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a b s t r a c t
Single slope basin still having a basin area of 0.5 m2 was designed and fabricated. The aim of this 
work was to predict the solar still productivity, using environmental and operational parameters 
with artificial neural network and multiple linear regressions. Individual effect of eight variables, 
namely global horizontal solar radiation, ambient temperature, wind speed (WS), relative humidity 
(RH), basin temperature, time of still operation, inner and outer glass temperatures (Tinner and Touter) 
on the estimation of still productivity were studied through linear regression. Statistical tools such 
as relative root mean square error, coefficient of determination (R2), model efficiency and the over-
all index of model performance were used as performance indices to identify the best model. It is 
observed that Tinner and Touter have the highest impact, whereas WS and RH have the least impact in 
predicting the still productivity.
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1. Introduction

The shortage of drinking water is one of the biggest 
problem many countries facing along with the energy short-
age. With increase in population and industrial revolution 
demand for freshwater has been increased many folds. 
However, most of the available water is not suitable for 
direct consumption. This unsuitable water must be purified 
before it can be supplied to the community for consumption. 
Distillation is a process through which it can be achieved. 
The energy required for distillation is most of the times 
obtained from fossil fuels which has larger carbon footprint. 
In India, 1 kWh of electrical energy obtained from coal-based 
power plant is equivalent to an emission of 1 kg of CO2 at the 
source [1] and it reaches to 1.58 kg of CO2 [2–4] if losses of 
distribution and end appliance are included. In India more 
than 90% of the places have annual average global horizontal 
radiation (GHI) in the range of 4.5–6.0 kWh/m2 d [5]. Solar 

still can be used at such places where sunlight and brackish 
water is available. Basin type solar still is simple in design 
and operation and can be fabricated using local materials. 
The main disadvantage of basin type solar still is its low 
productivity. The productivity of still can be improved by 
changing its design, operational and environmental parame-
ters. Environmental parameters such as solar radiation inten-
sity, wind velocity, relative humidity (RH) are site dependant 
and hence can’t be changed. Operational parameters like 
feed water depth in the basin, feed water salinity, condens-
ing cover cooling, feed water temperature and still operating 
under vacuum are important parameters in the improve-
ment of productivity of solar still. Phadatare and Verma [6] 
concluded that with increase in depth of water in the basin, 
still productivity decreases. Suneesh et al. [7] used condens-
ing cover cooling technique using cotton gauze to improve 
the productivity to 4.30 L/m2 d, whereas without cooling it 
was 3.30 L/m2 d. Taamneh and Taamneh [8] improved pro-
ductivity by 25% using forced convection with help of fan 
inside the still over natural convection. The productivity of 
still depends upon design parameters such as type of still, 
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material used for fabrication, size and shape of still, external 
condenser, use of reflectors, sensible and latent heat stor-
age materials, inclination of cover, material and thickness 
of cover and absorber material used in the basin. Sellami et 
al. [9] used Portland cement, Srivastava and Agrawal [10] 
used expanded polystyrene to float the porous absorber 
and Abdallah et al. [11] used metallic wiry sponges as basin 
absorber material. Use of environment-friendly and porous 
absorber material will increase the productivity with lesser 
carbon footprint. To improve the overnight productivity 
sensible heat storage [9,12–14] and latent heat storage [15,16] 
was used. Various design modifications like hemispherical 
still [17], conical still [18], triangular pyramid still [19] and 
pyramid still with concave wick [20] were used to improve 
the productivity. Other modifications such as floating porous 
absorber [10] and internal reflector [21] were investigated. 
The disadvantage of experimental work and thermal analysis 
of solar distillation system is it consumes more resources and 
time. Also, large number of measurements and heat transfer 
processes are required. The available heat and mass transfer 
models are complex and require lengthy calculations for the 
results. The available models require appropriate changes so 
that they can be applied for modified designs. Alternatively, 
an artificial neural network (ANN) could be used easily to 
precisely forecast solar still productivity.

Mashaly et al. [22] developed a mathematical model to 
forecast the solar still performance under hyper-arid condi-
tions using ANN technique. Ten parameters were consid-
ered as inputs and water productivity, operational recovery 
ratio and thermal efficiency were considered as outputs to 
ANN. A multilayer perception (MLP) type feed-forward 
back-propagation neural network with three layers (one 
input layer, one hidden layer and an output layer) was 
developed. The number of neurons in the hidden layer was 
determined through the trial and error method by vary-
ing the number of hidden nodes from 2 to 20, and the best 
architecture was selected with 15 neurons. They concluded 
that the model was effective and accurate in predicting solar 
still performance with insignificant errors and reported an 
overall index of model performance (OI) value of 0.986. 
Mashaly et al. [23] modelled the instantaneous thermal effi-
ciency of a solar still, using nine variables from weather and 
operational data with MLP neural network and multiple 
linear regressions (MLRs). 160 data points obtained from 
the experimental study were used in the model develop-
ment and validation. They concluded that the MLP model 
was a highly precise model in predicting the thermal effi-
ciency compared with the MLR model. Hamdan et al. [24] 
developed three ANN models using feed-forward, Elman 
and nonlinear autoregressive exogenous networks (NARX) 
to find the performance of triple solar still operating under 
Jordanian climate with nine input variables. Total 46 sam-
ples were used with tangent sigmoid function for the hidden 
layer and linear transfer function for the output layer. They 
concluded that feed-forward model was the best model in 
the estimation of thermal efficiency of a triple basin solar 
still compared with NARX and Elman networks. Santos et 
al. [25] developed a model to predict the solar still distil-
late production from two different commercial solar stills 
to determine the effectiveness of modelling solar still dis-
tillate production using ANN and local weather data. Daily 

total insolation, daily average wind velocity, daily average 
cloud cover, daily average wind direction and daily aver-
age ambient temperature were considered as input variables 
to the ANN. Mashaly et al. [26] developed ANN models to 
forecast the productivity of a solar still operating in a hyper-
arid environment with three different learning algorithms, 
namely Levenberg–Marquardt (LM), the conjugate gradi-
ent back propagation with Fletcher–Reeves restarts and the 
resilient back propagation. In the model development and 
validation 160 data points were used. Nine variables were 
utilized as input parameters and productivity capacity was 
the output of ANN. They reported that the LM learning 
algorithm was given an OI as 0.981 in predicting solar still 
productivity. They concluded that LM algorithm was given 
the best forecasted values among the selected algorithms.

The above studies revealed that modelling of solar still is 
needed to assess the performance. These models should be 
accurate and should use most relevant parameters as inputs 
to the models. In this study ANN models and MLR models 
are developed to estimate the solar still output by using envi-
ronmental and operational parameters of the still as inputs. 

2. Materials and methods

2.1. Experimental setup

The experiments were conducted at the Solar Energy 
Lab, Department of Energy and Environment (DEE), NIT 
Trichy, Trichy (10.7589°N, 78.8132°E) during the months 
of March and April 2016 between 8.00 and 18.00 h. The 
basin type solar still used in the experiments consists of 
two parts: (1) basin tray and (2) cover. The basin tray was 
fabricated using stainless steel of 1 mm thick sheet having 
approximately 0.5 m2 (0.9 m × 0.58 m × 0.05 m) basin area. 
The cover was fabricated using 4 mm window glass and had 
double wall arrangement at the walls except at front wall 
with 30 mm air gap between the two walls. The cover had 
an inclination of 14° with the horizontal obtained with the 
walls having height of 260 and 40 mm at higher and lower 
side, respectively. To absorb the early and late hour’s solar 
radiation, the inner side of the inner glass wall was painted 
with black paint whereas the outer wall was kept transpar-
ent. The basin material used was the mixture of coco peat 
and charcoal having 20 mm thickness. Mixture of coco peat 
and charcoal is organic, environment-friendly, biodegrad-
able and easily available locally. Insulation of 20 mm thick 
expanded polystyrene was provided at the tray side walls 
and bottom. The silicone gel was used to stick the glasses, 
whereas glass putty was used in between the tray and cover 
to arrest leak of water vapour to the surrounding. 

The solar still was kept on a table with its condensing 
cover facing due south as shown in Fig. 1. Fig. 2 shows the 
schematic diagram of the solar still. The feed water was 
supplied to the basin before the starting of the experiment 
every morning. Basin material was coco peat and charcoal 
mixture which is environment-friendly and locally avail-
able at lower cost. Coco peat being porous in nature has 
more surface area which results in greater evaporation of 
feed water. As the solar energy heats up the basin material 
which absorbed the water, the mixture of hot air and water 
vapour rises to the top of the condensing cover and then 
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reversed the direction to reach the basin material. During 
this natural circulation process, the humid air comes in con-
tact with the bottom part of the condensing cover where it 
releases the latent heat and gets condensed. The condensed 
water flows down and collected in the trough made to col-
lect distillate. Tap water was used as a feed water to the solar 
still. The initial concentration of total dissolved solids (TDS), 
pH and electrical conductivity (EC) of the tap water were 
469 mg/L, 8.96 and 781 μS/cm, respectively. TDS and EC 
were measured using (Hach sension5) calibrated TDS-EC 
meter. A pH meter (DURALAB) was used to measure pH. 
The basin temperature, inner and outer glass temperature 

were measured using thermocouples (T-type). Solar radia-
tion intensity was measured using (Kipp & Zonen, CM11) 
pyranometer. Temperatures and solar radiation intensity 
data were recorded on data logger (Yokogava, GX20) for 
every 10 s. The distilled water was measured by graduated 
cylinder (TARSONS) of 500 mL capacity. The weather data 
such as ambient temperature (Tamb), RH and wind speed 
(WS) were obtained from a weather station near the exper-
imental site. 

The expected productivity of solar still was modelled 
using environmental (four variables) and operational data 
(four variables) with MLR and ANN. The variables affect the 

Fig. 1. Experimental setup.

Fig. 2. Schematic diagram of solar still.
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solar still productivity were considered as model parameters. 
Weather variables, namely global horizontal solar radiation 
(H), ambient temperature (Tamb), WS, RH and operational 
variable, namely basin temperature (Tbasin), inner glass tem-
perature (Tinner), outer glass temperature (Touter) and time 
of still operation (t) were used in modelling the expected 
productivity of solar still.

2.2. Regression methods

Regression is one of the most widely used statistical 
technique for forecasting problems. Linear regression and 
MLR techniques were used in the present study. Regression 
analysis is a modelling technique for analysing the relation-
ship between a continuous dependent variable y and one or 
more independent variables x1, x2, xk. The goal in regression 
analysis is to identify a function that describes, as closely as 
possible, the relationship between these variables so that the 
value of the dependent variables can be predicted using a 
range of independent variables values 

In the MLR method, the output of solar still is found in 
terms of independent variable such as weather and other 
solar still variables which influence the output. This model is 
named as yield model. The yield model using this method is 
expressed in the form of Eq. (1) as follows:

Y x x xi i i i k= + + + + +β β β β ε1 2 
 (1)

where Y is the yield of the solar still, xi is the affecting factors, 
βi is regression parameters with respect to xi and ε is an error 
term. A goodness of fit measurement is represented by the 
coefficient of correlation (R2) statistic which ranges from 0 to 
1 and indicates the proportion of the total variation in the 
dependent variable Y around its average that is counted by 
the independent variable in the estimated regression func-
tion. The closer the R2 statistic to the value 1, the better the 
estimated regression function fits the data.

2.3. ANN model

ANN is an artificial intelligence (AI) technique that fol-
lows the behaviour of the human brain. ANN techniques 
have become an alternative method to the conventional 
techniques and are used in a number of solar energy appli-
cations. ANN has the ability to model any linear and non-
linear systems. The ANN architecture usually consists of an 
input layer, some hidden layers and an output layer, con-
nection weights and biases, activation function and summa-
tion node. Functional diagram of neural network is given 
in Fig. 3.

ANN action is divided into two stages: learning stage 
and generalization stage. The learning techniques are 
divided as supervised, unsupervised, reinforcement and 
evolutionary learning. Neural networks training is such 
that a particular input leads to a specific target output. The 
network is adjusted, based on the comparison between the 
output and the target, until the network output matches 
the target and the mean square error (MSE) is determined. 
MSE determines the performance of the network. It mea-
sures the network’s performance according to the mean of 
the squared errors. Learning process is completed when the 
MSE is minimized. 

2.4. Test conditions

In this study, the feed forward architecture was used 
with the three layers (input, hidden and output layers). 
TRAINLM is used as training function that updates the 
weight and bias values of neuron connections, according to 
LM optimization. The back propagation algorithm is used 
as learning algorithm and it is a gradient descent algorithm. 
The term back propagation refers to the manner in which the 
gradient is computed for nonlinear multilayer networks. The 
flow chart for the back propagation algorithm is given by 
Benghanem [27]. The activation function for neurons can be 

Fig. 3. Functional diagram of the MLP neural network model used in the prediction of still productivity.
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linear or nonlinear. Performance of the ANN model is tested 
by changing the activation functions between input and hid-
den layers, between hidden and output layer. Activation 
function suited for present application is suggested. 

Tan-sigmoid transfer function (tansig)

f x
e x( ) =
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−

−

2
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1
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All the datasets were normalized [28] in the range of 
0.0–1.0 by using Eq. (3) and then returned to the original 
values after the simulation by using Eq. (4).
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X X
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−
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max min
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X X X X Xnactual = −( ) +max min min  (4)

The best modelling conditions were taken from the 
references and followed in this study are given in Table 1.

2.5. Statistical tools considered to assess the performance of the models

Statistical tools such as the mean percentage error (MPE), 
mean absolute percentage error (MAPE), relative root mean 
square error (RRMSE), coefficient of determination (R2), 
model efficiency (ME) and the OI were used as performance 
indices to identify the best model. The formulae for MPE, 
MAPE, RRMSE, R2, ME and OI are presented in Appendix. 
The model is considered as the best model when MPE, MAPE, 
and RRMSE, are close to zero and R2, ME and OI values are 
close to one. These statistical tools are commonly used to 
evaluate the model performance [22,23,43,44]. Model’s per-
formance was described based on the ranges of RRMSE [45] 
and is given in Table 2.

3. Results and discussions

The productivity of the solar still was modelled with 
MLR and ANN. Total 250 data points were recorded during 
the experimental period. 190 data points were used in the 
model development and 60 data points were used to test 
the developed models. The regression models were devel-
oped with the global horizontal solar radiation (H), ambient 

temperature (Tamb), WS and RH and operational variables, 
namely basin temperature (Tbasin), inner glass temperature 
(Tinner) and outer glass temperature (Touter).

The effect of considered parameters on the prediction 
of solar still productivity was identified with the help of 
statistical tools and is shown in Table 3.

3.1. Effect of environmental parameters on the solar still productivity

Effect of environmental variables on prediction of solar 
still productivity was derived with the help of a regression 
analysis. Linear regression models developed with the global 
horizontal solar radiation (H), ambient temperature (Tamb), 
WS and RH are given below (Eqs. (5)–(8)) and the results 
were compared with the literature. The maximum and min-
imum values observed during the experimentation for H, 
Tamb, WS and RH were 66.57 and 1,073.91 W/m2, 28.14°C and 
44.17°C, 2.70 and 12.00 m/s, 37.00% and 87.00%, respectively.

3.1.1. Solar radiation

The solar radiation absorbed by the basin material to 
heat the water mass, which was further evaporated into 
water vapour and condensed on the glass cover as a distilled 
water. Okeke et al. [46] concluded that the productivity of 
the still was directly proportional to the solar radiation. 
Kamal [47] demonstrated that the still productivity is very 
much dependent on the solar radiation. The following 
model was obtained in this work with a lower correlation 
coefficient indicating that either nonlinear models could be 

Table 1
Test conditions followed in this study

Network type Multilayer feed forward 
network [29–34]

Training function TRAINLM [34–38]
Adaptive learning function LEARNGDM
Performance function MSE
Number of inputs 8
Number of outputs 1
Number of hidden layers 1
Number of hidden neurons 15 neurons [22,23,39–42]
Transfer function Tan sigmoid

Table 2
Ranges of RRMSE to analyse the ANN model’s performance

Range of RRMSE Performance

<10% Excellent
10% < RRMSE < 20% Good
20% < RRMSE < 30% Fair
>30% Poor

Table 3
Performance of regression models for new experimental datasets

MLR 
model

MPE MAPE RRMSE ME OI R2

H 56.113 87.959 39.512 0.512 0.645 0.4560
Tamb 14.496 33.654 25.761 0.792 0.823 0.7490
Tbasin −2.850 29.326 23.366 0.829 0.849 0.8329
Tinner −4.444 21.063 14.696 0.932 0.924 0.9193
Touter −2.729 20.892 14.418 0.935 0.926 0.9195
WS 76.535 104.589 53.838 0.095 0.396 0.1460
RH 5.190 42.390 38.840 0.529 0.655 0.5384
Time 68.118 99.703 53.286 0.113 0.406 0.1584
MLR-1 −8.489 19.542 13.935 0.939 0.930 0.9334
MLR-2 −12.660 24.026 14.413 0.935 0.927 0.9325

The bold value signifies the better statistical values. MLR-1 gives 
superior performance than other models.
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more accurate or more number of additional parameters 
need to be included in the model for better prediction.

Y H R= + × =0 292996 14 27704 0 45602. . : .  (5)

3.1.2. Ambient temperature

Researchers all around the world investigated the effect 
of variation in ambient temperatures on the productivity 
of solar still, using theoretical model proposed by Malik 
et al. [48]. The increase in the productivity was 2%–3% with 
an increase in the ambient temperature of 5°C. Hinai et al. 
[49] reported an increase in the productivity of solar still by 
8.2% with an increase in the ambient temperature of 10°C. 
The following expression was obtained in this work relating 
the Tamb with yield. The R2 is better than that obtained for 
H, indicating a stronger effect of the sink temperature on the 
condensate.

Y T R= − + × =765 748 25 45717 0 7492. . : .amb  (6)

3.1.3. Wind speed

The rate of heat transfer by convection due to the wind, 
depends on the temperature difference between the glass 
outer surface temperature and the ambient temperature. 
Cooper and Rajvanshi [50,51] concluded that the increase 
in the WS increases the still productivity. A.A. El-Sebaii 
[52] concluded that for a single effect passive type basin 
stills there exist a critical mass (depth of water in the basin) 
above which the still productivity increases with increase 
in the wind speed until a typical value (WSt). If the quan-
tity of basin water is less than the critical mass, the still 
productivity decreases with increase in WS until WSt, also 
beyond WSt still productivity becomes less dependent on 
WS. The results of this work also indicate that the effect 
of WS is negligible on the yield compared with the effect 
of Tamb and H.

Y WS R= + × =17 23732 27 25078 0 1462. . : .  (7)

3.2. Effect of operational parameters on solar still productivity

The productivity of solar still is more dependent on basin 
temperature (Tbasin), inner glass temperature (Tinner), outer 
glass temperature (Touter) and less dependent on the time 
of still operation (t) (Table 3). The evaporative heat transfer 
from the basin water to the glass is directly proportional 
to the difference between the partial pressure at Tbasin and 
Tinner. Evaporation rate of solar still depends upon the basin 
water, glass cover and ambient temperature difference. The 
temperature difference between basin and glass cover is the 
driving force for the evaporation. Greater is this difference, 
more is the evaporation of water from the basin. The higher 
temperature difference between basin and glass could be 
achieved either by increasing the basin temperature or by 
decreasing the glass cover temperature. To increase the still 
productivity, condensation rate should be increased. The 
condensation rate is dependent on the reduction of inner 

glass cover temperature. Suneesh et al. [7] reduced the inner 
glass temperature by intermittent supply of cooling water 
over the cover.

Effect of operational parameters on prediction of solar 
still productivity was derived with the help of a regression 
analysis. Regression models developed with Tbasin, Tinner, Touter 
and t are given by Eqs. (8)–(11). The maximum and minimum 
values observed during the experimentation for Tbasin, Tinner, 
Touter and t were 26.43°C and 79.91°C, 32.17°C and 77.75°C, 
32.18°C and 77.60°C, 8.00 and 18.00 h, respectively. 

Out of all the operational parameters inner and outer 
glass temperatures have given the highest value of correla-
tion with an R2 value of 0.9193 and 0.9195, respectively. Time 
of operation has shown the poor correlation with an R2 value 
of 0.1584.

Y T R= − + × =211 754 6 67122 0 83292. . : .basin  (8)

Y T R= − + × =321 038 8 646793 0 91932. . : .inner  (9)

Y T R= − + × =326 608 8 806072 0 91952. . : .outer  (10)

Y t R= + × =2 64728 15 1882 0 15842. . : .  (11)

3.3. MLR model

MLR model was developed by considering all the 
above-mentioned variables to derive the effect of all param-
eters on prediction of solar still productivity and is given by 
Eq. (12) and named as MLR-1. MLR-1 has shown an R2 value 
of 0.93345, which indicates strong relation between selected 
input variables and output variable.

Y t T T= − − × + × − × +138 968 2 92298 5 331446 14 1145
21 556

. . . .
.

basin inner

339 10 3788 0 0605 0 974721
0 618593

× − − × + ×
+ ×

T T H
WS RH

outer amb. . .
.

  
 (12)

It was observed that the WS, RH and time of operation of 
solar still have shown the least correlation in the prediction of 
productivity and other MLR model (MLR-2) was developed 
by neglecting these parameters and is given by Eq. (13).

MLR-2 gives the relationship between global solar 
radiation (H), all temperature parameters (All T’s: Tamb, Tbasin, 
Tinner, and Touter) and solar still productivity with an R2 value 
of 0.9325 which is equivalent to MLR-1 model.

Y T T
T

= − + × − × + ×
−

65 6997 3 805568 15 8259 24 83606. . . .basin inner

outer 112 2704 0 05888. .× − ×T Hamb

  
 (13)

The developed models (Eqs. (5)–(13)) were tested with 
the new experimental datasets to assess the performance of 
regression models. The performance of regression models 
are shown in Table 3. The solar still output calculated using 
each model (Eqs. (5)–(13)) was compared with the measured 
still output during the experimental period and is shown in 
Fig. 4. It could be observed that the predicted output trend 
lines of the MLR models followed the actual still output 
trend line.
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The results obtained by MLR-1 and MLR-2 were similar 
compared with the linear regression models with Tinner or 
Touter as the input parameters and indicating strong effect of 
these variables in prediction of solar still productivity. The 
regression model developed with WS has shown poor values 
of performance indices and it could be neglected. It could 
be observed from Table 3 that the ambient temperature also 
plays a significant role in the prediction since the ME was 
80%. Even though regression models are very basic models, 
predicted solar still productivity with good accuracy, which 
reduces the computational time and efforts. Also, elimi-
nates the need of development of complex mathematical 
equations.

3.4. ANN model

In regression analysis, MLR-1 and MLR-2 have shown an 
excellent prediction of the still productivity with new exper-
imental datasets and the data used for these models were 
considered for ANN modelling. Test conditions during ANN 
modelling are shown in Table 1.

A total of eight inputs (all inputs at a time) were used 
in ANN training and named as ANN-1 and target was still 
productivity. A total of five inputs (global horizontal solar 

radiation (H), ambient temperature (Tamb), basin tempera-
ture (Tbasin), inner glass temperature (Tinner) and outer glass 
temperature (Touter)) were used in ANN training and named 
as ANN-2. These trained ANN models were used in the pre-
diction of still productivity with new experimental datasets 
(60 new experimental datasets) and results are shown in 
Table 4. The best values of the performance indices was pro-
duced with ANN-1 which considered tan sigmoid transfer 
function for inner layer to hidden layer and hidden layer to 
output layer. ANN-2 has also produced the similar perfor-
mance to that of ANN-1 except the MAPE value which was 
higher than the MAPE value of ANN-2.

ANN-1 (all inputs) and ANN-2 (all T’s and H) had pro-
duced an excellent prediction of the results and efficiencies 
of the models were about 96%. The test conditions in Table 
1 produced an excellent prediction models and it could be 
suggested for modelling the solar still productivity.

3.5. Comparison between MLR and ANN models 

ANN-1 model was developed with the same inputs as 
that of MLR-1 and ANN-2 model was developed with the 
same inputs as that of MLR-2. It could be possible to compare 
ANN-1 with MLR-1 and ANN-2 with MLR-2.

Table 4
Performance of the developed ANN models for new experimental datasets

ANN 
model

Inputs to the ANN MPE 
(%)

MAPE 
(%)

RRMSE 
(%)

ME OI Transfer function input 
layer to hidden layer

Transfer function hidden 
layer to output layer

ANN-1 H, Tamb, WS, RH, Tbasin, 
Tinner, Touter, t

−3.991 14.168 11.825 0.963 0.950 Tan sigmoid Tan sigmoid

ANN-2 H, Tamb, Tbasin, Tinner, Touter −8.238 13.845 11.895 0.962 0.950 Tan sigmoid Tan sigmoid

Fig. 4. Actual and predicted still output with regression models.
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While comparing ANN-1 with MLR-1, 27.53% improve-
ment in MAPE values, 15.14% improvement in RRMSE, 
2.44% improvement in ME and 2.15% improvement in OI 
were observed and shows superior performance of ANN-1 
than MLR-1.

While comparing ANN-2 with MLR-2, 42.44% improve-
ment in MAPE values, 17.48% improvement in RRMSE, 
2.88% improvement in ME and 2.15% improvement in OI 
were observed and shows superior performance of ANN-2 
than MLR-2. The predicted output of MLR-1 and ANN-1 
models were compared with actual still output values and is 
shown in Fig. 5.

4. Conclusion

MLR and ANN models were developed to predict the 
yield of solar still using weather and operational data. The 
linear regression models with operational parameters such 
as Tinner and Touter have given an excellent estimation out of 
the linear models with the ME values more than 90%. The 
operational parameters have shown higher impact than the 
environmental parameters on the yield, indicating that the 
condenser temperature has got the highest correlation with 
respect to the yield. In other words the overall productivity 
of the still could be made better by altering the condenser 
temperature. 

It could also be observed that out of the environmental 
parameters, the ambient temperature played the most sig-
nificant in role in the estimation of still yield, indicating the 
importance of the sink temperature on the yield. The devel-
oped MLR-1 and MLR-2 have shown an excellent perfor-
mance in the estimation of still yield. Two ANN models were 
developed with the selected input variables by considering 

tan sigmoid as the transfer function. ANN-1 and ANN-2 
models have almost produced similar performance and 
revealing the insignificant effect of WS and RH in the model’s 
performance and hence they could be neglected in model-
ling the estimation of solar still output development. ANN-1 
and ANN-2 models outperformed the developed MLR-1 and 
MLR-2 models. 
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Fig. 5. Comparison of MLR-1 and ANN-1 models predicted still output values with actual still output.
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Symbols

Abbreviations

AI — Artificial intelligence
ANN — Artificial neural network
EC — Electrical conductivity, μS/cm
GHI — Global horizontal radiation, W/m2

H — Global horizontal solar radiation, W/m2

LM — Levenberg–Marquardt
MAPE — Mean absolute percentage error
ME — Model efficiency
MLP — Multilayer perception
MLRs — Multiple linear regressions
MPE — Mean percentage error
MSE — Mean square error
MVR — Multivariate regression
NARX — Nonlinear autoregressive exogenous networks
OI — Overall index of model performance
R2 — Coefficient of determination
RH — Relative humidity, %
RRMSE — Relative root mean square error
T — Temperature, °C
t — Time of still operation, h
TDS — Total dissolved solids, mg/L
WS — Wind speed, m/s
Y — Yield of solar still, mL

Subscripts

inner — Inner glass surface
amb — Ambient
outer — Outer glass surface
t — Typical

Greek letters

β — Condensing cover tilt angle, degree
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