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a b s t r a c t

In this study, three artificial neural network (ANN) models were developed for the prediction and 
simulation of the degradation of textile dyes (Reactive Orange 16 - Monoazo; Reactive Red 120 - Diazo; 
Direct Red 80 - Poly azo) by high energy gamma radiation. Concentration of H2O2 (0–2.0 mM), dose of 
gamma ray (1–6 kGy), pH (3.0–11.0), concentration of dye (100–500 mg/L) were given as inputs and 
the output was percentage of degradation. A three-layer feed-forward network was trained using 750 
sets of input–output response per dye using Levenberg–Marquardt back propagation algorithm with 
ten neurons in the hidden layer. The efficiency of the trained network was validated by using sets 
of input operated at pH 6.0 & 12.0. The results predicted were very close to the experimental results 
with R2: 0.9967 for Reactive Orange 16; 0.9960 for Reactive Red 120; 0.9977 for Direct Red 80. The sen-
sitivity analysis showed that Concentration of H2O2 & Dose of gamma ray have strong effect whereas 
pH and concentration of dye have little effect on the degradation process. The results showed that 
the statistical modelling by ANN could effectively predict the behavior of radiolytic degradation of 
reactive dyes. 
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1. Introduction

Release of highly reactive dyes from textile industries 
into ground water and river water streams is one of the 
major environmental issue in India and China. Textile dyes 
have been considered in the context of recalcitrant xenobi-
otic compounds, as these toxic dyes are highly stable, the 
discarded dye remains for long-term in the environment 
and thus accumulates [1]. Among industrially used dyes, 
reactive azo and reactive anthraquinone group of dyes are 
largest (around 80% of dyes) and most important groups of 
dyes [2]. Since these reactive dyes are having fused aromatic 

structure, they are highly stable and resistance towards light 
or oxidizing agents, physico-chemical degradation [3]. From 
the extensive literature survey, it was observed that the clas-
sical physical, chemical and biological treatment methods 
existing now is not efficient in developing a zero discharge 
technology (ZDT). In addressing this issue, recent technol-
ogy of employing advanced oxidation processes (AOPs) for 
the treatment of industrial effluent is becoming prevalent. 
The rate of formation of hydroxyl radicals (∙OH) with an 
oxidation potential of 2.80 V determines the efficiency of 
the AOP in complete mineralization of highly toxic organic 
compounds. The application of radiation based technology 
for the waste water treatment is highly preferred than other 
AOPs because of its environment friendly nature and the 



V.C. Padmanaban et al. / Desalination and Water Treatment 131 (2018) 343–350344

adaptability to intensify or to augment the generation of 
highly reactive oxidising species [4] (Eq. 1). 
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The number of micro moles of species formed per one 
joule of absorbed energy is given as the G value (in brack-
ets) [5]. The concentration of hydroxyl radicals (∙OH) is 
increased by the external addition of hydrogen peroxide 
to the system [6]. The hydrogen peroxide reacts with e–

aq 
and H∙ generated during radiolysis of water which inten-
sifies the process [7]. The radiolysis of textile waste water 
is quite complex, since the mechanism of process is influ-
enced by various process parameters, the quantification 
of hydroxyl radicals generated and its related kinetics, 
the complexity in solving the equations that involve 
the radiant energy balance and the spatial distribution 
of absorbed radiation. The modelling of these processes 
involves many problems which cannot be solved by sim-
ple linear multivariate correlation [8]. Artificial Neural 
networks (ANN) are now used in various disciplines 
of science and technology because of their simplicity 
towards simulation, prediction and modelling [9]. ANN 
focuses solely on solving real problems on four differ-
ent aspects: (a) fault detection, (b) prediction of polymer 
quality, (c) data rectification (d) modeling and control. 
The applications of ANN are in various chemical indus-
tries like petrochemicals, oil and gas industry, biotech-
nology, cellular industry, environment, health and safety, 
fuel and energy, mineral industry, nano technology, phar-
maceutical industry, and polymer industry[10]. Though, 
few studies were reported on ANN based prediction and 
modelling on various AOPs [11,12], the application of sta-
tistical prediction (ANN) on the degradation of reactive 
dyes by radiolysis was reported less. In this study, ANN 
was used to predict and simulate the degradation of reac-
tive dyes (Reactive Orange 16 - Mono azo; Reactive Red 
120 - Di azo; Direct Red 80 - Poly azo) in aqueous solution 
by high energy gamma radiation. A three-layer feed-for-
ward network was trained using Levenberg–Marquardt 
back propagation algorithm with ten neurons in the hid-
den layer. The ANN modelling outputs were validated 
by comparing with the experimental data.

2. Materials and methods

2.1. Materials

Reactive Orange 16 (RO 16), Reactive Red 120 (RR 120) 
and Direct Red 80 (DR 80) were chosen as the model dyes 
from monoazo, diazo and polyazo class respectively. These 
model dyes were purchased from Sigma–Aldrich, India. 
The structure and characteristics of these dyes are given in 
Table 1. Aqueous dye solutions of different concentrations 
(100, 200, 300, 400, 500 mg/L) were prepared using deion-
ized water. The pH of the irradiated and non-irradiated 
solutions were measured by pH meter (Elico, LI 617). Pyrex 
borosilicate glass tubes of 2.5 cm diameter and 8 cm length 
containing aqueous dye solution of 30 ml was subjected to 
irradiation studies.

2.2. Radiolysis of aqueous dye solution by gamma radiation

Irradiation of aqueous dye solutions were carried out 
at the dose rate of 2.5 kGy·h–1 (Fricke dosimeter) using 60Co 
source gamma chamber (Meat Technology Unit, Kerala 
Veterinary and Animal Sciences University, Kerala, India). 
UV-Visible spectrometer (Eppendorf – Kinetic, Germany) 
was used to monitor the absorption spectra and changes in 
concentration of dye during degradation. The percentage of 
degradation was determined using Eq. (2)

Degradation (%) = 
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where Ab and Af are the maximum absorbance of the dye 
solution before and after irradiation respectively. 

3. Computational & mathematical modelling using 
artificial neural network (ANN)

The best possible results could be obtained for a process 
by using computational models with limited experiments 
[13]. The influence of the process parameters and the kinetic 
parameters of the various intermittent steps involved in 
the reaction are very difficult to determine due to the com-
plexity in understanding the mechanism of augmented 
radiolysis using hydrogen peroxide. This is caused by the 
complexity in solving the stoichiometric expressions and 

Table 1
Characteristics of Reactive dyes

Parameters Reactive Orange 16 Reactive Red 120 Direct Red 80

Colour Index Number 17757 292775 35780
Molecular formula C20H17N3Na2O11S3 C44H24Cl2N14O20S6Na6 C45H26N10Na6O21S6

Molecular Mass (g/mol) 617.54 1469.98 1373.07
λmax (nm) 494 536 528
Chemical class Monoazo Diazo Polyazo
Chemical Structure
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the equations of the radiant energy balance, the spatial dis-
tribution of the absorbed radiation and the rate of recombi-
nation of free radical species. Thus artificial neural network 
architecture was chosen to simulate and model the process 
of degradation of reactive dyes as it does not require the 
mathematical description of the intermittent steps involved 
in the process. All ANN calculations were carried out using 
Matlab 7.0 mathematical software. The architecture of ANN 
is the statistical outcome based on the inspiration from the 
human brain network, where billions of neurons are inter-
connected towards signal transmission. In general, paral-
lel interconnected multi layered perceptron consists of: (1) 
independent variables – input layer, (2) number of hidden 
layers, (3) dependent variables - output layer. The number 
of input and output neurons is fixed by the nature of the 
problem and a network with single hidden layer with large 
number of neurons can interpret any input-output structure 
[14]. Number of layers in the network [15], the number of 
nodes in each layer and the nature of the transfer functions 
determines the topology of an ANN [16].

In this study, three artificial neural network (ANN) 
models were developed for the prediction and simulation 
of the degradation of reactive dyes (Reactive Orange 16 - 
Monoazo; Reactive Red 120 - Diazo; Direct Red 80 - Poly 
azo) in aqueous solution by high energy gamma radiation. 
The input and output variables were selected based on pre-
vious work [6] and it is listed in the Table 2. A three-layer 
feed-forward network was trained using 750 sets of input–
output response with sigmoid hidden neurons and linear 
output neurons developed with Levenberg-Marquardt back 
propagation algorithm (trainlm) was used to develop three 
different networks. 70% of these input-output response was 
used to train the network, 15% were used for validation and 
15% were used for testing the model. The input variables to 
the feed forward network were as follows: Concentration of 
H2O2 (mM), Dose of gamma ray (kGy), pH, Concentration 
of dye (mg/L). The percentage of degradation was chosen 
as the experimental response or output variable.

4. Results & discussion

4.1. Optimization of neurons number

 The minimum value of mean squared error (MSE) of 
the training was used to predict the optimum number of 
neurons [17]. The lower the MSE, the higher the accuracy of 
prediction as there would be excellent match between the 

actual and predicted data set. Levenberg–Marquardt back 
propagation algorithm was used to optimize the neurons 
in the range of 2–14. Each topology was repeated twice to 
avoid random initialization of weights leads to random cor-
relation. The mean square error was used as the error func-
tion. MSE measures the network performance according to 
the following Eq. (3):
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where Q is the number of data point, prediction through 
network, experimental response and i is an index of data. 
Fig. 1 shows the relationship between the MSE and num-
ber of neurons. MSE value was found to decrease as the 
number of neurons increased up to 10, beyond which MSE 
value increased. Hence, 10 neurons were selected as the best 
number of neurons. Optimized neural network structure is 
shown in Fig. 2.

4.2. Test and validation of the model

The efficiency of the models was tested and validated in 
two different aspects using (i) (30% = 15 + 15) of the input–
output data in the studied range; (ii) sets of input operated 
at pH 6.0 and 12.0. Figs. 3a, 3b, 3c show the comparison 

Table 2
Model variables and their ranges

Variable Range

Input layer
Concentration of H2O2 (mM) 0–2.0
Dose of gamma ray (kGy) 1–6
pH 3.0–11.0
Concentration of dye (mg/L) 100–500
Output layer
Degradation (%) 0–100

Fig. 1. Effect of the number of neurons in the hidden layer on the 
performance of the neural network.

Fig. 2. The optimized artificial neural network architecture.
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between the actual experimental values and predicted val-
ues using the neural network model for RO16, RR120, 
and DR80 dyes in the studied range. The overall R2 for the 
trained model was found to be 0.99677, 0.99606 and 0.9977 
for the degradation of RO16, RR120, and DR80 respectively. 
Figs. 4a, 4b, 4c show the comparison between the actual 
experimental values and predicted values using the neural 
network model for RO16, RR120, and DR80 dyes operated 
at pH 6.0 & 12.0. The R2 for the trained model was found to 
be 0.9623, 0.9616 and 0.9744 for the degradation of RO16, 
RR120, and DR80 respectively. Based on the MSE value, the 
number of neurons are optimized to predict the experimen-
tal data. The MSE value for the trained networks converges 
to very low value as the number of epochs increases. The 
MSE value for the training, validation and testing compo-
nent of the network corresponding to RO-16 converges to 
10.352 by 79 epochs whereas MSE value converges to 6.51 
and 4.24 by 38 and 35 epochs for RR-120 and DR-80 respec-
tively. The R2 value for the trained networks including train-
ing, validation and testing are greater than 0.95 indicates the 
higher linear in the correlation of the variables.

4.3. Sensitivity analysis

The relative importance of the input variables were 
assessed based on the neural net weight matrix and Garson 
equation [18]. He proposed an equation based on the parti-
tioning of connection weights:
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where, Ij
  is the relative importance of the jth input variable 

on the output variable, Ni and Nh are the number of input 
and hidden neurons, respectively and W is connection 
weight, ‘i’,‘h’ and ‘o’ refers to input, hidden and output 
layers, respectively and ‘k’,‘m’ and ‘n’ refers to input, hid-
den and output neurons respectively. Tables 3, 4, 5 show 
the weights between the artificial neurons produced by 
the ANN model used in this work for the degradation of 
RO16, RR120, and DR80 respectively. Table 6 shows the 
relative importance of the input variables calculated by 

Fig. 3. Comparison between the actual (target) and predicted (output) values for the degradation of (a) RO16; (b) RR120; (c) DR80 in 
the studied range.

Fig. 4. Comparison between the actual (target) and predicted (output) values for the degradation of (a) RO16; (b) RR120; (c) DR80 
operated at pH 6.0 & 12.0.
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Eq. (4). Three variables have strong effect on reactive dye 
degradation in terms of percentage of degradation. Dose 
of gamma ray (kGy) appears to be more influencing vari-
able followed by concentration of H2O2 (mM) and pH, 
whereas the concentration of dye (mg/L) has relatively 
low importance.

4.4. Effect of dose of gamma ray

To examine the effect of dose of gamma ray on the 
degradation of reactive dyes, the solution containing H2O2 
(0.5 mM) and 500 mg/L of reactive dye was irradiated with 
gamma ray of dose 1–6 kGy. The initial pH of the solution 

was 5.0. Fig. 5a shows the effect of dose of gamma rays on 
the degradation of three different reactive dyes. As the dose 
of gamma ray increases from 1 to 6 kGy, the percentage of 
degradation also increases from 29.58 to 79.45, 32.03 to 76.16 
and 46.69 to 83.57 for RO16, RR120 and DR80 respectively. 
Radiolysis of water using high energy gamma radiation 
results in the generation of highly reactive radicals, which 
are responsible for the degradation of textile dyes (Eq. (1)). 
The hydrated electrons, hydrogen atoms and ∙OH radicals 
will react with the dye molecules through diffusion con-
trolled processes. The hydrated electrons and hydrogen 
atoms have a minimum interaction with the reactive dye 
molecules. The reduction potentials of reactive dyes are 
much negative than the reduction potentials of these spe-

Table 4
Matrix of weights for the degradation of RR 120 dye. W1: Weights between input and hidden layers; W2: weights between hidden 
and output layers

Neuron W1 W2

Variable

Conc of H2O2 
(mM)

Dose of gamma 
ray  (kGy)

pH Concentration of 
dye (mg/L)

Bias Neuron Weight

1 –36.8616 32.61613 57.325 –49.3464 –5.23251 1 –0.03455
2 –0.05086 –3.97203 –0.00994 –5.61153 2.084585 2 0.510117
3 0.296892 –1.27529 –8.33279 –0.85976 2.171343 3 0.052518
4 0.044023 3.427533 0.007733 –0.00528 3.61477 4 2.058187
5 0.094073 1.089047 0.052892 1.239413 –0.7189 5 0.738986
6 –2.24739 –13.1314 28.31278 –33.2364 –9.98741 6 0.016637
7 –23.0164 –7.57906 –11.2316 –17.1673 –2.98278 7 –0.04274
8 –5.69614 7.352011 –0.17758 –0.16809 0.850365 8 –0.06905
9 –4.53278 –0.03151 –0.21156 0.233117 2.510137 9 0.130723
10 –0.06503 8.581021 0.099535 –10.7548 –2.60915 10 0.228356

Bias –1.1538

Table 3
Matrix of weights for the degradation of RO16 dye. W1: Weights between input and hidden layers; W2: weights between hidden 
and output layers

Neuron W1 W2

Variable

Conc. of H2O2 
(mM)

Dose of gamma 
ray (kGy)

pH Concentration of 
dye (mg/L)

Bias Neuron Weight

1 –0.03937 –0.21668 0.021644 0.00437 –1.33094 1 –40.2329
2 –0.31858 0.112985 –1.04724 0.000969 3.384988 2 –4.99483
3 –14.8443 9.916626 –9.89097 0.057645 –7.76603 3 –1.28509
4 –1.64179 –0.00857 –0.03211 0.001404 2.353289 4 15.74417
5 –24.0191 18.34196 –3.79699 –0.20183 29.20936 5 –1.37549
6 0.256621 0.19346 –0.04941 –0.00453 –1.35895 6 6.562788
7 11.14552 16.27033 12.75889 –0.23057 5.729084 7 0.230411
8 –0.00128 0.616722 0.022156 0.00186 –0.50881 8 73.1977
9 –0.66514 0.023626 0.080593 –0.00045 –0.15614 9 –23.2219
10 37.71599 1.736083 1.416726 –0.50784 –15.335 10 1.656467

Bias –23.1881
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cies (hydrated electrons and hydrogen atoms), these spe-
cies could not reduce the reactive dyes. Hence, the hydroxyl 
radicals alone could able to reduce the reactive dyes [19].

4.5. Effect of pH

The generation of hydroxyl radicals is influenced by the 
pH of the solution [20]. To investigate the effect of initial 
pH on the degradation of reactive dyes, the experiments 
were done by varying the pH in the range of 3.0–11.0 where 
the initial concentration of H2O2, concentration of dye and 
dose were kept constant as 0.5 mM, 500 mg/L and 6 kGy 
respectively. Fig. 5b shows the pattern of degradation in the 
chosen range of pH. Though there is not much significant 
difference in the percentage of degradation with respect 
to different pH and different dyes, the maximum percent-
age of degradation was observed in the acidic range. The 
degradation efficiency of the reactive dyes during radioly-
sis depends on the kind of active species generated based 
on the pH of the solution. In acidic solution, the decreased 
interaction between e–

aq and ∙OH leads to the increased con-
centration of ∙OH and the formation of ∙H increases the rate 
of degradation. In alkaline condition, ∙OH easily reacts with 

OH– to form water, thereby the availability of ∙OH for the 
degradation process is limited [21,22].

.  aqe H H− ++ → � (5)

.
 2OH OH H O O− −+ → + � (6)

From the results, the increased percentage of degrada-
tion at low pH and the decreased percentage of degradation 
at high pH solution demonstrate that ∙OH is a main param-
eter in the degradation of reactive dyes during radiolysis.

4.6. Effect of H2O2:

The effect of H2O2 on the degradation of reactive dyes 
were examined by varying the concentration of H2O2 from 
0.5 to 2 mM at constant dose: 6 kGy, concentration of dye: 
500 mg/L and pH: 5.0. The results as shown in Fig. 5c, the 
degradation of reactive dyes by radiolysis is enhanced by 
the addition of H2O2. The increase in percentage of deg-
radation was observed as the concentration of H2O2 was 
increased to 1 mM and it starts to decrease after 1 mM. The 
degradation reaction is enhanced due to the increase in the 
∙OH radicals due to the increase in concentration of H2O2. 
The decrease in degradation was observed as the concentra-
tion of H2O2 is increased above 1.0 mM because of scaveng-
ing of ∙OH radicals by excess H2O2 [23,24].

. .
2 2 2 2H O OH HO H O+ → + � (7)

. . .
 2 2 2 2 2H O HO OH H O O+ → + + � (8)

5. Conclusion

A three-layer feed-forward network was trained and 
optimized to predict the degradation of reactive dyes using 

Table 5
Matrix of weights for the degradation of DR 80 dye. W1: Weights between input and hidden layers; W2: weights between hidden 
and output layers

Neuron W1 W2

Variable

Conc of H2O2 
(mM)

Dose of gamma ray  
(kGy)

pH Concentration of 
dye (mg/L)

Bias Neuron Weight

1 3.870942 8.919951 0.055325 –0.096 3.266379 1 3.648555
2 0.181436 0.53904 0.04377 0.002048 –1.31601 2 19.6793
3 –0.62302 0.062993 –0.05166 –0.00211 2.180683 3 16.8994
4 0.209728 6.336979 –0.57017 –0.15838 15.21254 4 3.04581
5 –0.96276 1.223123 –1.0994 –0.07509 –2.56613 5 0.378569
6 –1.02763 –0.04453 0.04239 0.00202 –0.8483 6 –15.8397
7 –0.77672 –1.39033 –0.83335 –0.45089 –1.09236 7 –5.33028
8 –0.66875 –13.3311 8.231035 –0.06327 –13.1788 8 –1.14815
9 –0.11919 –6.99292 0.015984 0.001148 6.022504 9 –22.0645
10 1.931686 –1.26414 –0.04963 –0.000048 –0.87763 10 –3.52026

Bias 11.46682

Table 6
Relative importance of input variables for the degradation of 
reactive dyes

Input variables Relative importance %

RO 16 - 
Monoazo

RR120 - 
Diazo

DR 80 -   
Polyazo

Conc. of H2O2 (mM) 28.75 20.47 39.49
Dose of gamma ray (kGy) 62.94 34.33 54.31
pH 7.74 17.43 5.24
Concentration of dye (mg/L) 0.57 27.77 0.96
Total 100 100 100
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high energy gamma radiation. The Levenberg–Marquardt 
back propagation algorithm was used to optimize the neu-
rons in the range of 2–14 based on the low MSE value and 
it was optimized as 10 neurons. ANN predicted results are 
very close to the experimental results in all three networks 
with R2 > 0.96 in both different validation methods. The 
sensitivity analysis showed that three variables have strong 
effect on removal of reactive dyes in terms of percentage of 
degradation. Dose of gamma ray (kGy) appears to be more 
influencing variable followed by concentration of H2O2 
(mM) and pH whereas the concentration of dye (mg/L) has 
relatively low importance. ANN results showed that mod-
elling based on trained neural network could effectively 
simulate and predict the behavior of the degradation of 
reactive dyes using high energy gamma radiation.
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