was an analytical reagent 
purchased from Aoboxing Biotechnology Limited Company 
(Beijing, China). Yeast extracts were obtained from Damao 
Chemical Reagent Factory (Tianjin, China). Sodium chloride 
and sodium hydroxide were analytical reagents provided by 
Ruijinte Chemical Limited Company (Tianjin, China).

The original bacterium was incubated in a SPX-250B-Z 
biochemical incubator.

2.2. Preparation of polystyrene-supported polyethylene glycols 
resins

2.2.1. Chloromethylation reaction of PS resins

The PS-supported polyethylene glycols (PS-PEG) resins 
were obtained according to the previous report [38]. 24 g 
of PS was dried under vacuum for 12 h at 50°C and swol-
len in 144 mL chloromethyl ether for 12 h. The mixture was 
stirred on the oil bath at 38°C and 14.4 g of zinc chloride was 
put in (Fig. 1). Then the flask was transferred to ice water 
bath, the mixture was washed by 95% ethanol. The products 

were extracted in a Soxhlet extractor for 12 h with 95% ethyl 
alcohol. Finally, the products were dried under vacuum at 
50°C for 48 h and then four kinds of products were obtained 
named CMPS-1, CMPS-2, CMPS-3, and CMPS-4 through 
controlling the reaction time (0.2, 0.4, 0.9, and 3 h). Table 1 
shows the elemental analysis of CMPS, the results supported 
and confirmed an increase in the content of chlorine with the 
extension of reaction time.

2.2.2. Graft polymerization of polyethylene glycols onto 
polystyrene 

6 g CMPS was swollen in 150 mL dioxane which was dried 
by NaOH for 0.5 h. Then 5.16 g of NaH and 90 g of PEG400 
(PEG600 132 g and PEG800 180 g) were added to the mixture 
under nitrogen. After refluxing at 97°C for 48 h, the mixture 
was cooled to room temperature. 30 mL methanol was added 
to decompose the unreacted NaH and then the mixture was 
filtered, washed by water, dioxane, and ethyl alcohol sepa-
rately (Fig. 1). The products were extracted with ethanol for 8 h 
finally. The 12 PS-PEG resins were synthesized and denoted 
as PS-1-PEG400, PS-1-PEG600, PS-1-PEG800, PS-2-PEG400, 
PS-2-PEG600, PS-2-PEG800, PS-3-PEG400, PS-3-PEG600, 
PS-3-PEG800, PS-4-PEG400, PS-4-PEG600, and PS-4-PEG800, 
respectively. Taking PS-4-PEG800 as an example, scanning 
electron microscopy (SEM) micrographs of CMPS-4 and 
PS-4-PEG800 resins were taken by using the SEM to charac-
terize the structure of PS-4-PEG800. The differential scanning 
calorimetry (DSC) of CMPS-4 and PS-4-PEG800 resins was 
carried out using DSCQ20 instrument.

2.3. Preparation of polystyrene-supported polyethylene glycols for 
iodine

The PS-supported polyethylene glycols for iodine 
(PS-PEG-I2) were obtained by placing (20 ± 1) mg PS-PEG 
resins in 100 mL conical flask containing 50 mL iodine solu-
tion with initial concentration of 0.1 mmol·L–1. The flask was 
placed in a thermostatic shaker and shaken at 20°C for 45 h. 
Thermogravimetric analysis (TGA) was taken using thermal 
gravimetric analyzer to test the thermostability of PS-PEG-I2.

2.4. Measuring antibacterial ability of PS-PEG-I2 against E. coli, 
S. aureus, and B. subtilis

2.4.1. Evaluating antibacterial activity of PS-PEG-I2 with 
different dosages

1 mL of original cell suspension E. coli, S. aureus, and 
B. subtilis with bacterium age of 14 h and concentration of 

Table 1
Elemental analysis of CMPS a

Resins Time (h) Cl (W%) Cl (mmol g–1)

CMPS-1 0.2 2.8 0.79
CMPS-2 0.4 5.3 1.49
CMPS-3 0.9 9.8 2.76
CMPS-4 3 13.2 3.72

a Cited from reference [38].
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about 109 CFU/mL was added into several clean tubes, 
respectively, in which 46 mL of water and different masses 
of PS-PEG-I2 had been added. These mixtures were shaken 
for 10 min and then these suspensions were allowed to stand 
for 3 min until PS-PEG-I2 settled. 1 mL of these supernatants 
were taken, diluted with standard serial dilution method, 
respectively, and the plate counting was carried out at dif-
ferent grades, so that the concentrations of viable cell for the 
different supernatant samples were determined as CFU. The 
antibacterial ratio was still calculated according to the follow-
ing equation:

Antibacterial ratio % = (number of original cell − number 
of viable cell)/number of original cell × 100% (1)

2.4.2. Evaluating antibacterial activity of PS-PEG-I2 in 
different contact time periods

1 mL of original cell suspension E. coli and S. aureus with 
bacterium age of 14 h and concentration of about 109 CFU/mL 
was added into several clean tubes, respectively, in which 
46 mL of water and 0.06 g of PS-PEG-I2 had been added. 
These mixtures were shaken, and after contacting for dif-
ferent times, these suspensions were allowed to stand for 
3 min until PS-PEG-I2 settled. 0.1 mL of these supernatants 
was taken and diluted continuously, spread on plates and 
the concentrations of viable cell for the different supernatant 
samples were determined as CFU. The antibacterial ratio was 
still calculated according to Eq. (1).

2.5. Experiments on the bactericidal ability of dry and wet state to 
E. coli and S. aureus

The experiments on the bactericidal ability of dry and 
wet state to E. coli and S. aureus were performed in the fol-
lowing procedure: 64 mg of PS-PEG resins were prepared 
after adsorbing iodine. Part of materials, which are called 
wet PS-PEG-I2 functional particles, were kept in solution 
and could be used directly after washed with distilled water. 
Other part of materials, which are called dry PS-PEG-I2 func-
tional particles, were dried for 7 d after filtration.

4 mL of the bacterial suspension (109 CFU/mL) was 
diluted to 50 mL with sterile water and mixed with PS-PEG-I2. 
The mixture was shaken in a shaking table for 28 h. 0.1 mL 
of these supernatants were taken and diluted continuously, 
spread on plates and the concentrations of viable cell for the 
different supernatant samples were determined as CFU. The 
antibacterial ratio was still calculated according to Eq. (1). 
The bactericidal ability of dry and wet state to E. coli and 
S. aureus was tested finally.

3. Results and discussion

3.1. SEM studies 

Fig. 2 shows SEM images of CMPS (a) and PS-PEG800 
(b). It is clearly seen that an obvious change in the sur-
face was observed after PEG800 grafted. The layer surface 
became coarse possibly due to the introduction of PEG800, 
which means the PEG800 has been successfully grafted on 
the CMPS. 

3.2. DSC studies

Fig. 3 shows the DSC traces of the pure CMPS and 
PS-PEG800. It is clearly shown that the glass transition 
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Fig. 1. Schematic representation of the synthesis of 
polystyrene-supported polyethylene glycols resins (PS-PEG).
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Fig. 2. SEM images of CMPS (a) and PS-PEG800 (b).
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Fig. 3. Differential scanning calorimeter traces of the CMPS and 
PS-PEG800.
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temperature (Tg) of the pure CMPS polymer was 93.6°C. 
Due to the introduction of PEG, the movement of the CMPS 
segment increased, leading to the slowdown of the glass 
transition temperature, which was beyond the scope of the 
test. In view of the above, the transition temperature of the 
PS-PEG800 is not obvious.

3.3. TGA studies

The thermal stability of PS-PEG800 and PS-PEG800-I2 
evaluated by TGA is shown in Fig. 4. It can be seen that 
PS-PEG800 displayed the weight loss of 8.16% in the range 
of 100°C–600°C. Meanwhile, PS-PEG800-I2 showed that the 
weight loss was about 14.82% at the same ranges. Indeed, 
there was an ascending tendency after adsorbing iodine, but 
the change was limited, which implied that the introduc-
tion of iodine has little effect on the thermal stability of the 
resins.

3.4. Antibacterial activity of PS-PEG-I2 with different dosages to 
E. coli, S. aureus, and B. subtilis

Figs. 5 and 6 show the variation of the antibacterial ratio 
of S-PEG-I2 to E. coli and S. aureus, respectively. With the 
increasing of the materials, the antibacterial ratio increased 
rapidly. The amount of iodine adsorption increased with the 
increasing of the chlorine content. The main reasons are as 
follows: (1) the increasing of the chlorine content also led to 
the increase in the amount of PEG; (2) the adsorption amount 
of PS-PEG for iodine increased with the number of oxyeth-
ylene units. At the same time, the higher molecular weight of 
PEG, the higher the bactericidal ratio is appeared. The anti-
bacterial ratio of the E. coli and S. aureus can reach up to 90% 
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Fig. 4. TGA curves of PS-PEG800 and PS-PEG800-I2.
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Fig. 5. Variation of the antibacterial ratio of PS-PEG-I2 against E. coli with dosage (28 h).
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when the amount of the PS-PEG-I2 is about 50 mg. 100% of 
the antibacterial ratio can be achieved when we use about 
70 mg of the PS-PEG-I2. We can also find that PS-4-PEG800 
has the best bactericidal result and the antibacterial ratio can 
reach 100% when 50 mg of the PS-4-PEG800 is used. The bac-
tericidal effect of E. coli is better than that of S. aureus at the 
same test conditions.

The variation of the antibacterial ratio of PS-PEG-I2 
against B. subtilis is shown in Table 2. And the results showed 
that this material did not exhibit a significant effect on the 
sterilization ability for B. subtilis.

3.5. Antibacterial activity of PS-PEG-I2 with different contact 
time to E. coli and S. aureus

The variation of antibacterial ratio of PS-PEG-I2 
against E. coli and S. aureus with the dosage is shown in 
Figs. 7 and 8, respectively. With increasing time, the steril-
ization effect is gradually raised. For the same sterilization 

time, the antibacterial ratio increased with the increasing of 
chlorine content and the molecular weight of PEG. With the 
raising of the amount of iodine adsorbed on the resin, the 
antibacterial ratio also showed an increasing trend which is 
mainly due to more iodine releasing in the same time. The 
antibacterial ratio can reach up to 50% when the sterilization 
time is about 6 h. With the consumption of iodine during the 
sterilization process, the curves become flat. The antibacterial 
ratio can reach 100% at about 28 h.
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Fig. 6. Variation of the antibacterial ratio of PS-PEG-I2 against S. aureus with dosage (28 h).

Table 2 
Variation of the concentration of bacteria of CMPS-PEG-I2 against 
B. subtilis with dosage (28 h) 

Volume/mg 8 16 32 48 72

Concentration of bacteria before 
sterilizing/6.25*105CFU/mL

180 180 180 180 180

Concentration of bacteria after 
sterilizing/6.25*105CFU/mL

175 165 177 164 159
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Fig. 7. Variation of antibacterial ratio of CMPS-PEG-I2 against E. coli with contact time.
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Fig. 8. Variation of antibacterial ratio of PS-PEG-I2 against S. aureus with contact time.



X. Liu et al. / Desalination and Water Treatment 126 (2018) 216–223222

3.6. Comparison of the antibacterial activities of PS-PEG-I2 with 
dry and wet state

As shown in Table 3, the antibacterial ratio of the dry state 
is about 1/3 of the wet, which is possibly caused by iodine 
volatilizing during the process of drying.

4. Conclusions

PS-PEG-I2 resin, a kind of water insoluble antibacterial 
with excellent mechanical properties and thermal stability, 
were successfully synthesized. For this kind of material, PS 
provided the basic matrix, and PEG provided oxygen atoms 
for adsorption of I2. More important, the materials showed 
excellent antibacterial properties for E. coli and S. aureus. And 
the relationship of the antibacterial effect with structure was 
also studied, and we found that the molecular weight of PEG 
has a positive correlation to the antibacterial effect possibly 
more oxygen atoms could absorb more iodine. Furthermore, 
the materials are economical and environment friendly since 
it can be re-used for several times and easily separated from 
the sterilized water by simple filtration.
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