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In this research, a model based on the multi-objective optimal design of GMDH1-type neural 
network is proposed for evaluating the quality of treated water. To validate the proposed model, 
a case study was carried out based on the data sets obtained from Rasht Water Treatment Plant 
(WTP), Guilan, Iran. For modeling, the experimental data obtained from the laboratory and oper-
ation unit were divided into training and testing groups (70% for training and 30% for testing). 
After modeling, the predicted values were compared with the ones obtained from the experimen-
tal values. The determination coefficient of the predicted values for the two data sets of GMDH 
model (laboratory and operation unit) were 0.9905 and 0.9714 respectively. Comparison between 
experimental and mathematical results from GMDH-type neural networks showed the success of 
this method.
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1. Introduction

Safe water with proper quality is necessary for life. The 
quality of drinking water is very important, because water 
with low quality may cause health-related and economic 
problems which have a major impact on people’s daily 
lives. The drinking water should be properly treated and 
disinfected before drinking; thus it should be totally clean, 
pure and free of any disease-causing microbes [1].

There are many parameters to measure the quality of 
water including turbidity. Turbidity is commonly used as 
an index of the general condition of drinking water and an 
index of the efficiency of coagulation, disinfection and fil-
tration processes in drinking water treatment; therefore it 
is an important operational parameter and should be mini-
mized. Also, many variables influence it [2,3]. 

Turbidity is a main physical characteristic of water 
which is caused by suspended particles or colloidal mat-

ter [4]. It is measured using nephelometric turbidity units 
(NTU). However, turbidity should not be more than 1 NTU 
and ideally much lower to 0.5 NTU, before disinfection and 
at all times. Also, Turbidity of water after jar test should be 
less than 5 NTU [2,4,5].

The removal of turbidity is a very important part of 
water treatment. Turbidity can be affected by the phys-
ical, microbiological, chemical and radiological charac-
teristics of raw water [6]. Electrolytic conductivity is a 
useful test in raw water for determination of minerals. 
Other important parameters that have a remarkable 
influence on the removal of water turbidity are chemical 
material dosages such as coagulants and disinfectants. 
Temperature [7–10], pH [8–11], alkalinity [7,11], color and 
suspended solids [12]of the raw water can have a consid-
erable effect on coagulation and flocculation [7,11]. Coag-
ulants or polyelectrolytes do not fully inactivate viruses. 
Therefore, for a safe drinking water, disinfection of water 
is required [13].

In WTP, coagulation and flocculation are essential com-
ponents of treatment processes for removal of turbidity 
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from drinking water [5]. Unusual condition, such as heavy 
rains, the storm water, seasonal variations cause raw water 
turbidity variations.

Determination of treated water turbidity which is calcu-
lated experimentally or operators’ own experience by using 
trial and error in material injection is performed, so that the 
water quality is not uniform due to human mistake and the 
inaccuracy of the amount of injected material. Hence, deter-
mining the optimal dosage of material is necessary and it is 
vital to maintain economic plant operation such as reducing 
man power and expensive chemical costs. Traditionally, jar 
tests in laboratory and operators’ own experience in opera-
tion unit are used to determine the optimum material dos-
age. Also, jar test simulates the coagulation and flocculation 
processes in WTPs [13–15]. This makes the water treatment 
more effective, easy, and economical. However, jar tests are 
time-consuming, relatively expensive [16–21] and cannot be 
used to respond to rapid changes in raw water quality [22–
25] and thus are not suitable for real-time control [20]. As a 
result, jar tests are generally carried out periodically [19,20].

Monitoring and controlling water treatment processes 
are challenging task because of their complexity, nonlinear-
ity, and numerous contributory variables. Therefore mod-
eling water quality has become more important in recent 
years [1]. 

Nowadays, many studies are being performed on 
water treatment process. Neural networks as an artificial 
intelligence are considered as suitable tools for prediction 
of properties compared to usual correlations. Since they 
are non-parametric statistical modeling tools, they do not 
require pre-assumption of the input-output relationship 
and are able to correlate parameters with any possible com-
plexity [26].

In some previous studies, ANN2s were used to deter-
mine the optimal dosage of alum by the applied number 
of raw water quality parameters as model inputs for WTP 
[14,22,25,27,28]. Also,Baxter et al. [19] developed a similar 
model for the removal of natural organic matter (NOM) by 
enhanced coagulation at the Rossdale WTP in Canada.

Nowadays, many studies are being performed on eval-
uating the water quality. For example, Reckhow [29] pre-
sented the Bayesian probability networks for surface water 
quality assessment and prediction in the Neuse River estu-
ary in North Carolina. Baxter et al. [30] developed the ANN 
models for modeling and control water quality in drinking 
WTP in Edmonton, Alberta. Also, Pike [31] used a proba-
bilistic Bayesian network to model compliance violations 
in drinking water treatment by environmental and system 
characteristics in Pennsylvania. The model indicated that 
the operator decisions such as coagulant dosage and filter 
back wash frequency play the greatest role in determining 
the violation likelihood on drinking water quality. Juntunen 
et al. [1] used the linear (MLR3) and nonlinear (MLP4) mod-
eling methods to both residual turbidity and alum model-
ing in a water treatment process. The results showed the 
goodness of the MLP model was slightly better than that of 
the MLR in both cases.

In all of the above studies, the presented models 
showed a good agreement with the experimental results, 
but the disadvantage of most of them was the inability to 
respond to changes in the desired levels of the raw water 
parameters. Here the researchers tried to present a model 
that can overcome this deficiency. For example, Adaptive 
Neuro-Fuzzy Inference System (ANFIS) method [27] and 
Neuro-Fuzzy GMDH model has been reported in [32–36] 
also, The GMDH network with Back Propagation algorithm 
has been presented in [37–40]; According to the compari-
sons, the ANFIS technique could be employed success-
fully in modeling coagulant dosage from the available raw 
water data. Recently, Daghbandan et al. [41] developed the 
GMDH-Type NN and MOGA5 for modeling and optimiza-
tion of poly electrolyte dosage at Guilan WTP in Iran. To 
the comparison between the results of modeling and the 
experimental data showed that the use of GMDH-type NN 
networks is a very suitable replacement for jar test.

The method suggested here for modeling and predicting 
the residual turbidity in treated water using both operating 
and laboratory data sets in order to evaluate the quality of 
drinking water in WTP, is the multi-objective optimal design 
of GMDH-type NN [42,43]. The residual turbidity in water 
depends on raw water parameters such as temperature, pH, 
turbidity, suspended solids, electrolytic conductivity and 
chemicals dosages such as coagulants and disinfectants. 
During this study, aluminum sulfate and poly electrolyte 
were used as the coagulant and coagulant aid, respectively.

Ultimately, the genetic algorithms (GA) are used for 
optimization of influence parameters on the removal of tur-
bidity in water treatment process.

2. Methodology

2.1. Case study

This study was performed in both laboratory – using 
jar test apparatus (AL50, AQUALYTIC, Germany) – and 
operation units in WTP. The Great WTP has located approx-
imately at 20 km from Rasht city in Guilan Province, Iran, 
which supplies potable water to Rasht neighborhood 
areas with the capacity of 6,000 L/s and its raw water was 
obtained from Shahrebijar and Sefidrood rivers the water 
quality of which is subject to seasonal changes. The treat-
ment essentially consists of preliminary disinfection, pri-
mary sedimentation, coagulation, flocculation, secondary 
sedimentation, filtration and final disinfection. Then, the 
water is stored and ready for distribution.

2.2. Data collection

In order to obtain the input/output data required to 
develop and validate the GMDH models, the experimental 
data were obtained from the jar test in laboratory unit over 
a period of 10 months (from August 2015 to June2016). The 
inputs of the model were measured by different apparatus, 
including temperature (340i, WTW, Germany), pH (340i, 
WTW, Germany), turbidity (2100N, HACH, USA) and 
electrolytic conductivity (330i, WTW, Germany) of the raw 2Artificial Neural Network 
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water, chemicals dosage including aluminum sulfate and 
polyelectrolyte dosage and the output of model was resid-
ual turbidity after jar test for each test. A total of 150 data 
sets were collected.

In addition, for operation unit modeling, the operating 
data were selected from the Guilan WTP data bank during 
a period of about 18 months (from March 2014 to Septem-
ber 2015) randomly. The inputs of the model were including 
temperature, pH, suspended solids of the raw water and 
chemicals dosage including aluminum sulfate and poly 
electrolyte dosage as coagulants and disinfectant dosage 
in primary (pre-chlorination) and secondary (pass-chlori-
nation) disinfection and the output of model was residual 
turbidity of the treated water. A total of 721 data sets were 
collected. The data range for laboratory and operating vari-
ables are shown in Table 1.

2.2.1. Jar test 

In this study, the jars were filled with raw water sam-
ple (1000 mL) for the jar test and then different dosages of 
the aluminum sulfate (as coagulant) were added to each 
jar. The samples were mixed under rapid mixing condition 
(169–170 rpm) for 1 min and 18 s. The rapid mix helps to 
disperse the coagulant throughout each container. Then the 
apparatus was set to slow mixing (109–111 rpm) for 6 min. 
This slower mixing speed helps promote floc formation by 
enhancing particle collisions, which leads to the formation 
of larger flocs. Then different dosages of the coagulant aid 
(polyelectrolyte) were added to each jar and mixing was 
continued for 2 min with the same speed. After mixing the 
samples left for 30 min in order to settle the sediments,the 
samples were collected from about 3 cm below the surface 
in each jar and residual turbidity was measured by a turbi-
dimeter. And finally, the coagulant dosages with the lowest 
residual turbidity were determined as the optimum coagu-
lant dosages.

2.3.Division of data

The raw water database including six input variables 
(temperature, pH, turbidity, electrolytic conductivity, alu-

minum sulfate and polyelectrolyte dosage) for labora-
tory data set and seven input variables (temperature, pH, 
suspended solids, aluminum sulfate and polyelectrolyte 
dosage, primary and secondary chlorination dosage) for 
operating data set (see Table 1) were used to model residual 
turbidity in treated water. 

Before modeling, the outliers in the data were filtered 
out manually. For modeling, the data sets were divided into 
two subsets: 70% of the total number of samples was used 
for training the model, and validation data sets consisting of 
the remaining 30% of the samples were applied for testing 
to show the prediction ability of such a developed GMDH 
model during the training process.

2.4. GMDH Type - Neural network 

Using the GMDH algorithm, a model can be repre-
sented as a set of neurons in which different pairs of them 
in each layer are connected through a quadratic polynomial 
and, therefore, produce new neurons in the next layer. Such 
representation can be used in modeling to map inputs to 
outputs. The formal definition of the identification problem 
is to find a function, that can be approximately used instead 
of the actual one, f, In order to predict output  for a given 
input vector X = (x1, x2, x3,…, xn) as close as possible to its 
actual output y. Therefore, given a number of observations 
(M) of multi-input, single output data pairs so that:

y f x x x x i Mi i i i in= …( ) =( )1 2 3 1 2, , , , , ,.., � (1)

It is now possible to train a GMDH-type-NN to predict 
the output values for any given input vector = (xi1, xi2, xi3,…, 
xin), that is,

y f x x x x i Mi i i i in
� �= …( ) = …( )1 2 3 1 2 3, , , , , , , , � (2)

In order to determine a GMDH type-NN, the square of 
the differences between the actual output and the predicted 
one is minimized, that is

i

M

i i in if x x x y
=
∑ …( ) −



 →

1
1 2

2ˆ , , , min � (3)

Table 1
The data range of laboratory and operating variables for GMDH modeling

Model Variables [unit] Laboratory data Operating data

Min Max Average Min Max Average

Inputs Temperature [°C] 3.9 25.4 16.35 3.9 28.8 17.11
pH 7.88 8.45 8.22 7.5 8.5 8.02
Suspended solids [mg/l] – – – 4 680 77.57
Electrical conductivity [µs/cm] 148 1737 78 – – –
Turbidity [NTU] 4.7 990 56.88 – – –
Primary chlorination [ppm] – – – 2.216 5.727 3.698
Aluminum sulfate [ppm] 7 48 10.6 3.989 27.128 12.134
Polyelectrolyte [ppm] 0.11 0.3 0.145 0.072 0.263 0.163
Secondary chlorination [ppm] – – – 0.22 2.99 1.293

Output Residual turbidity [NTU] 1.12 3.95 1.98 0.4 1.6 0.67
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The general connection between the inputs and the out-
put variables can be expressed by a complicated discrete 
form of the Volterra functional series [42] in the form of: 

y a a x a x x a x x x
i

n

i i
i

n

j

n

ij i j
i

n

j

n

k

n

ijk i j k= + + +
= = = = = =
∑ ∑∑ ∑∑∑0

1 1 1 1 1 1

++ …, � (4)

Where is known as the Kolmogorov-Gabor polynomial 
[44]. The general form of mathematical description can be 
represented by a system of partial quadratic polynomials 
consisting of only two variables (neurons) in the form of:

y G x x a a x a x a x a x a x xi j i j i j i j
 = ( ) = + + + + +, 0 1 2 3

2
4

2
5

� (5)

In this way, such partial quadratic description is recur-
sively used in a network of connected neurons to build the 
general mathematical relation of the inputs and output 
variables given in Eq. (4). Then, coefficients ai in Eq. (5) are 
calculated using regression techniques. It can be seen that a 
tree of polynomials is constructed using the quadratic form 
given in Eq. (5). in this way, the coefficients of each qua-
dratic function Gi are obtained to fit optimally the output in 
the whole set of input-output data pairs, that is,

E
y G

M
i

M

i i=
−

→=∑ 1

2( ())
min � (6)

In the basic form of the GMDH algorithm, all the possi-
bilities of two independent variables out of the total n input 
variables are taken in order to construct the regression poly-
nomial in the form of Eq. (5) that best fits the dependent 
observations (yi, i = 1,2,3,…,M) in a least squares sense [45].

Using the quadratic sub-expression in the form of Eq. 
(5) for each row of M data triples, the following matrix 
equation can be readily obtained as:

Aa = Y� (7)

Where a is the vector of unknown coefficients of the 
quadratic polynomial in Eq. (5),

a a a a a a a= { }0 1 2 3 4 5, , , , , � (8)

Y y y y yM

T
= …{ }1 2 3, , , , � (9)

Here Y is the vector of the output’s value from observa-
tion. It can be readily seen that:
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The least squares technique from multiple regression 
analysis leads to the solution of the normal equations in the 
form of:

a A A A YT T= ( )−1
� (11)

which determines the vector of the best coefficients of the 
quadratic Eq. (5) for the whole set of M data triples.

3. Results and discussion

3.1. �Multi-objective optimal design of GMDH-Type neural 
networks

In this research, group method of data handling 
(GMDH) type neural network has been used for prediction 
of residual turbidity in treated water – in both laboratory 
and operation unit - in Guilan WTP. A multi-objective uni-
form diversity genetic algorithm (MUGA) has been pre-
sented in [46–48] which will also be used in this study to 
design the parameters of GMDH model optimally. Struc-
tural parameters of the Pareto genetic design of GMDH-
type NN are presented in Table 2.

Attempts have been made in the literature to use SNE6 
as a linear optimization technique (Eq. (11)) to recognize the 
parameters of the Volterra functional series (Eq. (5)). Yi is 
optimally selected by GA, which is a number of the neuron. 

Therefore, there is no single optimal solution as the best 
with relation to all the objective functions. Instead, there is a 
set of optimal solutions, known as Pareto optimal solutions 
or Pareto front for multi-objective optimization problems.

In this way, training and testing errors are chosen for the 
bi-objective Pareto optimization approach of GMDH models 
[Eq. (12)] using the methodology explained in detail in [47,49]. 
Consequently, in this paper, a hybridization of genetic algo-
rithms and SNE are applied for the optimal design of GMDH 
model. The method suggested by some author in [47,49] is 
adopted here for optimal design of GMDH network for mod-
eling of residual turbidity in treated water in WTP.

3.2. GMDH modeling and optimization of the experimental data

The Residual turbidity in treated water was used as 
desired outputs of the GMDH network. The feed-forward 
GMDH-type NN was devised for the residual turbidity that 
was constructed using experimental and operating data 
sets. The results obtained with the GMDH-type NN are pre-
sented in Tables and figures. 

Fig. 1 and Fig. 2 depict the Pareto optimal solutions of 
both training and testing (or prediction) errors of GMDH 
model for the deterministic input-output data table. Points 
A and B stand for GMDH model with the least prediction 
and training errors respectively. Design point M, however, 
depict the trade off between such models which can be rea-
sonably chosen as an optimal model compromisingly. 

The GMDH values of training and prediction errors of 
deterministic optimal design point A, B, and M, are given in 
Table  3. The optimal structures of the proposed neural network 
with  4-hidden layers for both models are shown in Figs. 3 
and 4. For example,‘‘13152235154416352656353633363435’’ 
are corresponding chromosomes representations for the 
prediction of residual turbidity in laboratory unit (Table 4). 
In which, 1, 2, 3, 4, 5, and 6 stands for effective parameters 
on residual turbidity includes T, pH, Tu, EC, Alum and Poly 
electrolyte dosage in laboratory unit. The Pareto genetic 
design of GMDH-type NN provides an automated selection 
of essential input variables and builds polynomial equa-

6Solve Normal Equation
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tions for the residual turbidity modeling. These polynomial 
equations show the quantitative relationship between input 
and output variables. Y is an index of neurons. 

To measure the model performance, a comparison is 
made between the experimental and the predicted values is 
shown in Figs. 5 and 6. In order to, the results of the devel-
oped models show a close agreement between experimen-
tal and predicted values of the models. In order to estimate 
the residual turbidity, parameters values were obtained by 
MUGA and SNE method (Tables 5 and 6). 

In order to determine the accuracy of the model, the 
statistical measures are given in Table 7. These statistical 

Fig. 1. Pareto optimal solutions of GMDH-type NN model in jar 
test data set for modeling of residual turbidity in treated water.

Fig. 3. Proposed structure of GMDH-type NN model for predic-
tion of residual turbidity in laboratory unit (jar tests).

Fig. 4. Proposed structure of GMDH-type NN model for predic-
tion of residual turbidity in operation unit.

Fig. 2. Pareto optimal solutions of GMDH-type NN model in 
operation unit data set for modeling of residual turbidity in 
treated water. 

Table 2
Structural parameters of Pareto genetic design of GMDH-Type 
NN

Population size 400 Probability of 
crossover

0.97

Number of iteration 1200 Number of objective 
functions

2

Probability of mutation 0.09 Number of hidden 
layers

4

Table 3
Training and prediction error of design point in deterministic 
approaches

Design 
point

Laboratory unit model Operation unit model

TE PE TE PE

A 0.03793 0.106436 0.013484 0.014941
B 0.065795 0.018469 0.015492 0.010708
M 0.039795 0.042199 0.013557 0.01376

Table 4
Optimal chromosomes for prediction of residual turbidity in 
treated water

Unit Optimal chromosomes

Laboratory 13152235154416352656353633363435
Operation 12151422123314151647243533365656
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parameters including mean square error (MSE), normalized 
root-mean square error (NRMSE), average absolute devi-
ation percent (AADP%), scatter index (SI) [50], BIAS and 
coefficient of determination (R2) are used. The equations to 
compute the above parameters are as follows:

MSE Y
n

Y
i

i

n

i el= −( )
=
∑1

1

2

( ,exp) ( ,mod ) � (12)

NRMSE
n

Y Y Y Yi i el
i

n

= − −
=
∑[ ( ( ) ) /(( ,exp) ( ,mod )

.
(exp,max) (e

1 2

1

0 5] xxp,min) ) � (13)
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n
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where Yi,model is the residual turbidity computed by the 
GMDH model, Yi,exp is the residual turbidity obtained by the 
experimental data, Ymodel , Yexp

 refer to average of model and 

experimental data and Yexp,max, Yexp,min and n refer to the max-

imum and minimum of experimental data and number of 
data set, respectively.

Finally, genetic algorithms are used to optimize the 
influence parameters for the removal of turbidity in drink-
ing water treatment. Optimize parameters values that influ-
ence the removal of turbidity at laboratory and operation 
units are presented in Table 8. The effect of coagulants dos-
age on the removal of turbidity in optimum condition has 
been shown in Figs. 7 and 8. In these figures, the values of 
the other parameters are its optimum (Table 8).

Figs. 7 and 8 indicate that with increasing coagulants 
dosage includes i.e. aluminium sulfate and poly electrolyte, 
residual turbidity is decreased. Also, in optimum condi-
tions, the amount of aluminium sulfate injection is more 
effective in turbidity removal than polyelectrolyte dosage. 
Also, excessive consumption of coagulants can increase the 
turbidity in water which is clear in both figures.

4. Conclusions

According to this research, the following conclusions 
are obtained:

In the present study, the Multi-objective optimal design 
of GMDH-Type NN was used for modeling and predicting 
the residual turbidity in treated water in both laboratory 
and operation units of WTP of Guilan, Iran.

The total numbers of experimental data of laboratory 
and operation units were 150 and 721 samples, respective-
ly;including six and seven input variables, respectively, and 
both outputs represented the residual turbidity in treated 
water. The raw water datasets were divided into training 
and testing data sets. 

GMDH-type NN model introduced here was successful 
in the estimation of the residual turbidity with high accu-
racy in drinking water after water treatment process and 
the goodness of fit between the experimental and predicted 
result was calculated in statistical values (see Table 7).

The modeling results showed that turbidity, alumi-
num sulfate and poly electrolyte dosage and temperature, 
respectively, are more effective on turbidity removal in 
laboratory unit. Also in operation unit,secondary chlori-
nation and aluminum sulfate dosage, suspended solids, 
pH, temperature are more effective on turbidity removal, 
respectively.

In addition, coagulants dosage and their effect on 
turbidity removal are optimized in optimum condition. 
Accordingly, the residual turbidity is minimized in moder-
ate coagulants dosages. Also, in optimum conditions, the 
amount of aluminum sulfate injection is more effective than 
polyelectrolyte in turbidity removal. 

Fig. 5. Comparison between predictions of the model and actual 
data for residual turbidity in laboratory unit.

Fig. 6. Comparison between predictions of the model and actual 
data for residual turbidity in operation unit.
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Table 5
Polynomial equation of the GMDH-type NN model for prediction of residual turbidity in laboratory unit (jar tests)

First 
layer

Y1 = 3.620088  –  0.213605*T + 0.01154937*Tu + 0.0062103*(T^2) + 0.0000027*(Tu^2)  –  0.000935*(T*Tu)

Y2 = 4.493798  –  0.3020238*T  –  0.036881*Al + 0.0073991*(T^2) + 0.0004491*(Al^2) + 0.0031474*(T*Al)
Y3 = 2.61378011 + 0.0054703*Tu  –  0.13624851*Al + 0.000003145*(Tu^2) + 0.00612679*(Al^2) –  0.000336*(Al*Tu)
Y4 = 8.004829  – 0.44043292*T  – 37.0172892*PE + 0.006584*(T^2) + 56.637658*(PE^2) + 1.42300963*(T*PE)
Y5 =  –4.785646  –  0.50405*pH + 189.5744*PE + 0.1748844*(pH^2) + 15.029752*(PE^2)  –  24.116636*(pH*PE)
Y6 = 3.6779063 + 0.042839*Al  – 19.9460711*PE  –  0.001806855*(Al^2) + 7.6689752*(PE^2) + 0.476306089*(Al*PE)
Y7 = 2.51981035 + 0.0037881*Tu  –  4.72508*PE  –  0.000004341*(Tu^2)  –  1.5332369*(PE^2) + 0.00777722*(Tu*PE)
Y8 = 2.019251 + 0.0068211*Tu  – 0.00023724 *EC  –  0.00000426*(Tu^2) + 0.000000112*(EC^2) – 0.0000083637*(Tu*EC)

Second 
layer

Y9 = 1.063341  –  5.336486*y1 + 5.283984*y2 + 1.01609457*(y1̂ 2)  – 1.11078037*(y2^2) + 0.342583*(y1*y2)
Y10 =  –93.49988 + 22.585002*pH + 5.625058*y3  – 1.31078191*(pH^2) + 0.49575*(y3^2) – 0.902465*(pH*y3)
Y11 = 0.62369798 + 0.8022266 *y2  –  0.0012975*EC + 0.00323897*(y2^2) + 0.0000004563*(EC^2) + 0.00027109*(y2*EC)
Y12 =  –0.0349126 + 2.2317146*y4  –  1.3384845*y3  –  0.04506056*(y4^2) + 0.653867791*(y3^2) – 0.555779798*(y3*y4)
Y13 = 5.0708868 + 9.7106101*y5  –  13.52146587*y6  –  4.3313956651*(y5^2) + 1.615808385*(y6^2) + 3.84743351*(y5*y6)
Y14 = 1.696355  –  2.9230916*y3 + 2.50754177*y7 + 0.309785*(y3^2) –  0.8520506*(y7^2) + 0.825611051*(y3*y7)
Y15 =  –5.37725882  –  0.01131864*Tu + 6.839543*y7  – 0.000003815*(Tu^2)  –  1.574250997*(y7^2) + 0.00582892*(Tu*y7)
Y16 = 2.1913037 + 2.722788*y8 – 3.4401048*y3 + 0.1891146921*(y8^2) + 1.46692032*(y3^2) – 1.350184*(y8*y3)

Third 
layer

Y17 =  –1.4650023 + 2.196097265*y9 – 0.038918551*y10 + 0.2582055319*(y9^2) + 0.7389476*(y10^2) – 1.21700714*(y9*y10)
Y18 =  – 0.999077 + 2.9980897*y11  –  1.160116*y12  – 1.15129376*(y11̂ 2) –  0.0338089*(y12^2) + 1.02054071*(y11*y12);
Y19 =  –0.23340097 + 2.45215828*y13  –  1.39753497*y14  – 0.7611915*(y13^2) + 0.0079549*(y14^2) + 0.78764849*(y13*y14)
Y20 =  –1.12690386 + 0.0711456*y15 + 1.6499725*y16  –  0.42627*(y15^2)  –  0.63785994*(y16^2) + 0.986825673*(y15*y16)

Fourth 
layer

Y21 =  –0.0778141 – 3.4012776 *y17 + 4.501644*y18  – 0.681653866*(y17^2)  – 2.511087878*(y18^2) + 3.1712389*(y17*y18)
Y22 =  –1.357722164 + 0.991506595*y19 + 1.0883681*y20 – 1.26170562*(y19^2) – 1.140559583*(y20^2) + 2.213275*(y19*y20)

Output R·Tu =  –0.119160395 – 1.24228089*y21 + 2.3285623*y22 – 0.41656787*(y21̂ 2) – 1.613975659*(y22^2) + 2.0322823*(y21*y22)

Table 6
Polynomial equation of the GMDH-type NN model for prediction of residual turbidity in operation unit

= 0.57728148 + 0.052173628*Cl2 + 0.000784288*SS – 0.024552294*(Cl2^2) – 1.65923E – 06*(SS^2) + 0.000266118*(Cl2*SS)Y1First 
layer = 0.171610339 + 0.468035096*Cl2 + 0.321452557*pH – 0.048337996*(Cl2^2) – 0.034121745*(pH^2) – 0.036244902*(Cl2*pH);Y2

= –1.207428774 + 0.22544072*Cl2 + 0.938100622*Cl1 + 0.005550412*(Cl2^2) – 0.11315651*(Cl1̂ 2) – 0.061237191*(Cl1*Cl2)Y3

= 0.732057828 + 0.266909459*Cl2 – 0.02916711*T – 0.021649471*(Cl2^2) + 0.000909189*(T^2) – 0.007175554*(Cl2*T)Y4

= –0.654055371 + 0.825981243*Cl1 – 3.913441556*PE – 0.10252987*(Cl1̂ 2) + 19.35076485*(PE^2) – 0.310892199*(Cl1*PE)Y5

= –1.269608013 – 5.70468E – 05*SS + 1.0572104445*Cl1 – 1.57071E – 06*(SS^2) – 0.145482079*(Cl1̂ 2) 
 + 0.000303825*(SS*Cl1)

Y6

= –14.94409223 + 0.646317978*Al + 3.052746022*pH + 0.000598494*(Al^2) – 0.139568945*(pH^2) 
 – 0.080446106*(Al*pH)

Y7

= 0.228714613 + 0.040379545*Al + 0.015592868*T – 0.000192097*(Al^2) + 0.000140755*(T^2) – 0.001699199*(Al*T)Y8

= 26.46058051 – 6.602643392*pH + 0.215095107*T + 0.424991174*(pH^2) + 0.000854228*(T^2) – 0.030040297*(pH*T)Y9

= 0.707711925 – 2.244524487*y1 + 0.290937995*y2 – 0.27361888*(y1̂ 2) – 2.194302506*(y2^2) + 5.314076149*(y1*y2)Y10Second 
layer = 1.53239867 – 3.876186936 *y3 – 0.004379448*SS + 3.688030611*(y3^2) – 2.01045E – 06*(SS^2) + 0.008157184*(y3*SS)Y11

= 2.38519139 – 2.969124853*y1 – 0.13401382*Al – 0.296811341*(y1̂ 2) – 0.001293324*(Al^2) + 0.270685207*(Al*y1)Y12

= 2.972891592 – 8.544725363*y3 – 0.543178645*y2 + 2.693565414*(y3^2) – 4.19009038*(y2^2) + 9.91946538*(y3*y2)Y13

= 2.719627769 – 2.382555689*y4 – 4.880321266*y5 – 0.808105046*(y4^2) + 1.325785894*(y5^2) + 5.720735262*(y4*y5)Y14

= 3.758860508 – 4.749918932*y6 – 5.664565103*y7 + 0.282998315*(y6^2) + 0.552816175*(y7^2) + 7.766311352*(y6*y7)Y15

= 1.861032764 – 0.017941395*Al – 3.53943076*y8 – 0.002578567*(Al^2) + 1.293979697*(y8^2) + 0.14614261*(y8*Al)Y16

= 0.632840132 + 1.223917454*y10 – 2.320890232*y11 – 2.834688668*(y10^2) + 0.130303694*(y11̂ 2) + 4.421272258*(y10*y11)Y17Third 
layer = 4.495835921 – 5.629580045*y12 – 7.800549948*y13 – 1.815180569*(y12^2) – 0.137603098*(y13^2) + 13.47522797*(y13*y12)Y18

= 1.206056727 – 3.110930644*y14 + 0.86812281* y15 + 1.403321304*(y14^2) – 0.512789227*(y15^2) + 1.230170777*(y15*y14)Y19

= 1.17973265 – 0.397657654*y16 – 2.559417052*y9 + 0.070215245*(y16^2) + 1.436198074*(y9^2) + 1.759937537*(y16*y9)Y20

= –0.85291 + 2.530925113 *y17 + 1.03526996*y18 + 1.5575071*(y17^2) + 3.52117667*(y18^2) – 7.008254091*(y17*y18)Y21Fourth 
layer = –1.111566157 – 0.608809507*y19 + 4.718297405*y20 – 0.187316977*(y19^2) – 4.45943*(y20^2) + 2.5257021*(y19*y20)Y22

= –0.22921 + 0.681074538*y21 + 0.8398371*y22 + 0.875192*(y21̂ 2) + 0.778501*(y22^2) – 1.929735*(y21*y22)R·TuOutput
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The optimized model can be implemented online by 
integrating the existing control system available in Guilan 
drinking water treatment plant in Iran.

This model, however, is only based on the previous behav-
ior of operators and jar-test results. Further work is needed to 
develop a model based on the dynamics of the system.
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Symbols

T	 —	 Temperature [ºC]
pH	 —	 Power of Hydrogen [-]
Tu	 —	 Turbidity [NTU]
SS	 —	 Suspended solids [mg/l]
EC	 —	 Electrical conductivity [μs/cm]
Cl1	 —	 Preliminary chlorination [ppm]
Cl2	 —	 Secondary chlorination [ppm]
Al , Alum	 —	 Aluminum sulfate [ppm]
PE, Poly 	 —	 Poly electrolyte [ppm]
n	 —	 Number of variables
Xi	 —	 Inputs to model

Table 7
Model statistics and information for predicting treated water turbidity

Model performance Laboratory unit (Jar test) Operation unit

Training Testing Total Training Testing Total

MSE 0.0398 0.0425 0.040516 0.01356 0.01376 0.0136
NRMSE 0.0705 0.2343 0.071126 0.097027 0.1955 0.0972

AADP (%) 8.0345 8.6874 8.4338 14.8475 12.9517 14.282

SI 0.0975 0.1086 0.1014 2.705E-08 3.141E-08 4.867E-08

BIAS 3.22E-13 –0.0544 –0.0163 –1.946E-13 –0.02857 –0.0085

R2 0.99101 0.98749 0.9905 0.97175 0.9715 0.9714

Table 8
Optimum values of effective parameters on removal of turbidity

Unit Inputs Output

PE
[ppm]

Alum
[ppm]

Tu
[NTU]

pH
[–]

T
[]

EC
[µs/cm]

SS
[mg/lit]

CL1
[ppm]

CL2
[ppm]

R·Tu 
[NTU]

Laboratory 0.13 13.83 66.93 8.19 24.42 261.23 – – – 0
Operation 0.12 13.97 – 7.6 16.76 – 91 5.57 0.84 0

Fig. 7. Effect of aluminum sulfate and poly electrolyte dosage on 
residual turbidity in treated water in optimum condition of unit 
performance (jar tests).

Fig. 8. Effect of aluminum sulfate and poly electrolyte dosage on 
residual turbidity in treated water in optimum condition of unit 
performance (operation unit).
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ai	 —	 Volterra series coefficients
Yi	 —	 Output of model
Yi,exp	 —	 Experimental data
Yi,model	 —	 Model data
Yexp, min	 —	 Minimum of experimental data
Yexp, max	 —	 Maximum of experimental data
Yexp 	 —	 Average of experimental data

Ymodel 	 —	 Average of model data
N	 —	 Number of data samples
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