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a b s t r a c t
This paper gives a novel approach to modeling, simulation and control of a water desalination 
plant. The process in desalination plant is based on a vapour compression acquired by a liquid jet 
vacuum ejector. Optimal plant design for a nominal operating point is obtained using the combi-
nation of the multi-objective optimization with the multi-criteria decision making. Furthermore, the 
dynamic steady-state model which includes a liquid jet vacuum ejector, pump, valve and pressure 
vessel is developed. Moreover, for the different values of inlet temperature and water mass flow 
rate (disturbances) the optimal regimes of system actuators are found by the antlion algorithm, with 
respect to the profit maximization. Also, the control-oriented model of the system has been developed 
and linearized around different operating points to design a gain-scheduling nonlinear proportional 
integral controller. Additionally, it is demonstrated that the proposed controller is capable of guiding 
the system through the optimal states under the influence of disturbances. A map of the controller 
gains is determined by extensive simulation minimizing the appropriate cost functions. High-fidelity 
model has been numerically simulated in order to demonstrate that the developed method provides 
the desired design specifications while minimizing operational costs.

Keywords:  Multi-objective optimization; Desalination; Process modeling; Process control; 
Gain-scheduling nonlinear PI control

1. Introduction

It is widely known that there is a limited amount of 
drinking water on the earth. Unfortunately, this water is not 
distributed evenly throughout the planet. The increasing 
demand for desalinated water, caused by the rapid growth 
of industries in the underdeveloped areas of the world, 
imposes the need for improvements in the production pro-
cess of desalinated water with lower costs [1,2]. Current 
trends in technology development and cost reduction are 
based on methods such as multi-stage flash distillation 
(MSF), multi-effect distillation (MED), vapour compression 
(VC), reverse osmosis (RO) and electrodialysis. It is expected 

that MSF, MED and RO will be the most dominant methods 
in the future [3,4].

Thermal and electrical energies are necessary for a wide 
variety of approaches, whereas RO consumes only electri-
cal energy. Furthermore, one of the benefits of RO methods 
is an energy recovery system, which makes them the most 
cost-effective methods. Different studies are dealing both 
with the dynamic and steady-state models of RO plants [5,6]. 
Moreover, there is a huge number of advanced techniques for 
dynamical modeling [7,8]. Presented dynamic models were 
used for simulation and control system designs as shown in 
the studies by Phuc et al. [9], Assef et al. [10] and Bartman 
et al. [11].
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Regarding thermal procedures for water desalination, 
current interest is on using renewable energy sources. Special 
trends are based on the utilization of solar energy for process 
heating [12]. A lot has been done in the field of modeling, 
simulation and optimization of solar evaporation systems for 
desalination [13–15].

RO has been the most utilized method for desalina-
tion because it has several advantages over other methods. 
However, when it comes to the process of desalination from 
geothermal water, the VC method presented in this paper has 
shown good results. Utilization of geothermal energy for water 
desalination can be achieved in two ways: by direct evapora-
tion of hot water, which emerges on the surface (geysers and 
hot springs), or indirectly, using geothermal energy for heat-
ing and evaporating water [16,17]. Significant improvements 
in the technology of water desalination from geothermal 
sources have not been observed in the last period, so more and 
more attention is paid to the optimization of thermodynamic 
parameters of the existing cycle to obtain lower investment, 
operational costs and less impact on the environment [18].

This paper has a goal to show a novel approach of mod-
eling, simulation and control of the water desalination plant 
based on VC with a liquid jet vacuum ejector. The system 
description and problem statement are presented in Section 2.

Plant design for nominal operating point was carried 
out by the multi-objective optimization (MOP) with the 
multi-criteria decision-making (MCDM) method, as presented 
in Section 3. Due to monthly changes of inlet water tempera-
ture and flow rate, it was necessary to acquire optimal work-
ing regimes for system actuators (pumps and valves) with 
respect to profit maximization for different operating points.

In Section 4, nonlinear dynamical model for control pur-
poses is derived and verified by applying the results of the 

steady-state simulation. Bearing in mind slow changes in 
the disturbances, controls strategy is studied. Furthermore, 
the model is linearized and validated using the previously 
obtained nonlinear model and two control gain-scheduling 
algorithms, linear and nonlinear. The proposed algorithms 
have the goal to guide the plant trough optimal states for dif-
ferent operating points.

Results of numerical simulation are presented in Section 5. 
The worst case scenario is applied in order to test the control 
algorithms. Additionally, a family of proportional integral 
(PI) controllers are chosen, tuned and compared. Finaly, con-
clusion and key findings are given in Section 6.

2. System description and problem statement

2.1. System description

The water desalination plant under consideration is 
shown in Fig. 1. It is supplied with a geothermal water from 
one or more hot springs through the balancing tank for 
desalination (BTD). By maintaining a constant level in the 
BTD, a constant flow through the valve V1 into the vessel P1 
is ensured. The vessel P1 is under pressure lower than the 
pressure corresponding to the evaporation temperature of 
the inlet water. Low pressure in the vessel P1 is maintained 
using the liquid jet vacuum ejector E1. A saturated steam is 
entrained in the ejector E1. Due to the low entrained ratio (ER) 
the steam is completely condensed in the ejector. Therefore, 
to hold the constant water temperature (t104) at the steady-
state regime a heat exchanger HE1 is utilized. The inlet and 
the outlet temperatures of the cold fluid (river water) in HE1 
are assumed to be equal and constant. The purpose of pump 
PU2 is to drain boiled water and to maintain a constant liquid 

Fig. 1. PID and control structure of a water desalination plant.
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level in the vessel P1. Pump PU1 together with valve V2 con-
trol the pressure in the vessel P1 indirectly. Vessel P2 is used 
to supply a part of the desalinated water to the consumers 
and maintaine a constant level of water necessary for the nor-
mal operation of the pump PU1.

Pumps PU1 and PU2 are controlled by frequency con-
verters, while V1 and V2 are control valves. Level transmit-
ters (LT)-BTD and LT-P1 have been mounted at the BTD and 
P1, respectively. Similarly the pressure transmitter measures 
pressure in the P1.

2.2. Problem statement

The plant design has been done for nominal operating 
points (ṁ101 = 1.0 kg/s and t101 = 82°C) with respect to minimiza-
tion of exergy loss, investment costs and profit maximization.

Due to monthly changes, the temperature and mass flow 
rates of geothermal mineral water are varying. During the 
winter, the temperature of the geothermal water is decreas-
ing to 65°C, while in the summer the temperature can 
increase up to 82°C. Analogously, the mass flow rates vary 
as well. During the summer the mass flow rates can decrease 
to 0.05 kg/s. On the other hand, during the winter it can have 
a value up to 1 kg/s (Fig. 2). Therefore, these parameters are 
modeled as disturbances.

The constant water levels in the BTD and P1 are con-
trolled by controllers R1 and R2 (Fig. 1) by means of valves 
V1 and V2, respectively.

Commonly the pump for the motive fluid does not have 
a controller, thus, it operates at a fixed frequency which is 

provided by the power network (50 or 60 Hz). Therefore, one 
of the disadvantages is the possibility of the ejector cavita-
tion that could occur when the disturbance takes place. In 
addition, there is no guarantee that the system shall have the 
maximum effectiveness of its capacity for different values of 
inlet mass flow rates and temperatures (State 101). To avoid 
mentioned problems, in order to maximize the capacity and, 
therefore, the profit, it is necessary to determine the opti-
mal operating point for different values of inlet temperature 
(t101) and mass flow rate (ṁ101) applying a single-objective 
optimization.

The optimal operating points can be achieved by intro-
ducing the controller R3, whose purpose is to control the 
system through the optimal trajectory under the influence of 
disturbances. Controller R3 leads the pump’s PU1 frequency 
and at the same time the hydraulic resistance of the valve V1. 
The inlet temperature (t101) and mass flow rate (ṁ101) are mea-
sured disturbances, whereas pressure p102 is the manipulated 
variable of the controller R3.

In order to simplify the problem, certain reasonable 
assumptions have been introduced. Because the tuning 
of controllers R1 and R2 is a trivial control problem, it is 
assumed that both of them are perfectly tuned, working 
within the desired limits. Thus, the water levels in BTD and 
P1 are constant. In addition, heat loss in the vessel P2 is neg-
ligible, so t104 = t106. Following the assumptions, the system 
diagram can be simplified (Fig. 3).

3. Optimization: modeling and simulation

In this section, steady-state modeling and plant design 
are conducted using MOP along with MCDM.

Firstly, the core theory used in this chapter is presented 
in Subsection 3.1. Then, the design of the water desalination 
plant was carried out by the MOP in Subsection 3.2, followed 
by steady-state simulation and optimization of the plant 
operation in Subsection 3.3. At the end of the section, the 
optimization results are presented in Subsection 3.4.

3.1. Theoretical background

3.1.1. MOP—non-dominated sorting genetic algorithm 
(NSGA-II) method

MOP has been defined as a finding vector of decision 
variables satisfying constraints to give acceptable values to 
all objective function. Mathematically defined MOP can be 
expressed as follows: find the vector X x x xn

* * * *= …[ , , , ]1 2  to opti-
mize F X f x f x f xn( ) [ ( ), ( ), , ( )]* * * *= …1 2 , subject to m inequality 
constraints gi(X) ≤ 0 and p equality constraint hj(X) = 0.

Without loss of generality, it can be assumed that all of 
the objective function has to be minimized. In general, objec-
tive functions are not in consistency, such that minimization 
of one objective does not lead to a minimization of the others. 
Because of that goal of the MOP is based on finding Pareto 
optimal decision vectors (Pareto set) P* = {X ∈ Ω|∄X′ ∈ Ω: 
F(X′) ≺ F(X)} along with the Pareto front PF* = {F(X) = (f1(x), 
f2(x), …, fn(x))}. More definitions concerning Pareto opti-
mality, Pareto dominance, etc. can be found in the study by 
Coello [19].

In this paper, we use NSGA-II proposed by Deb et al. [20]. 
NSGA-II is the type of evolutionary algorithm commonly 

(a)

(b)

Fig. 2. Changes of (a) ṁ101 and t101 during a year.
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used for MOP problems. It is a modified version of original 
NSGA and has a better sorting algorithm, incorporates elit-
ism and has no sharing parameter needs to be chosen a priori.

The pseudo code of algorithm [21] is presented as 
Algorithm 1.

3.1.2. Analytic hierarchy process (AHP)–simple additive 
weighting (SAW) method

One class of approaches for solving MCDM problems are 
based on the well-known AHP, which reduces complex deci-
sions to a series of pairwise comparisons and synthesizes the 
results [22].

AHP enables comparison of alternatives, by a specific cri-
terion, in pairs, on the basis of which the assessment matrix 
is formed. Sati’s scale gives a sufficiently precise comparison. 
In this scale, the criteria are compared with numbers 1 to 9. 
Preference matrix is expressed as follows:

MP =
















1

1

1

1
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X

n
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The decision-makers consistency is measured by a 
consistency ratio calculated as follows:

CR
RI

=
−

−
λmax

( )
n

n 1  (2)

where λmax is the highest eigenvalue of the assessment matrix; 
n is the number of alternatives and RI is a coefficient that 
depends on the number of alternatives to be compared.

SAW which is also known as a weighted linear combi-
nation or scoring methods is one of the simplest and most 

often used in combination with AHP. The additional details 
of AHP–SAW methodology are presented in [23].

3.1.3. The antlion optimizer

The antlion optimizer (ALO) is a type of metaheuristic 
algorithm used for single-objective optimizations, which was 
first introduced by Mirjalili [24]. The ALO mimics the interac-
tion between antlions and ants in the trap, such that ants are 
moving over the search spaces, whereas antlions are hunting 

Fig. 3. PID and control structure of a simplified water desalination plant.

Algorithm 1. NSGA-II algorithm
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them and becoming fitter using traps. The movement of ants 
is purely stochastic, and random walk is chosen as a model of 
ants movements. Beside ants, antlions are also hiding in search 
space. Similarly, positions and fitness functions of the ants are 
also stored in matrices. Ants update random walk in every 
iteration, and a random walk is normalized in order to keep it 
in search space (Eq. (3)). After each iteration, ants and antlions 
positions along with the evaluated fitness functions are stored 
in matrices. It should be noted that the random walk of ants is 
affected by antlion traps presented in Eqs. (4) and (5).

X
X a d c

b a
ci

t i
t

i i
t

i
t

i i
i=

− −
−

+
( )( )

( )  (3)

c ci
t

j
t t= +Antlion  (4)

d di
t

j
t t= +Antlion  (5)

where ai is the minimum of random walk of i-th variable, bi 
is maximum of random walk of i-th variable, ci

t is minimum 
of i-th variable at t-th iteration, di

t is maximum of i-th variable 
at t-th iteration, ct is the minimum of all variables at t-th iter-
ation and dt is the maximum of all variables at t-th iteration.

The radius of ants random walk hypersphere is decreased 
with each iteration (Eqs. (6) and (7)).

c
I

t =
lb  (6)

d
I

t =
ub

 (7)

where lb is lower bound of search space, ub is upper bound 
of search space and I is iteration coefficient.

Positions of the antlions are influenced by the position 
of the fittest ants. Furthermore, an antlion updates its posi-
tion to the position of the ant if the following requirement is 
satisfied:

f fi
t

j
t

j
t

i
t( ) ( )Ant Antlion Antlion Ant> → =  (8)

where t shows the current iteration, Ant i
t indicates position 

of the i-th ant at t-th iteration and Antlion j
t is position of j-th 

antlion at t-th iteration.
Elitism in ALO is introduced by choosing the fittest ant-

lion. Besides, it is assumed that every ant randomly walks 
around a selected antlion and elite as follows:

Ant i
t A

t
E
tR R

=
+
2

 (9)

where RA
t  is a random walk around the antlion selected by 

the roulette wheel at t-th iteration and RE
t  is the random walk 

around the elite at the t-th iteration.

Pseudocode of the ALO is presented in Algorithm 2, and 
additional explanation of the ALO can be seen in the study 
by Mirjalili [24].

3.2. Mathematical modeling

In this study, the design of the water desalination plant 
was carried out by the MOP. NSGA-II algorithm did not show 
satisfactory performances in three objective optimizations, 
hence, two-objective optimization has been considered.

Water desalination plant along with all thermodynamic 
states of process fluids is presented in Fig. 3. The goal of 
MOP and MCDM is to minimize the total investment costs 
(Cinv) and exergy loss (EXloss) while maximizing profit. The 
total exergy loss is added as additional discrete criteria in 
MCDM, whereas Cinv and profit were used as objective func-
tions in MOP. The MOP is performed by varying the fol-
lowing thermophysical properties q V V=  

107 103/ , p102 and t104. 
Thermodynamic states of the plant can be determined by the 
mass and energy balances. The constant values of the ther-
modynamic states are presented in Table 1. The following 
assumptions have been introduced:

1. The friction losses in heat exchanger, pipes and pressure 
vessels are neglected;

2. Water is assumed to be pure H2O;
3. Environmental conditions of the ambient temperature 

and pressure are also used for enthalpy and exergy 
calculations;

Table 1
Constant thermophysical states of water desalination plant

triver, K 293.15
tamb, K 293.15
ṁ101, kg/s 1
p101, Pa 101,325
p104, Pa 101,235
p105, Pa 101325
p108, Pa 101,325
t101, K 355.15
pamb, Pa 101,235

Algorithm 2. The antlion optimizer algorithm
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4. Heat loss in surrounding is neglected;
5. Averaged fluids thermophysical characteristics are used 

in heat exchanger calculations; and
6. Constant total heat transfer coefficient in HE1 is 

k = 1,000 W/m2K.

The thermophysical properties and thermodynamic 
states are calculated by CoolProp [25].

Applying the experimental equations given in the study 
by Sokolov [26], the inlet motive fluid mass flow rate, pres-
sure and exergy loss are found by Eqs. (10)–(12), respectively.





m
m

q107
103

103

15
107=

⋅
⋅

⋅
ρ

ρ  (10)

p p p q p107 104 103

2

1031 4 1
15

= − ⋅ ⋅ +








 +( ) .  (11)

EXloss ambE t m s m s m s1 102 102 103 103 101 101= ⋅ + −( )    (12)

Energy and exergy balance of the heat exchanger HE1 are 
shown in Eqs. (13) and (14), whereas the total surface area of 
HE1 is calculated by Eq. (15).

Q m h m hHE1 104 104 105 105= −   (13)

EXlossHE amb
HE

amb
1 105 105 104 104

1= ⋅ − +








t m s m s

Q
t

   (14)

S
Q

k tHE
HE1

HE mean,HE1
1

1

=
⋅ ∆  (15)

Energy and exergy balances for the vessel P1 are as 
follows:

  m h m h m h101 101 102 102 103 103= +  (16)

EXloss ambp t m s m s m s1 102 102 103 103 101 101= ⋅ + −( )    (17)

The energy and exergy balances of the PU1 and PU2 can 
be determined, in the same manner, as follows:

h
h h

hout
out,ideal in

adb
in=

−
+

η
 (18)

P h h
PU out in* = −  (19)

EXloss
PU amb out out in in* = ⋅ −t m s m s( )   (20)

Total exergy loss of the water desalination plant is as 
follows:

EXloss = EXloss EXloss EXloss
EXloss

  +  +  
+  +

tot HE1 1 PU1

PU2

E

  EXloss 1P
 (21)

Daily profit of water desalination plant is calculated by 
subtracting costs of electricity (it is assumed that other costs 
are negligible) from plant revenue:

Profit = 24 3600 price
( + )

1000
costs

 
103 water

PU1 PU2
e⋅ ⋅ ⋅ ⋅−m

P P
ii









  (22)

where pricewater is the water price per 1 kg of the water and 
costsei is the electricity costs per 1 kWh of the electrical energy.

Total investment costs are calculated by detail factor 
analysis method [27] as follows:

C C f f f f fINV ISBL ISBL ISBL OSBL ENG CONT   = ( + ) (1 + + )⋅ ⋅  (23)

f f f f f f f fISBL = + + + + + + +1 1 2 3 4 5 6 7  (24)

where CISBL is a total cost of equipment; CISBL is expressed for 
every piece of the equipment as shown in Table 2.

Values of coefficients in Eqs. (23) and (24) are shown in 
Table 3. Additionally, different authors expressed cost func-
tions for a different time period, because of that functions are 
modified by Chemical Engineering Plant Cost Index (CEPCI) 
for 2013. More details about CEPCI influential factors can be 
observed in the study by Vatavuk et al. [29]

In order to get reasonable results from MOP, following 
constraints are added:

mi > 0  (25)

∆tmean,HE1 > 0  (26)

∆tmean,HE1 ∈  (27)

The Pareto front, with 100 optimal alternatives obtained 
by performing NSGA-II algorithm, is shown in Fig. 4(a), 

Table 2
The cost functions of various equipments in the water 
desalination plant [27,28]

System 
component

Cost functions

Pump C VISBL,PU = + ⋅( ) ⋅3300 48 925 8
478 6

1 2


. .
.

Ejector C D DISBL,E diffuser diffuser= + ⋅ − ⋅148 4 18 04 002752 2. .

Heat 
exchanger

C SISBL,HE HE= + ⋅( ) ⋅6460 64 5 621 6
394

0 97. ..

Vessel C VISBL,P = ⋅ ⋅780 567 5
478 6

0 72. .
.
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while in Fig. 4(b) the whole space of decision alternatives is 
presented.

From the obtained Pareto front, the investor should decide 
which plant to choose. Therefore, the investor must show 
his/her preferences according to the given criteria. Bearing 
in mind that the investment cost is still the most important 

motive of the investor, it follows that the maximization of the 
profit is the crucial factor, whereas the least significant cri-
terion is the sustainability of the plant. The AHP preference 
matrix for the three criteria, set in the order of profit, invest-
ment, exergy loss, is given by the Eq. (28).

MP = 

Profit Investment Exergy loss
Profit 1 3 9

Investment 0.333 1 3
EExergy loss 0.111 0.333 1





















 (28)

The optimal alternative 65 (Fig. 5) is made such that con-
sistency ratio is CR = 0. The weight factors determined by the 
AHP method is w = [0.69    0.23    0.078].

The alternatives of the plant are sorted in the direction of 
growth of profit increase; so the sensitivity analysis can show 
that the change in the weight, (or preferences) of the decision 
maker, influences the change in the choice of the alternative. 
The sensitivity analysis is shown in Fig. 12.

Based on the sensitivity analysis, it can be observed 
that for values of the high-profit weights, the optimal deci-
sion tends to the alternatives with the highest profit and 
investment cost. Whereas the higher weights values of the 
investments and exergy losses lead to the alternatives where 
production of the desalinated water is low. It is also notewor-
thy that the alternative 65 is robust, that is, in a wide range 
of movements, the weight of profit, investment and exergy 
losses does not change. In according with the alternative 65, 
following geometric dimensions of the plant are obtained 
and presented in Table 4.

3.3. Steady-state simulation and optimization of plant operation

After evaluating the results of the combination of MOP 
and MCDM, the optimal plant design in the nominal operat-
ing point is selected.

Due to the change of seasons, the temperature and mass 
flow rates of mineral water are varying. During winter a tem-
perature of geothermal water is decreasing to 65°C, while the 
average summer temperature is around 82°C. Similarly, the 
mass flow rates are varying in the range from 0.05 to 1 kg/h. 
The goal is to determine the operating point of the pump 
(frequency) and position of the control valve (hydraulic resis-
tance) in order to maximize the profit of the plant (Eq. (22)).

The simulation constraints are given in the form of phys-
ical limitations concerning the frequency range from 15 to 
50 Hz and the range of valve hydraulic resistance 4.66 to 
300. In addition to optimization constraints presented by 
Eqs. (25)–(27), an additional limitation has been introduced 
regarding the cavitation of the ejector operation represented 
by the equation:

p p103 1500< +107,cavitation Pa  (29)

where p107,cavitation is the saturation pressure of operating water 
for temperature t107.

The maximum number of iterations was held fixed 
(ITERmax = 100). Simulations were performed at three 

Table 3
Values of coefficients used in the evaluation of total investment 
costs

Position Label Value

Installation of equipment f1 0.2
Pipes, ducts, etc. f2 0.2
Measuring and automation equipment f3 0.3
Electrical equipment and work f4 0.2
Construction works f5 0.05
Load-bearing structures and buildings f6 0.05
Protective works f7 0.05
ISBL factor fISBL 2.05
OSBL factor fOSBL 0.1
Engineering fENG 0.3
Unexpected expenses fCONT 0.1

ISBL — Inside battery limits; OSBL — outside battery limits.

(a)

(b)

Fig. 4. (a) Pareto front of optimal decision and (b) MCDM 
alternatives.
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temperatures 65°C, 73.5°C and 82°C. For each temperature, 
the mass flow rate has been varied from 0.05 to 1 kg/s, with a 
step of 0.05 kg/s. Other parameters of antlion algorithm have 
been set as shown in the study by Mirjalili [24].

Simulation of the process in a steady state has been 
made in accordance with the equations for mass and energy 
balances of each individual part of the plant.

3.3.1. Pump—PU1

Based on calculations for the individual parts of the 
plant (Table 4) and constant thermophysical states of water 
desalination plant (Table 1) the following pump is chosen: 
Grundfos NK 125-250/222 A2-FAE-BAQE. Pump characteris-
tic is shown in Fig. 6(a) (continuous blue line).

Data obtained from the manufacturer are given as a dis-
crete set of values and only for one frequency. The data are fit-
ted for a variety of frequencies by linear regression (Furrier’s 
second-order method) evaluated as follows:

Table 4
Geometric sizes of individual parts of plant equipment

Anozzle, m2 0.0038
Anozzle/Achamber 0.19183
L, m 10
SHE, m2 10
D, m 0.2588
Sc, m 0.01
ds, m 0.04

(a)

(b)

Fig. 6. (a) Actual pump characteristics (from manufacturer) and 
(b) fitted pump characteristics for tw = 346.65 K, ρw = 975.7 kg/m3 
and f = 50 Hz.

(a)

(b)

(c)

Fig. 5. Sensitivity analysis of MCDM: (a) EXloss, (b) investment 
and (c) profit. It can be observed that for values of high-profit 
weights, the optimal decision tends to the alternatives with high-
est investment cost. Also, the higher weights values of invest-
ment and exergy losses lead to low production of desalinated 
water. Alternative 65 is robust, that is, in a wide range of move-
ments, the weight of profit, investment and exergy losses does 
not change.
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y a a x b x a x b x= + + + +0 1 1 2 22 2cos( ) sin( ) cos( ) sin( )ω ω ω ω  (30)

where a0 = 47.31, a1 = 10.711, a2 = 0.4696, b1 = 15.27, b2 = 0.2751 
and ω = 0.004719.

The spectre of pump characteristics for different 
frequencies, which drives the pump, is given in Fig. 6(b). Due 
to the motor’s frequency limitation and cavitation, the pump 
cannot work at every point represented in the diagram. 
Therefore, minimal and maximal possible values are labeled 
as Qmin and Qmax.

3.3.2. Ejector—E1

Simulation equations of the liquid jet vacuum ejector 
(Eqs. (10) and (11)) are given in accordance with the 
semi-experimental equations shown in the study by 
Sokolov [26].

q m
h h
h h V

= ⋅
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⋅
⋅
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where ( , ) ( , )V p F f v107 107 = ζ .

3.3.3. Heat exchanger—HE1

The design of the heat exchanger is based on the energy 
balance equation and the system of equations for calculation 
of the overall heat transfer coefficient as a basis for using the 
NTU method [30]. The flow rate of the cold fluid (river water) 
is assumed to be infinite; so there will be no change of the cold 
fluid temperature (it is equal to the ambient temperature)—
consequentially R = ∞. By adopting the expression for the 
mean value of the Nusselt numbers, on the desalinated water 
side (Eq. (33)) [31], and on the river water side (Eq. (34)) [32], 
the desired temperature t105 can be determined based on the 
adopted surface and given states t104, p104 and tamb.

Nu Re PrD D
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= ⋅ ⋅ ⋅
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where Re is Reynolds number; Pr is Prandtl number; Nuriver 
and NuD are the Nusselt numbers of the cold fluid (river) and 
hot fluid (desalinated water), respectively; ϕt = (T/Tw)0.25 is the 
correction factor; a1 and a2 are experimental parameters; ds is 
the external pipe cross section; and Sc is the distance between 
the pipes.

Although the fouling factor plays an important role on 
performances of heat exchangers, as it has been shown in the 

studies by Genić et al. [33] and Milanovic et al. [34], in this 
paper they have been chosen to disregard the fouling.

3.4. Optimization results and discussion

The results of the plant optimization for different values 
of mass flow rates at the plant’s inlet (ṁ101) and temperatures 
(t101) are presented in Figs. 7 and 8. It can be observed (Fig. 7) 
that on the optimal trajectory, vapour pressure of entrained 
steam (p103) and corresponding temperature (t103) are increas-
ing with the increase of ṁ101 and t101. In addition, the mass 
flow rate of the desalinated water ṁ103 (Fig. 8(a)) along 
with the motive water pressure p107 and the mass flow rate 
ṁ107 (Figs. 8(b) and (e), respectively) are increasing with the 
increase of ṁ101 and t101. The temperature distribution on the 
optimal trajectory at the ejector and the heat exchanger out-
let t104 and t101, respectively, are presented in Figs. 8(d) and 
(c). The smoothness of the optimal trajectory is not guaran-
teed because of the constraints and applied heuristics. The 
change of the maximum profit of the plant with the ṁ101 and 
temperature t101 is presented in Fig. 9. It could be concluded 
that the larger values of the plant’s inlet mass flow rates ṁ101 

(a)

(b)

Fig. 7. Optimal trajectory at three temperatures t101. Change in (a) 
temperature t103 and (b) pressure p103, in vessel P1. Figure shows 
that on the optimal trajectory, pressure p103 and corresponding 
temperature t103 are increasing with the increase of ṁ101 and t101.
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Dependence of (a) ṁ103, (b) ṁ107, (c) t104, (d) t105 and (e) p107 with respect to mass flow rate ṁ101. Positive correlation can be observed 
between mass flow rate ṁ101, mass flow rate of the desalinated water ṁ103, motive water pressure p107 and mass flow rate ṁ107. Higher 
temperatures t101 lead to the lower values of pressure p107 for equal mass flow rates of desalinated water.
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and temperatures t101 are corresponding consequently to the 
higher profits and operational costs.

4. Control

Control strategy and controller design based on nonlinear 
dynamical model are presented in this section. A nonlinear 
model of the plant is presented along with simulation results 
in Subsection 4.1. Control strategy and linearization of the 
nonlinear model are presented in subsections 4.2 and 4.3, 
respectively. The latter subsections have been concerned 
with linear and nonlinear gain-scheduled controller design.

4.1. Modeling and simulation

In order to acquire a suitable dynamical model for the 
control purposes, as shown in Fig. 3, the following assump-
tions are introduced:

• The specific heat capacities of liquid at constant pressure 
(cp) and constant volume (cv) are constant;

• Volumes occupied by vapour (VV) and liquid (VL) are 
constant;

• Steady-state conditions of liquid jet vacuum ejector are 
assumed;

• Mass accumulation in vessel V1 is negligible;
• Water density is constant;
• Water vapour is saturated at the position 103, whereas 

liquid is boiled at the position 102 such that, p103 = p102 and 
t103 = t102.

Based on the volume ER, (Eq. (31)) and semi-empirical 
(Eq. (32)) mass flow rate ṁ103 can be expressed as follows:
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where (p107, ṁ107) = F(ζ,f).

Mass and energy conservation equations for the vessel 
P1 are presented respectively by the following equations:

  m m m101 102 103= +  (36)

d
dt

V c t V c t h

m c t

L L vL V V vLρ ρ⋅ ⋅ ⋅ + ⋅ ⋅ +( )( )
= ⋅ ⋅ −

102 102

101 101

∆ LAT

pL mm c t m c t h102 102 103 102⋅ ⋅ − ⋅ +( )pL pL LAT ∆
 (37)

Vapour density and latent heat are expressed by the 
following equations:

ρV D t D t D t D= ⋅ + ⋅ + ⋅ +1 102
3

2 102
2

3 102 4  (38)

∆h b t bLAT = ⋅ +1 102 2  (39)

where D1, D2, D3, D4, b1 and b2 are regression coefficients.
After simplification, the following expression is obtained:
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where B1 = b1 + CpL.
The simulation has been performed using a combination 

of the Eqs. (35) and (41). Initial conditions were t t102
0

101= , and 
the plant is considered to be in steady state with PU1 turned 
off. In addition, the simulation diagram of the plant is shown 
in Fig. 10.

Numerical simulations of the nonlinear mathemat-
ical model are presented in Fig. 11. Simulations have been 
performed for step input and three different temperatures. 
One of the methods to verify dynamical model is to com-
pare steady-state values from Fig. 7 with ones acquired 
through the simulation. It can be seen that the final values 
of dynamical simulation matches steady-state values from 
Fig. 7. Therefore, the presented dynamical model is consid-
ered accurate enough for control purposes.

4.2. Control strategy

From Eqs. (35)–(41) and Fig. 11, it can be determined 
that the plant is stable for arbitrary input value. However, 
the steady-state values are suboptimal, time constants are too 
high and the tracking of the desired value is poor. Therefore, 
in order to improve the system performance a PI controller 
is introduced. Besides, following problems are occurring; 
firstly, the plant is highly nonlinear, and secondly, it cannot 
be linearized around some nominal operating point because 
the operating point is varying with the variation of the dis-
turbances. Considering the latter, a feedback gain-scheduling 
controller is proposed (Fig. 12). The gains of the proposed 

Fig. 9. Cost functions of single-objective optimization. The larger 
values of plant’s inlet mass flow rate ṁ101 (and temperature t101) 
correspond to the higher profits and operational costs.
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(a) (b)

(c)

Fig. 11. Step responses of nonlinear plant model for every optimal operating point initiated with optimal values of f(Hz) and ζv: 
(a) t101 = 335.15 K, (b) t101 = 346.65 K and (c) t101 = 355.15 K.

Fig. 10. Plant’s simulation diagram.
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controller are corrected as the disturbances vary. It should be 
noted that the presented controller will control the frequency 
of PU1, while hydraulic resistance V2 was controlled by the 
lookup table formed from Table 5.

Further, using the optimal values from Table 5, an opti-
mal value lookup table is formed. Applying the linear inter-
polation on the optimal values form the lookup table, an 
optimal reference signal r(t) is acquired as a desired optimal 
trajectory (Fig. 7).

To obtain controller gains for each value of the dis-
turbance, a linearized plant at the same operating point 
in which the optimum values are calculated is needed. 
Adjustment of the controller gains is occurring continuously 
as the disturbance changes, whereas the values between two 
data in lookup table are obtained by linear interpolation. 
Variations in the disturbances are influencing a change in 
the optimal reference signal. Hence, the controller is going 

to be tuned to have good reference tracking characteristic, 
thus, the integral absolute error (IAE) should be as smallest 
as possible.

4.3. Linearization

In order to tune the gain-scheduled controller, as it has 
been evaluated in Subsection 4.2, the linear model in each 
optimization point is necessary.

From Figs. 10 and 11, it can be concluded that the plant 
can be represented as the first-order linear system around the 
desired operating point described as follows:

G s K
sTp( ) =

+1
 (42)

where K represents process gain, T is time constant and s is 
Laplace operator.

Optimal values of f and ζv, from Table 5 are adopted for 
step initialization. The nonlinear step response model was 
obtained by simulating step responses using a simulation 
diagram (Fig. 10).

Obtained nonlinear step responses are linearized by cal-
culating time constant T(s) and gain K(–)of the first-order 
process for every operating point. Hence, the plant was lin-
earized in 20 operating points per an optimized temperature. 
The results of linearization are shown in Fig. 13.

This simple yet effective method can be verified by com-
paring nonlinear and linearized step responses. In Fig. 14, 
the comparison was shown only for three operating points 
per optimized temperature. Because the ejector has a highly 
nonlinear dynamic, this results is considered to be accurate 
enough to calculate controller parameters.

4.4. Gain-scheduling proportional integral control (GSPI)

Gain-scheduling controllers are one of the most popular 
approaches for nonlinear control design. It has been used 
successfully in various industries especially in process con-
trol. Because the PID controller is the most used conventional 
controller, and therefore PI as a particular case, it is the logi-
cal first choice of the controller for the stable plant.

The optimal reference signal, gains of the PI controller 
and optimal hydraulic resistance ζv are acquired by using 
lookup tables and measuring the disturbances. Error sig-
nal, e(t), is formed as a difference between an optimal ref-
erence signal, r(t), and plant output, y(t), as it can be seen 
in Fig. 15.

It is shown that the plant can be represented as a series of 
linearized first-order linear ordinary differential equations. 
Henceforth using the Laplace transformation, the system will 
have the general form (Eq. 42).

Adopting PI regulator can be expressed as follows:

g t K e t K e dc p i

t

( ) ( ) ( )= + ∫
0

τ τ  (43)

where e is error signal, Kp and Ki are PI gains, respectively.
By applying the Laplace transform on controller transfer 

function is obtained:

Fig. 12. General control system block diagram. Controller gains 
and reference signal r(t) are adjusted online according to the 
current disturbance signal d(t).

Table 5
Optimal values of f and ζv for different inlet mass flow rates ṁ101 
and temperatures t101

ṁ101 
(kg/s)

t101 = 335.15 K t101 = 346.65 K t101 = 355.15 K
f(Hz) ζv(–) f(Hz) ζv(–) f(Hz) ζv(–)

0.05 35.21 75.05 36.34 86.10 35.13 72.01
0.10 41.51 136.53 35.29 69.29 35.67 71.01
0.15 35.47 69.03 35.57 66.95 35.85 66.56
0.20 36.94 80.12 42.27 129.34 36.12 63.07
0.25 35.94 65.66 42.58 126.5 36.67 62.79
0.30 36.69 69.32 39.27 88.81 36.66 57.28
0.35 36.39 62.35 36.62 58.03 37.03 55.53
0.40 36.67 61.58 36.87 56.10 37.15 51.64
0.45 36.59 57.43 40.13 83.07 37.51 50.41
0.50 38.19 69.55 44.00 114.58 38.03 50.96
0.55 36.96 54.21 38.12 56.15 38.28 49.01
0.60 37.24 53.94 37.78 49.47 38.40 46.13
0.65 40.33 80.03 37.85 46.66 38.82 46.21
0.70 37.79 53.38 38.34 47.98 40.21 54.69
0.75 37.60 48.75 41.37 71.97 39.01 41.18
0.80 40.87 76.30 38.58 44.18 39.38 41.38
0.85 38.63 53.25 38.80 43.38 39.53 39.75
0.90 44.87 106.45 38.92 41.82 39.08 36.06
0.95 38.27 45.24 39.01 40.14 39.74 36.29
1.00 39.81 56.78 46.14 98.22 39.98 35.97
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(a) (b)

(c)

Fig. 14. Step responses of nonlinear and linearized plant model for three optimal operating points initiated with optimal values of 
f(Hz) and ζv(–).

(a) (b)

(c)

Fig. 13. Step response of linearized plant model for every optimal operating point initiated with optimal values of f(Hz) and ζv(–): 
(a) t101 = 335.15 K, (b) t101 = 346.65 K and (c) t101 = 355.15 K.
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G s K
sTc c
i

( ) = +








1 1

 (44)

where Kc is controller gain and Ti is integral time.
After adding the feedback controller to linearized plant 

the closed-loop system will have second-order form as 
follows:

G s
s s

( ) =
+ +

1
2 1

2

0
2

0ω
ζ
ω

 (45)

where ω0 is natural frequency and ζ is damping ratio.
Therefore, having the second-order system, it is possible 

to place poles of the closed-loop system by changing the con-
troller parameters to obtain the desired relative dumping, ζ, 
and natural frequency of poles, ω0, as it is evaluated in the 
study by Åström and Hägglund [35]:

K
T
Kc =

−2 10ζω
 (46)

T
T
Ti =
−2 10

0
2

ζω
ω  (47)

Considering Eqs. (42) and (44), system transfer function 
can be presented as follows:

G s
G s G s
G s G s
p c

p c

( )
( ) ( )

( ) ( )
=

+1  (48)

where open-loop transfer function is expressed as follows:

L s G s G sp c( ) ( ) ( )=  (49)

Eq. (49) can be further developed by applying Eqs. (42) 
and (44):

L s K
sT

K
K
sT

KcK sT
s TT sTc
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i

i

i i

( )
( )
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+

⋅ +








 =

+
+1

1
2  (50)

Applying Fourier transformation to Eq. (50) (formally 
s = jω) phase margin (PM) can be calculated as follows:

PM L j= +π ∠ ω( )  (51)

Controller gains are tuned utilizing Eqs. (46), (47) and 
(51) bearing in mind that all tuned linearized plants have the 
same PM, dumping, ζ, and overshoot (OS) (%), as it is shown 
in Table 6.

4.5. Gain-scheduling nonlinear proportional integral control 
(GSNPI)

To improve tracking performance of system, the non-
linear PI controller with the variable gains are introduced. 
Improvement of the conventional to a nonlinear PID controller 
is based on the way that controller interprets the error signal. 
The idea is to make the controller more sensitive for smaller 
error signals and less sensitive for larger error signals [36,37].

The proposed nonlinear modification of error signal is 
given by the following equation and Fig. 16:

e t e t e tc( ) ( ( )) ( )
/

= sign
1 2

 (52)

Modified PID controller has the following form:

G s K e t K e d K ec p c i

t

c d c( ) ( ) ( )= + +∫
0

τ τ   (53)

thus, modified PI is as follows:

G s K e t K e dc p c i

t

c( ) ( ) ( )= + ∫
0

τ τ  (54)

Fig. 15. Block diagram of the proposed control system.
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The same parameters were used for bots GSPI and 
GSNPI controllers and they are tuned on the manner already 
explained in Subsection 4.4.

5. Simulation results

Variety of controllers derived from PID have been tested 
by extensive simulation. Simulations have been performed for 
initial conditions t102

0 355 15= . K. Change in the disturbances 
was chosen to simulate real-life worst-case scenario, where 
mass flow rate ṁ101 drops and temperature t101 rises over a 
period of 1,000 s, as shown in Fig. 17. Nonlinear differential 
equations have been solved using variable step ODE45 solver 
in Matlab/Octave program package. The nonlinear algebraic 
equation has been solved using the bisection method.

Performances of the controllers have been compared 
using following criteria: IAE, integral time absolute error 
(ITAE), integral square error (ISE) and integral time square 
error (ITSE) [35].

The comparison is given in Table 6. It can be seen that 
the best results were obtained by utilizing GSPI and GSNPI 
controllers with parameters calculated for the following per-
formance: PM = 60, ζ = 0.577 and OS = 10.8%. Lookup table of 
GSPI controllers gains for Kc and Ti is given in Figs. 18(a) and 
(b), respectively.

Simulation results for GSPI and GSNPI controllers are 
given in Fig. 19. It is to be noted that the nonlinear con-
troller needs more time to place the system in the vicin-
ity of the optimal trajectory. The reason for this behavior 
is the penalization of the error signal for larger differ-
ences between the reference signal and the process value. 
Although both gain-scheduling controllers have similar 
control trajectories (Fig. 20), the nonlinear controller has 
better reference tracking, which can be concluded due to 
the difference in error signals (Fig. 21). Because the refer-
ences derived from the lookup table present the optimal 
trajectory of the system, superb reference tracking is nec-
essary. Therefore, this justifies the use of GSNPI controller 
for this type of systems.

Table 6
Comparison of simulated controllers by IAE, ITAE, ISE and ITSE criteria

No. Controller Phase margin (°) Dumping ζv(–) Overshot (%) IAE ITAE ISE ITSE

1 GSI 30 0.536 13.6 1233.0 3.218 • 105 25410.0 1.833 • 108

2 GSI 45 0.536 13.6 1220.0 3.211 • 105 25400.0 1.833 • 108

3 GSPI 60 0.577 10.8 398.6 7.81 • 104 6110.0 1.048 • 107

4 GSNPI 60 0.577 10.8 351.7 2.188 • 104 5621 9.642 • 106

5 GSI – 0.642 8.8 1490.0 3.9302 • 105 22381 3.482 • 107

6 GSPI 70.4 0.707 4.3 413.2 8.593 • 104 6399.0 1.328 • 107

7 GSPI 70.5 0.709 4.3 407.6 8.4765 • 104 6408.0 1.303 • 107

8 GSPI 75 0.772 2.2 443.7 9.15 • 104 6999.0 1.49 • 107

9 GSPI 80 0.850 0.6 499.1 9.985 • 104 7886.0 1.767 • 107

10 GSPI 90 1 0 689.7 1.262 • 105 10660.0 2.698 • 107

11 PI 60 Kp = –1.10375 Ti = –5.331 432.7 8.641 • 104 8912 1.672 • 107

GSI — Gain schedule integral.

Fig. 16. Linear and nonlinear gains. Linear controller gain (blue) 
passes the error value to the controller, on the other hand, 
nonlinear gain (red) is passing penalized values for large error 
signals and gained values for smaller error signals.

(a)

(b)

Fig. 17. Time change of input temperature t101 and mass flow rate 
ṁ101 during 1,500 s of simulation.
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6. Conclusion

This paper gives a novel approach for modeling, simu-
lation and control of a thermal VC water desalination plant 
with liquid jet vacuum ejector. In the nominal regime, the 
optimal plant design is obtained by performing both MOP 
(NSGA-II), with respect to total investment costs and profit, 
and MCDM (AHP and SAW method). Due to variations of 
temperatures and mass flow rates with seasons, simula-
tions of the plant have been performed for different values 
of inlet boundary conditions. Based on the single-objective 
optimization (antlion algorithm) profit is maximized for 
a wide variety of inlet mineral water mass flow rates and 
temperatures. Additionally, in order to govern the plant 
through optimal thermodynamic states gain-scheduling 
controllers were designed. Moreover, different controllers 
have been compared. It has been shown that the best perfor-
mance can be achieved by utilizing GSNPI. The GSPI can be 
used for engineering purposes due to more straightforward 
implementation.

Future studies of this multi-disciplinary research sub-
ject involve the use of different optimization and MCDM 
algorithms along with more advanced controllers such as 

a model predictive controller. Development of an online 
optimizer coupled with an advanced controller is also a 
possibility.

(a) (b)

Fig. 18. Surface of tuned parameters of GS(N)PI controller for all evaluated values of ṁ101 and t101: (a) controller gain Kc and (b) integral 
time Ti.

(a)
(b)

Fig. 19. (a) Simulation of nonlinear system controlled by the gain scheduling PI and nonlinear PI controller under the influence of 
disturbances, with initial condition t102 = 355.15 K. Penalization of error signal causes GSNPI to be slower then GSPI when the error 
signal is larger. (b) Close-up look on the area where disturbance is taking place. It can be noted that GSNPI has better reference track-
ing than GSPI controller.

Fig. 20. Control signal u, generated by GSPI and GSNPI during 
simulation. Figure shows that although both controllers have 
similar control trajectories GSPI slightly more utilize the pump 
PU1. Therefore, it can be said that GSNPI controller is more 
optimal.
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Symbols

t — temperature, K
p — Pressure, Pa
h — Enthalpy, J
Q — Total heat transfer, W
ṁ — Mass flow rate, kg/s
V  — Volumetric flow rate, m3/s
cp —  Specific heat capacity at constant 

pressure, J/kg K
cv —  Specific heat capacity at constant 

volume, J/kg K
A — Cross-section area, m2

L —  Pipe length between pump and ejector inlet, 
m

D — Pipe diameter, m
V — Volume, m3

ds — Diameter of heat exchanger tube, m
SHE — Heat transfer area, m2

Re — Reynolds number, –
Pr — Prandtl number, –
Nu — Nusselt number, –
f — Frequency, Hz
profit — Installation profit, EUR
EXloss — Exergy destruction, W

Greek

ρ — Density, kg/m3

ζ — Hydraulic resistance of the valve, –
τ — Time of integration
ϕ — Correction factor

Subscripts

V — Vapour
L — Liquid
w — Water
LAT — Latent
in — Inlet
out — Outlet
amb — Ambient
P1 — Vessel 1
PU1 — Pump 1
PU2 — Pump 2
V1 — Valve 1
V2 — Valve 2
E1 — Ejector
HE1 — Heat exchanger 1
sat — Saturation
tot — Total
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