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a b s t r a c t

Suspended solids in water cause turbidity. Suspended solids reduce dissolved oxygen,hinder the res-
piration of aquatic organisms and induce bacterial growth. Due to such significant impact on water 
quality and aquatic ecosystem, turbidity and total suspended solids are important water quality 
parameters. Now, turbidity of water can be estimated easily and instantly by modern devices, but 
total suspended solids can be measured only by conventional analytical procedure. Such analytical 
procedure is troublesome, time consuming and requires laboratory setup. This study aims the mod-
elling of total suspended solids from turbidity through polynomial neural network to save the time, 
effort and cost of analytical method to estimate total suspended solids. Different polynomial neural 
network methods were used for the modelling. Field data from 176 water bodies of North Eastern 
India were used for the training and testing of those models. An empirical equation was developed 
from those models which can calculate total suspended solids from turbidity. The equation was 
tested to be valid for its high correlation (correlation coefficient and coefficient of determination = 
0.999) and very low deviation (mean absolute percentage error = 3.477 or less and root mean square 
error = 1.904 or less) from the actual values.
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1. Introduction

Suspended solids in water has a considerable impact 
on the quality of water and aquatic ecosystem. Suspended 
particles reduce the dissolved gases in water to some extent. 
As such particles block the sunlight from penetration into 
water; photosynthesis by the aquatic plants also gets 
reduced [1]. Suspended particles also absorb more heat to 
increase the temperature of water, which, in turn, reduces 
the capacity of water to dissolve gases. Thus, presence of 
suspended particles in water causes decrease in dissolved 
oxygen. Low level of dissolved oxygen makes the respira-
tion of aquatic organisms difficult and may also cause their 

death. So, suspended solids are one of the most harmful 
factors for aquatic ecosystem [2] and may cause significant 
depletion of aquatic biota [3]. Suspended particles also hin-
der respiration of aquatic organisms and induce bacterial 
growth and sustenance [4].

Turbidity of water is for the particles suspended in water. 
Turbidity is estimated by the scattering of light in a water 
sample, which can be accomplished easily and instantly 
by modern sensor based devices. Total suspended solids 
(TSS), on the other hand, cannot be measured so easily as it 
requires filtration, drying and weighing of water samples. 
Alternatively, total dissolved solids (TDS) can be estimated 
by sensor based devices and Total Solids (TS) can be mea-
sured by evaporation of water. Then deduction of TDS from 
TS will give the amount of TSS. Both the procedures are not 
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only troublesome and time consuming, but also require a 
standard water quality laboratory setup. As turbidity and 
TSS are, in fact, different aspects of the same characteristic, 
they are highly correlated. So, TSS can be effectively mod-
elled by turbidity to predict it easily and instantly [5].

Polynomial neural network (PNN) is a computational 
model inspired by the schematic functioning of the biologi-
cal neural network. It is an unsupervised machine learning 
model, which can be trained with a set of inputs and their 
corresponding outputs [6]. A relation between input(s) and 
output(s) is developed from iteration modeling by putting 
adaptive weights in the multiple neural layers [7]. PNN 
can be used to predict the output from input(s) when the 
relation between input and output is not known as it can 
develop a mathematical relation (a model) between the 
given set of input(s) and output(s) through regression anal-
ysis [8]. PNN has been used for forecasting of water qual-
ity [9] and prediction of a WQP from other WQP [10–12] 
including TSS [13].

176 water bodies of the North Eastern India were sam-
pled to estimate turbidity and TSS. The water bodies are 
situated in the Indian states of Tripura, Manipur, Megha-
laya and Assam. The data were then fed into PNN for the 
empirical modelling of TSS. 

2. Methodology

Turbidity and TSS of 176 water bodies in North East-
ern India were estimated for the modelling purpose. These 
field data were used for training and validation of the PNN 
models.

2.1. Collection of data

Turbidity and TDS were measured with sensor based 
device (Horiba U50 Multiparameter Water Quality Ana-
lyzer). TS were measured by conventional evaporation 
method. TSS were then calculated by deducting TDS from 
TS [14].

2.2. Correlation analysis

Though it is known that turbidity and TSS are closely 
related as TSS is the main cause of turbidity, still correla-
tion between the two was analyzed for the sake of accuracy 
of the methodology. The correlation between turbidity and 
TSS was measured by Pearson product-moment correlation 
coefficient method [15].

2.3. Development of prediction model

Different PNN algorithms like combinatorial (COM), 
stepwise forward selection (SFS), stepwise mixed selection 
(SMS) and GMDH neural network (GNN) were used for 
development of different models for the prediction of TSS 
from turbidity.

In COM method, the model is developed by forming 
polynomial functions of linear parameters [16]. SFS is a 
regression analysis where a model is being optimized by 
inclusion of suitable variables until it becomes statistically 

significant [17]. SMS, on the other hand, optimizes a model 
by both inclusion and exclusion of variables [16]. GNN 
develops a model by iteratively creating layers of neurons 
where the neurone connections are being optimized by 
COM algorithm [16]. All these algorithms being automated 
regression analysis, they can be used to rapid development 
of optimized PNN models inattentively.

The accuracy of the PNN Models were determined by 
different statistical methods like mean absolute percentage 
error (MAPE) [Eq. (1)], root mean square error (RMSE) [Eq.
(2)], coefficient of determination (R2) [Eq. (3)] and correlation 
coefficient (r) [Eq. (4)] of the predictions with actual data.
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A = actual values, P = predicted values.

2.4. Validation of models

80% of the field data were used for the training of the 
PNN Models while 20% were used for testing purpose. Sig-
nificant correlation between actual and predicted values of 
TSS ensured the validation of the models.

3. Results and discussion

3.1. Correlation analysis

The correlation coefficient between turbidity and TSS 
values of the sampled water bodies was found 0.97. This is 
a very high value to establish the correlation between those 
parameters statistically. 

3.2. Development of prediction model

The predicted TSS values were found to be very close 
to their actual values during both training (Fig. 1) and test-
ing (Fig. 2) phases of the development of PNN Models. All 
the model predictions were very accurate with high cor-
relations and negligible deviations from the actual values 
(Table 1 and Table 2).

During training of the PNN, predictions from all the 
models were found be highly correlated with the actual (R2 
= 0.96, r = 0.98) and having little deviation (MAPE = 4.04–
4.08, RMSE = 2.32–2.34) (Table 1).
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3.3. Validation of models

20% of the field data were used for the testing of the 
PNN Models. Actual data set were compared with the pre-
dictions from the PNN Models to find the accuracy of those 
models.

During testing, the predicted values were found to be 
even closer to the actual values than those during training. 
Very high correlation (R2 = 0.999, r = 0.999) and low devia-
tion (MAPE = 3.310–3.477, RMSE = 1.846–1.904) (Table 2) 
indicates that predictions are almost same as the actual val-
ues (Fig. 2).

Fig. 1. Actual and predicted values of TSS were very close during training of ANN models.

Fig. 2. Actual and predicted values of TSS were very close during testing of ANN models. 

Table 2
Closeness between actual and predicted BOD during testing

Model Mean absolute percentage  
error (MAPE)

Root mean square error 
(RMSE)

Coefficient of 
determination (R2)

Correlation 
coefficient (r)

COM 3.31012 1.84581 0.99862 0.99936
SFS 3.31363 1.85307 0.99861 0.99935
SMS 3.47726 1.90433 0.99852 0.99930
GNN 3.31012 1.84581 0.99862 0.99936

Table 1
Accuracy of the model predictions during training

Model Mean absolute percentage  
error (MAPE)

Root mean square error 
(RMSE)

Coefficient of 
determination (R2)

Correlation 
coefficient (r)

COM 4.07835 2.33589 0.96377 0.98172
SFS 4.07148 2.33580 0.96378 0.98172
SMS 4.03686 2.32420 0.96412 0.98190
GNN 4.07835 2.33589 0.96377 0.98172
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3.4. Selection of best model

During both training and testing phases, all the PNN 
Models were found to be fairly accurate in predicting the 
TSS from turbidity. The four procedures, viz. COM, SFS, 
SMS and GNN, were found to predict TSS with almost 
equal accuracy (Tables 1 and 2). The predictions from all the 
four procedures were found almost equally correlated and 
deviating equally from the actual values.

During training, SMS values were found to be least 
deviated and highest correlated with the actual values 
(Table1). During testing, however, SMS values were found 
highest deviated and least correlated and COM and GNN 
values were least deviated and highest correlated (Table 2). 
Thus, no single method can be selected as the best method 
among the four PNN methods used. Any of them can be 
used for the prediction of TSS from turbidity.

The empirical equations for calculation of TSS from tur-
bidity by different PNN methods are summarized in Eqs. 
(5)–(8). Eqs. (5)–(8) were generated by PNN methods COM, 
SFS, SMS and GNN respectively. As Eqs.(5), (7) and (8) are 
the same; this equation can be used to predict TSS from tur-
bidity.

TSS = 0.00411561T2 + 25.0847T1/3 – 25.5003.  (5)

TSS = 0.00376798T2 + 0.335244T2/3 + 23.6626T1/3 – 23.9845 6)

TSS = 0.00411561T2 + 25.0847T1/3 – 25.5003  (7)

TSS = 0.00411561T2 + 25.0847T1/3 – 25.5003 8)

where T = turbidity.
Thus, the empirical equations were found valid for pre-

diction of TSS from turbidity. As the field data were sam-
pled over a large spatial and temporal space, it should be 
accurate over time and in different conditions. However, 
the accuracy may be decreased if any remarkable change 
occurs in the present equilibrium of surface water condition 
in the study area.

4. Conclusion

Empirical equations were developed to predict TSS from 
turbidity with PNN. As turbidity can be estimated instantly 
with the aid of sensor based electronic devices, TSS can also 
be predicted quickly with this empirical equation. Thus, a 
considerable amount of time, effort and infrastructure (i.e. 
cost) can be saved if this model is used to predict TSS instead 
of conventional methods of estimating TSS. However, the 
equation being empirical, it may not be accurate for a differ-
ent region. As TSS and turbidity are very closely related, the 
equation should be accurate in temporal variations and for 
other sets of data. If this model is used for routine monitor-

ing, the best practice will be to calibrate it in regular intervals 
with the results from conventional methods. 
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