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a b s t r a c t
This paper proposes a data-driven soft-sensing method for predicting effluent ammonia 
nitrogen (NH4–N) in the wastewater treatment process (WWTP). In this method, a rule automatic 
formation-based adaptive fuzzy neural network (RAF-AFNN) is designed. The RAF algorithm, which 
consists of rule self-splitting strategy and fuzzy Gaussian kernel clustering, is used to automatically 
partition the input space and adaptively extract the most suitable fuzzy rules. An improved adaptive 
Levenberg–Marquardt learning algorithm is implemented to tune the parameters of the RAF-AFNN 
for improving prediction accuracy. An analysis of the convergence is also provided in this paper, 
which can guarantee the successful application of the proposed RAF-AFNN. Finally, experimental 
hardware, constructed from an online sensor array and via the soft-sensing method, is used to assess 
the effectiveness of the RAF-AFNN for solving the problem of effluent NH4–N prediction in the 
WWTP. Experimental results indicate that the proposed RAF-AFNN-based soft-sensing method can 
predict the effluent NH4–N precisely.

Keywords:  Effluent ammonia nitrogen; Wastewater treatment process; Fuzzy neural network; Rule 
automatic formation; Improved adaptive LM algorithm

1. Introduction

Effluent ammonia nitrogen (NH4–N) is a key water 
quality parameter used in the wastewater treatment process 
(WWTP); it often exceeds the standard limits because of the 
impact that high concentrations of influent NH4–N have on 
the WWTP. Research indicates that NH4–N pollution is one 
of the major factors in water eutrophication [1]. It is helpful 
to detect the concentration of effluent NH4–N in a timely 
manner to implement the necessary control measures and 
prevent the deterioration of water quality [2]. At present, 
there are several methods that detect the effluent NH4–N 
in wastewater treatment plants, for example, Nessler’s 
reagent colorimetry, ammonia-sensitive electrode, and 
spectrophotometry. Although these methods have high 

detection precision, they need to be performed in a special 
laboratory [3]. Thus, these methods are cumbersome, 
time-consuming, and have a serious feedback delay of test 
results. In this case, abnormalities of effluent NH4–N cannot 
be found in time, which affects the implementation of rel-
evant remedial measures. In fact, some kinds of chemical 
principle-based online NH4–N monitors are available in the 
market. Unfortunately, the purchasing and maintenance 
costs of these monitors are too high, which makes their inten-
sive use in wastewater treatment plants uneconomical [4].

To circumvent the problems of electrochemical analysis 
and access to online instrumentation, the soft-sensing method 
is becoming increasingly prevalent in the detection of key 
water quality parameters in the WWTP [5,6]. With the help 
of data-driven soft-sensing methods, the hard-to-measure 
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variables can be estimated via easy-to-measure auxiliary 
variables in practical industrial processes [7]. Generally, 
neural networks and fuzzy systems are the two most widely 
used soft-sensing methods [8,9]. In a study by Canete et al. 
[10], a three-layer multilayer perceptron (MLP) is used to 
design a soft-computing system that can predict the chem-
ical oxygen demand in a WWTP. The simulation results 
show that the prediction accuracy of MLP is better than that 
of support vector machine. In a study by Nezhad et al. [11], 
a feed-forward backpropagation neural network is adopted 
to develop a prediction model for effluent quality indices in 
the southern Tehran municipal wastewater treatment plant. 
The simulation results demonstrate that the network based 
on Levenberg–Marquardt (LM) learning algorithm has high 
modeling accuracy. In a study by Bagheri et al. [12], MLP and 
radial basis function (RBF) neural networks are applied to 
design the sludge bulking pre-warning system by predicting 
the sludge volume index. Experimental results indicate that 
the MLP with genetic algorithm-based parameter optimiza-
tion has lower modeling error. In a study by Dovžan et al. 
[13], an evolving fuzzy model is presented to monitor the dis-
solved oxygen (DO) concentration in a WWTP. Experimental 
results show that the combination of online clustering-based 
structure identification strategy and recursive least squares-
based parameter learning algorithm can achieve good pre-
diction accuracy. Because the initial parameters of these 
neural network-based prediction models are randomly gen-
erated and the node number of hidden layer is determined 
by trial-and-error, these networks have the disadvantages of 
low generalization ability. For fuzzy logical systems, the gen-
eration of suitable fuzzy rules requires extensive knowledge 
from domain experts.

Recent studies have shown that fuzzy neural networks 
(FNNs), which combine the learning capability of a neural 
network with the interpretability of a fuzzy system, have tre-
mendous advantages in data-driven soft-sensing. In general, 
FNN-based soft-sensing methods can be classified into two 
categories: (1) offline soft sensing [14] and (2) online soft sens-
ing [15,16]. In offline soft sensing, data-clustering approaches, 
such as K-means [17,18], fuzzy C-means (FCM) [19,20], 
Gustafson–Kessel [21], K-nearest neighbors [22], and fuzzy 
min–max [23], are used to generate fuzzy rules firstly. Then, 
local search approaches, such as least squares algorithm, 
error backpropagation (EBP) or their other variations, are 
employed to update FNN parameters. It is hypothesized that 
all training samples are available before using these methods. 
In a study by Tang et al. [24], an FNN, in which an improved 
least square estimation is used to optimize the linear parame-
ters and an adaptive learning algorithm is adopted to update 
membership functions (MFs) and rule base, is proposed to 
predict lane-changing behavior. In a study by Tang et al. [25], 
an FNN with K-means clustering and weighted recursive 
least square estimation is proposed to predict travel speed for 
multistep ahead. In a study by Tang et al. [26], an enhanced 
evolving fuzzy neural inference system is present to estimate 
the travel time. In a study by Zhang and Tao [27], a novel 
FNN framework is proposed by combining an autoregressive 
with exogenous input with the nonlinear tanh function in the 
Takagi–Sugeno–Kang (TSK)-type fuzzy consequent part. For 
online soft sensing, structure learning and parameter optimi-
zation are performed immediately and simultaneously after 

each input–output sample pair arrives [28,29]. In a study by 
Wu and Er [30], a dynamic fuzzy neural network (DFNN), 
which functionally is equivalent to a TSK fuzzy system, is 
designed on the basis of extended radial basis function neu-
ral network. In DFNN, the growing of fuzzy rules relies on 
the system error and the accommodation boundary criterion, 
and the pruning of fuzzy rules depends on the significance 
of rules computed by the error reduction ratio algorithm. In 
a study by Wu et al. [31], to make up for the deficiencies in 
the centers and widths of the Gaussian MF in the DFNN, a 
generalized dynamic fuzzy neural network (GDFNN) based 
on ellipsoidal basis function is presented. In a study by Ma 
et al. [32], the GDFNN proposed by Wu et al. [31] is adopted 
to forecast the short-term wind speed. The main challenge of 
the online modeling methods is to design the growing and 
pruning mechanisms to obtain fuzzy rules.

This study mainly focuses on the design of a soft-sensing 
model for effluent NH4–N using FCM clustering method 
and FNN. However, the generic FCM algorithm is difficult 
to achieve satisfactory performance in the linearly insep-
arable input space. Therefore, setting the number of fuzzy 
rules in advance becomes necessary, which decreases the 
clustering performance. Additionally, the EBP learning algo-
rithm widely applied in the FNNs as parameter optimizers 
has some shortcomings, including slow convergence speed 
and falling into a local optimum. To circumvent some of the 
problems discussed earlier in this paper, a rule automatic for-
mation-based adaptive fuzzy neural network (RAF-AFNN) 
method is presented to develop the prediction model of the 
effluent NH4–N in a WWTP. First, an RAF algorithm, based 
on the fuzzy Gaussian kernel clustering (FGKC), is used to 
automatically partition the input space and further extract 
the initial fuzzy rules. Second, to speed up the convergence 
in the training process, an improved adaptive Levenberg–
Marquardt (IALM) learning algorithm is adopted to adjust 
the network parameters. Finally, an experimental system, 
which includes an online sensor array with the proposed 
RAF-AFNN soft-sensing approach, is developed to predict 
effluent NH4–N in a real-time WWTP. Experimental results 
show that the RAF-AFNN-based soft-sensing method can 
achieve superior performance for effluent NH4–N prediction.

2. Data description

In this section, a soft-sensing system, which consists of 
an online sensor array and a prediction model, is developed 
to assess the effectiveness of the RAF-AFNN method. The 
schematic diagram of the soft-sensing system for predicting 
effluent NH4–N in the WWTP is shown in Fig. 1.

In the prediction system, the input variables are the 
variables that can be measured easily, while the output 
variable is the effluent NH4–N. In this study, the RAF-
AFNN method is applied to establish a nonlinear mapping 
relationship between input–output by using data samples. 
Table 1 lists the WWTP process variables. To reduce the 
redundancy caused by excessive input variables, the par-
tial least squares algorithm is applied to complete the 
feature variable selection step in the data preprocessing 
phase. According to the result of variable selection, total 
suspended solids (TSS) and effluent total phosphorus 
(TP) are redundant variables, water temperature (T), DO 
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concentration, effluent pH, effluent oxidation–reduction 
potential (ORP), and effluent nitrate nitrogen (NO3–N) 
concentration are selected as the input variables. In this 
study, 1,000 input–output data samples, measured between 
1 June 2015 and 31 July 2015, were collected from a real 
small-scale wastewater treatment plant in Beijing, China. 
In order to validate the prediction performance of different 
algorithms, data samples are divided into two parts: train-
ing data set and testing data set. After performing wavelet 
package de-noising and normalization, every other nine 
data points, one data samples is chosen from the entire 
data set to form the testing data set (a total of 100 data 

samples), and the remaining 900 data samples are applied 
as the training data set. During the testing process, the 
input values of the testing samples are shown in Fig. 2. As 
can be seen from Fig. 2, the effluent NH4–N has time-vary-
ing and nonlinear characteristics because of the complex 
biochemical reactions in the WWTP and the strong inter-
action between the input variables. Obviously, depending 
on mechanism model or linear data analysis methods, it 
is impossible to accurately predict the values of effluent 
NH4–N. In order to improve the prediction accuracy, this 
paper uses AFNN with RAF strategy to establish reliable 
soft-sensing model of effluent NH4–N.

3. Methodology

3.1. Architecture of the FNN

In this section, we firstly introduce the architecture of the 
FNN. It can be seen from Fig. 3, the FNN has four layers, that 
is, the input layer, the MF layer, the rule layer, and the output 
layer [31]. The following is the mathematical description of 
this FNN:

1. The input layer: In this layer, there are n nodes, and each 
of them represents an input linguistic variable. The output 
values of input layer are as follows:

u x i ni i= =, , ,..., 1 2  (1)

where ui is the output value of the ith node, and 
x = [x1, x2, …, xn]T is the input vector.
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Fig. 1. The soft-sensing system of effluent NH4–N.

Table 1
Variables involved in the WWTP

Variables Main apparatus and 
instruments

Locations

T, °C WTW MIQ/TC 2020XT T 
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Fig. 2. The (a) input and (b) output values of the testing samples.
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2. The MF layer: In this layer, there are n × r nodes, and each 
of them represents an MF which is in the form of Gaussian 
function. The output values of MF layer can be expressed as 
follows:

µ
σij i
i ij

ij

x
x c

i n j( ) exp
( )

, , ,..., ; , ,...,= −
−











= =
2

2 1 2 1 2  rr  (2)

where μij is the value of the jth MF of xi, cij, and σij denotes the 
center and width of the jth MF of xi, respectively.

3. The rule layer: In this layer, there are r nodes, and each 
of them represents a premise of a fuzzy rule. The output of 
the jth rule neuron can be computed as follows:
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where h = [h1, h2, …, hr] is the normalized output vector of the 
rule layer.

4. The output layer: For a multi-input single-output 
system, there is a single-output node in this layer. 

The output value is the weighted summation of incoming 
signals and is given by the following equation:
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where wj is the consequent of the jth rule.

3.2. Rule automatic formation-based adaptive fuzzy neural 
network

Two important issues associated with the construction 
of an FNN are the structure identification and the parameter 
estimation. For FNN, a good parameter initialization algo-
rithm can accelerate the convergence speed and increase 
the chance of getting out of a local optimum. In this section, 
the initial fuzzy rules are adaptively constructed by an RAF 
algorithm, while the parameters are adjusted by an IALM 
algorithm.

3.2.1. Structure learning of the RAF-AFNN

When extracting fuzzy rules by using clustering algo-
rithms, a cluster corresponds to a fuzzy rule. To obtain the 
most suitable fuzzy rules adaptively, this paper proposes an 
RAF algorithm, which is composed of a rule self-splitting 
strategy and a FGKC algorithm.

3.2.1.1. RAF strategy In the RAF strategy, the mean 
variance of a cluster is applied to as the criterion of rule 
self-splitting [18]. Suppose that there are r clusters at pres-
ent, the one with the largest mean variance must be found 
firstly.

I s
j r j=

≤ ≤
arg max  

1

2
 (6)

where sj
2 denotes the mean variance of the jth cluster, which 

can be calculated by the sum of variance of each input 
variable as follows:

s sj ij
i

n
2 2

1
=

=
∑  (7)

where sij is the variance of the ith dimension of the jth cluster, 
which is given as follows:

s
P

x vij
j

ij ij
x vj

2 21
= −

∈
∑ ( )  (8)

where x vj∈  indicates the sample x that takes from the jth 
cluster, vij is the ith dimension of the center of the jth clus-
ter, and Pj is the number of samples involved in the jth 
cluster.
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Fig. 3. Architecture of the FNN.
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If s sI
2 > th (sth is a user-defined threshold), the Ith cluster 

will be divided into two new clusters and r = r + 1. Suppose 
that the center of the Ith cluster is v v v vI I I In= ( , ,..., )1 2  and the 
centers of the two newly formed clusters are  vI + α and  vI − α, 
respectively, and where α is a small value. In this paper, α 
is set to be 1% of the range [0,1], that is, α = 0 01. . After the 
rule-splitting operation is performed, the new centers of the 
r clusters are iteratively calculated by the FGKC algorithm. 
The entire process is repeated until s sI

2 < th. Noted that the 
center of the first cluster is the average of all training samples.

3.2.1.2. FGKC algorithm FCM which is an enhanced ver-
sion of K-means is the most widely used algorithm in the 
clustering field [33]. When the boundary of the sample clus-
ter is difficult to determine, FCM is apt to fall into a local 
minimum [34]. In this study, the FGKC algorithm [35,36], 
where the Euclidean distance adopted in FCM is replaced by 
a Gaussian kernel function, is used to extract the most suit-
able fuzzy rules from effluent NH4–H training data set.

FGKC can obtain membership value of each sample to 
each cluster center by minimizing a quadratic objective 
function, to achieve automatic classification of data set. Let 
X = {x1, x2, …, xP} be a training data set and V = {v1, v2, …, vC} 
be the cluster centers. The optimization model of FGKC is 
defined as follows:
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where Jm is the objective function, μpc is the membership 
value of the cth cluster center for the pth data sample, P is the 
number of data samples, C is the number of cluster centers, 
m > 1 is the fuzziness index (in general, m = 2), and Φ is the 
feature mapping function. According to the transformation 
rules of kernel method, we obtain the following equation:
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where the Gaussian kernel function K is defined as follows:
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where b is the kernel bandwidth. According to K(x, x) = 1, 
the objective function (9) can be rewritten as follows:
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Then, optimal solutions for the objective function (12) can 
be obtained by updating the clustering centers and member-
ship matrix as follows:
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3.2.1.3. Procedure of the RAF strategy The pseudo-code of 
the proposed RAF algorithm is described as follows:

Algorithm: RAF
1 Set cluster number r = 1, calculate the center of the first 

cluster v1;
2 Calculate the mean variance sj

2 by Eqs. (7) and (8);
3 while (1)
4  if s sI

2 < th then
5   break;
6  else
7   Split the Ith cluster and obtain two new centers;
8   r = r + 1;
9  end
10  while (1)
11    if current iteration times t1 > T1 or |Jm(t1) – Jm(t1–1)| < ε 

then
12    break;
13   else
14     Assign each input training data to cluster vc by 

Eq. (9);
15    Recompute the center of cluster vc by Eq. (13);
16    t1++;
17   end
18  end
19 end
20 return r clusters;

3.2.2. Parameter learning of the RAF-AFNN

In this paper, to enhance the convergence rate and gen-
eralization performance, an IALM algorithm is developed 
to train the network parameters (i.e., centers, widths, and 
weights). According to the conventional LM algorithm [37], 
the update rule is presented as follows:

Θ Θ( ) ( ) ( ( ) ( ) ( ) ) ( ) ( )t t J t J t t I J t e tT T+ = − + −1 1η  (15)

where Q(t) = [w(t), c(t), σ(t)] is the parameter vector, J is 
the Jacobian matrix, η(t) is the learning coefficient, I is the 
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identity matrix that is adopted to circumvent the difficulty 
of singularity in reversing the matrix, and e(t) = [e1(t), e2(t), 
…, eP(t)]T is the error vector. For the pth sample, the error 
between the desired output and network output of FNN is 
defined as follows:

e t y t y t p Pp
d
p p( ) ( ) ( ), , ,...,= − = 1 2  (16)

where P is the total number of the samples.
The Jacobian matrix is given as follows:
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From Eq. (17), it can be seen that the number of rows of 
Jacobian matrix is equal to the number of training samples, 
and the number of columns of Jacobian matrix is equal to the 
number of parameters. Hence, the computational burden 
and storage capacity will increase dramatically as the num-
ber of training samples increases.

To circumvent the problem, an IALM algorithm is pre-
sented to optimize all the parameters in the FNN [37,38]. 
The parameter vector Q(t) is updated as follows:

Θ Θ Ψ Ι Ω( ) ( ) ( ( ) ( ) ) ( )t t t t t+ = − + −1 1η  (18)

where Ψ(t) is the quasi-Hessian matrix, and W(t) is the gradi-
ent vector. The adaptive learning rate η(t) is given as follows:

η β β( ) ( ) ( ) ( )t e t t= + −1 Ω  (19)

where β(0 < β < 1) is a user-defined constant. Furthermore, 
the Ψ(t) and W(t) are the accumulation of submatrices and 
subvectors for all samples, respectively.
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According to the update rule of gradient descent learning 
approach, the elements of the Jacobian row vector are 
presented as follows:
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It should be noted that for the computation of subma-
trices ψp(t) and subvectors ωp(t), only (2n + 1) × r elements 
of jp(t) need to be calculated for each pattern p separately. 
In the IALM algorithm, there is no need to store and multi-
ply the Jacobian matrix, both quasi-Hessian matrix Ψ(t) and 
gradient vector W(t) can be calculated directly, resulting in 
the reduction of memory cost and computation complex-
ity. Meanwhile, during the learning process, the adaptive 
learning rate strategy defined in Eq. (19) can help to accel-
erate the learning process and enhance the generalization 
capability.

3.2.3. Procedure of the RAF-AFNN

The pseudo-code of the proposed RAF-AFNN method is 
summarized as follows:

Algorithm: RAF-AFNN
1 Initialization, set the maximum iteration times T1 and T2;
2 Obtain r clusters using RAF algorithm;

(Continued)
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Algorithm: RAF-AFNN (Continued)
3 Create an initial four-layer FNN. The initial centers and 

widths of Gaussian functions are the corresponding 
cluster centers and their variances. The initial output 
weights are obtained using least square method.

4 while (1)
5  if current iteration times t2 > T2 then
6   break;
7  else
8   for p = 1:P do
9    Calculate the outputs of FNN yp(t2) by Eq. (5);
10    Make the error of each sample ep(t2) by Eq. (16);
11    Make the submatrices ψp(t) by Eq. (22);
12    Make the subvectors ωp(t) by Eq. (23);
13   end
14   Update the adaptive learning rate η(t) by Eq. (19);
15   Make the quasi-Hessian matrix Ψ(t2) by Eq. (20);
16   Make the gradient vector W(t2) by Eq. (21);
17   Update the parameter vector Q(t2) by Eq. (18).
18   t2++;
19  end
20 end

4. Convergence analysis

For a learning system based on neural network, conver-
gence ability is one of the preconditions for the successful 
applications. The convergence of RAF-AFNN is mainly influ-
enced by the initialization parameters, the learning rate, and 
the characteristics of quasi-Hessian matrix. Because a set of 
parameters closed to the optimal parameters can be found 
by the RAF-based parameter initialization method and the 
nonsingular and positive definite of the quasi-Hessian matrix 
Ψ(t) can be guaranteed by the adaptive learning rate defined 
in Eq. (19), the convergence of RAF-AFNN can be maintained 
(i.e., e(t) → 0 as t → +∞) when the parameters of RAF-AFNN 
are updated by Eq. (18), if

∆ ≤ ∆ −
−

−
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Proof: For the IALM algorithm defined as follows:
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Assume that Q* is the optimal parameter vector and 
W(Q*) = 0, then we have the following:
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According to the matrix inequality, the Eq. (30) can be 
rewritten as follows:

Θ Θ Η Ω Ω Θ Η Θ Θ( ) ( ) ( ) ( ) ( ) ( )* * *t t t t t+ − ≤ − − −( )−1 1  (31)

Assume that W(t) is continuously differentiable and 
H(t) is Lipschitz continuous on some neighborhood of Q*, 
then we have the following:
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*t t
t
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λ  (32)

where β is a positive constant and λt
min is the smallest 

eigenvalue of H(t). Similarly, we can derive the following 
formulas:
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Thus, we obtain the following:
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Based on Eq. (35), the IALM algorithm can finally 
converge to the optimal parameter vector Q*. Below, we use 
Lyapunov stability theorem to prove the convergence of the 
proposed RAF-AFNN. Suppose that the Lyapunov function 
is defined as follows:

V t e t e tT( ( )) ( ) ( )Θ =
1
2  (36)

where e(t) = [e1(t), e2(t), …, ep(t)]T and V(Q(t)) > 0. In terms of 
the studies by Wilamowski and Yu [37] and Han et al. [38], 
the deviation of Lyapunov function is given as follows:
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where ∇E(Q(t)) and ∇2E(Q(t)) represent the gradient vector 
and Hessian matrix of the objective function, respectively. 
According to the update rule given in Eq. (16), the following 
is obtained:
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From Eqs. (37) and (38), ∆V(Q(t)) can be expressed as 
follows:

∆ = − ∆ ∇ ∆V t t E t tT( ( )) ( ) ( ( )) ( )Θ Θ Θ Θ
1
2

2  (39)

when the condition of Eq. (28) is satisfied, we can safely draw 
a conclusion that ∆V(Q(t)) < 0, because the matrix ∇2E t( ( ))Θ  is 
positive definite. Therefore, the following is obtained:

lim
t

e t
→+∞

( )=0  (40)

Hence, from the Lyapunov stability theorem, the 
RAF-AFNN is theoretically convergent.

5. Simulation studies

5.1. Parameters settings and evaluation indicators

By the practical test, the parameters of RAF-AFNN are 
set as follows: Vth = 0.03, b = 5, ε = 1 × 10–5, T1 = 200, β = 0.3, 
and T2 = 1,000. In this experiment, 12 initial fuzzy rules 
were obtained by using RAF-based rule generation method. 
To validate the performance of the proposed RAF-AFNN 
method, the root-mean-square error (RMSE) and accuracy in 
Eqs. (41) and (42) are used as the performance criterion. All 
results are averaged on 30 independent runs.
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5.2. Experimental results

The effectiveness of the RAF-AFNN is verified by com-
paring with other works. Note that the wavelet packet 
denoising is performed before inputting the data samples 
into the proposed learning system. Moreover, to clearly illus-
trate the experimental results, two cases of this experiment 
are discussed respectively.

5.2.1. Case 1

In this case, to demonstrate the advantages of the RAF 
and IALM strategies, three models designed by differ-
ent combinations of each strategy are investigated, that is, 
RAF + IALM, FCM + IALM, and RAF + EBP. In this study, 
each model has the same number of fuzzy rules.

Fig. 4 shows the variation of RMSE values in 
RAF-AFNN during the training process. From Fig. 4, the 
RMSE can converge to a steady state with a low initial 
value. Furthermore, the predicting results obtained by the 
RAF-AFNN method are shown in Fig. 5, and the correspond-
ing predicting errors are depicted in Fig. 6. Fig. 5 indicates 
that the proposed RAF-AFNN-based soft-sensing method 

can approximate the actual values of effluent NH4–N well. 
Fig. 6 shows that the prediction errors are mainly within 
the closed interval [–0.2, 0.2], which indicates that the pro-
posed RAF-AFNN-based soft-sensing method meets the 
detection requirements of effluent NH4–N in the WWTP.

The experimental results in terms of the mean training 
RMSE, testing RMSE and accuracy for the abovementioned 
three models, the traditional FNN and two dynamic FNNs 
(DFNN [30], GDFNN [31]) are summarized in Table 2 for 
comparison.

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

The testing samples

P
re

di
ct

in
g 

er
ro

rs
/(m

g/
L)

FNN
RAF-AFNN

Fig. 6. The predicting errors for Case 1.

0 20 40 60 80 100
3

4

5

6

7

8

9

10

The testing samples

Ef
flu

en
t N

H
4-N

 v
al

ue
s/

(m
g/

L)

Real values
FNN
RAF-AFNN

Fig. 5. The predicting results for Case 1. 

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

The training steps

Th
e 

R
M

SE
 V

al
ue

s

0 200 400 600 800 1000
0

0.05

0.1

FNN
RAF-AFNN

Fig. 4. RMSE during training.



H. Zhou, J. Qiao / Desalination and Water Treatment 140 (2019) 132–142140

By analyzing Table 2, the advantages of the soft-sensing 
method, based on both RAF and IALM, are summarized as 
follows. First, the most suitable fuzzy rules can be automati-
cally extracted from the input data sets by the proposed RAF 
algorithm and the fuzzy Gaussian kernel function. Thus, the 
RAF-based models have better performance than FCM-based 
models. Second, the proposed IALM parameter optimization 
algorithm can accelerate the training speed and enhance its 
generalization capability. The over-fitting problem, which 
often occurs in the neural networks, can be well controlled 
by the IALM-based learning algorithm. Thus, to predict the 
effluent NH4–N, the soft-sensing method, designed by the 
combination of RAF and IALM, obtains the best mean testing 
RMSE and the best mean prediction accuracy.

5.2.2. Case 2

In this case, the prediction performance of the 
RAF-AFNN-based soft-sensing method is compared with 
some other models, such as the mathematical method [39], 
the dynamic autoregressive exogenous (ARX) method [40], 
the multiple linear regression (MLR) [41], the MLP [11], 
and the RBF [12]. The parameters of these methods are the 
same as the initial papers.

Fig. 7 shows the predicting results obtained by the MLR, 
the RBF, and the RAF-AFNN. The corresponding predicting 
errors are depicted in Fig. 8. From Figs. 7 and 8, the proposed 
RAF-AFNN-based soft-sensing method is more competitive 
in solving effluent NH4–N prediction problem compared 
with MLR and RBF.

To show the prediction abilities of the proposed 
RAF-AFNN model, the detailed comparison with other 
methods is summarized in Table 3. In this table, the mean 
testing RMSE and the mean accuracy are listed. As can 
be seen from Table 3, the proposed RAF-AFNN-based 
soft-sensing method has the smallest mean testing RMSE 
value. Moreover, compared with the mathematical method, 
the dynamic ARX method, the MLR method, the MLP 
method, and the RBF method, the proposed RAF-AFNN-
based soft-sensing method has the highest mean prediction 
accuracy. The simulation results indicate that the proposed 
soft-sensing approach is suitable for the effluent NH4–N 
modeling.

6. Conclusions

The detection of effluent NH4–N in the WWTP depends 
mainly on the online instruments or offline biochemical 
analysis. The cost of purchasing and maintenance of these 
facilities is high. In this paper, to obtain the values of effluent 
NH4–N in real time, an RAF-AFNN-based soft-sensing 
model is designed. To improve the modeling performance 
of the proposed RAF-AFNN approach, the RAF-based 
algorithm is used to extract the initial fuzzy rules. Then, 
the IALM-based learning algorithm is applied to adjust 
network parameters during the training process. In addition, 
experimental hardware is constructed using an online sensor 

Table 2
Performance comparison of different methods for Case 1

Methods Hidden 
nodes

Mean 
training 
RMSE

Mean 
testing 
RMSE

Mean 
accuracy 
(%)

DFNN [30] 18 0.2445 0.2536 94.74
GDFNN [31] 16 0.2488 0.2501 95.22
FNN 12 0.4718 0.4798 93.15
RAF + EBP 12 0.2862 0.2920 94.18
FCM + IALM 12 0.0951 0.0996 97.29
RAF + IALM 12 0.0684 0.0706 98.46
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Fig. 7. The predicting results for Case 2.

Table 3
Performance comparison of different methods for Case 2

Methods Hidden 
nodes

Mean 
training 
RMSE

Mean 
testing 
RMSE

Mean 
accuracy 
(%)

Mathematic 
model [39]

– – – 90.87

Dynamic 
ARX [40]

– – – 85.12

MLR [41] – 0.6354 0.6244 90.51
MLP [11] 12 0.4956 0.5013 92.23
RBF [12] 12 0.4284 0.4323 92.95
RAF-AFNN 12 0.0684 0.0706 98.46
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array and the soft-sensing method to predict the effluent 
NH4–N. The experimental results show that the RAF-AFNN 
can achieve superior prediction accuracy of effluent NH4–N 
when compared with other prediction models.

Furthermore, the experimental results also demonstrate 
that the proposed RAF-AFNN-based soft-sensing method 
can obtain satisfactory prediction results using T, DO, ORP, 
NO3–N, and pH as the input variables. According to the 
accurate predicting results of effluent NH4–N, it is helpful to 
find the change of water quality and take the corresponding 
restrain measures in time. The success of RAF-AFNN-based 
soft-sensing method suggests that it can be used to design an 
effective predictive controller in the WWTP.
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