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a b s t r a c t
In South Korea, various sensors and smart meters have recently been installed in water distribution 
networks as a consequence of the Fourth Industrial Revolution and the water supply system 
modernization project. This study identified consumers’ actual water use patterns using hourly 
automatic meter reading (AMR) data. A genetic algorithm-based model was developed to optimize 
locations and operation schedules of chlorine booster stations, by minimizing residual chlorine 
concentration spatiotemporal variation within a water distribution network, and deriving a water 
quality management plan enabling economical disinfection. The model was applied to one water 
distribution district of the J water purification plant, and under the worst water quality conditions, three 
optimal chlorine booster stations locations could satisfy the target residual chlorine concentration of 
0.1–0.5 mg/L, at a total cost of 110,991 KRW/d. Moreover, chlorination costs were compared before and 
after optimizing the chlorine booster stations’ operation schedule. Chlorination costs were reduced 
from 2,554 to 1,576 KRW/d on Day 1, and from 2,232 to 1,319 KRW/d on Day 2, while maintaining 
0.5 mg/L residual chlorine concentration. Residual chlorine concentration could be maintained in the 
range of 0.1–0.5 mg/L at every demand node.
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1. Introduction

As the automatic meter reading (AMR) system and smart 
meters have been introduced since the late 1990s, water 
usage data of each house can be collected every minute and 
even every second. Such detailed water usage data enable 
a demand model reflecting water use patterns of each con-
sumer to be developed and characteristics of water use to 
be accurately analyzed according to classification criteria. 
Accordingly, the smart meter technology is considered to 
have the potentiality of changing consumers’ water use pat-
tern, and the feedback function can be utilized to facilitate 
water saving and demand management [1].

The monthly analysis of water usage data collected by 
monthly meter reading and flow data from each water puri-
fication plant (WPP), reservoir, and district metered area is 

effective enough for planning and designing water supply 
systems. However, as monthly water usage data obtained by 
meter reading are average values of long-term measurements, 
such data cannot reflect consumers’ water use patterns or 
other features of daily water usage (weekdays, weekends, and 
holidays). For this reason, the analysis of water distribution 
networks on a unit time basis such as extended period simu-
lation (EPS) implies much uncertainty [2]).

Water usage data of each consumer, which are collected on 
a unit time basis, are the first thing to be considered for eval-
uating water use patterns in a water distribution district and 
establishing a management plan. However, because smart 
meters have not been installed at every service connection 
yet, water usage cannot be directly measured, which seems 
to cause the largest uncertainty and dynamic variability [3].
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As local governments have continuously improved water 
flow rates and built up a block system and as the water distri-
bution system are being modernized, more and more smart 
meters including automatic reading system and measuring 
instruments (flowmeter, water pressure gauge, leak sensor, 
water quality analyzer, etc.) are being installed. This study 
attempted to develop a model that utilized real-time data 
collected from those instruments to optimize locations and 
operation schedule of chlorine booster stations for water use 
features of the study area, to minimize spatiotemporal vari-
ation of residual chlorine concentration and thus to ensure 
economical chlorination.

Chlorine used in a water treatment process reacts to nat-
ural organic matter (NOM) of water, biofilms in a water dis-
tribution pipe, tubercles, or pipe material. For this reason, as 
the retention time increases, chlorine decreases and disinfec-
tion by-products increase [4]. The chlorine concentration of 
clean water can be reduced by the bulk reaction to NOM, the 
pipe wall reaction to biofilms, tubercles or pipe material, and 
the loss in a reservoir.

Rossman [5] explained a mechanism of matter loss (or 
increase) due to reactions occurring while residual chlorine 
of water passes a pipe network. The reaction mechanism 
proposed by Rossman [5] simulates the decay of residual 
chlorine concentration caused by reactions to bulk water 
or pipe walls by using the first-order dynamic reaction. 
Fuchigami and Terashima [6] reported that kb significantly 
increased at a water temperature of 20°C or above and the 
logarithm of kb for the inverse number of water tempera-
ture T (absolute temperature °K) could be expressed by the 
Arrhenius equation [6]. Accordingly, this study investigated 
water temperatures of the days of the pipe network analysis 
and applied them to the Arrhenius equation, thereby obtain-
ing kb. The most conventional method of estimating kw is the 
trial-and-error method (systematic analysis method). In this 
method, a pipe network simulation is conducted by using the 
bulk decay coefficient determined by a batch experiment for 
chlorine decay reaction, and kw is determined when an actual 
residual chlorine concentration becomes similar to a calcu-
lated one [7].

Even if water produced by a WPP satisfies a drinking 
water quality standard, its quality can decline while reach-
ing consumers through a water supply system. Consumers 
understand the quality of water produced at a purification 
plant is different from that of tap water. Accordingly, the 
quality of water in the distribution system has been less 
systematically managed. Residual chlorine concentrations 
in water supply networks are affected by such factors as 
amount of water supply, retention time, and seasonal vari-
ation of water temperature [4]. Thus, in the case of a region, 
where the length of pipes is large or the demand for water is 
small, retention time becomes longer, and thus the minimum 
criterion of residual chlorine concentration cannot often be 
satisfied. To solve this problem, some local governments still 
inject an excessive amount of chlorine in a WPP. However, a 
high residual chlorine concentration in a WPP may increase 
disinfection by-products, cause more civil complaints about 
odor, and decrease a drinking rate [8].

Recently, some metropolitan city governments have 
tightened guidelines for managing residual chlorine at taps, 
introduced an advanced treatment process, and actively 

installed chlorine booster stations to solve such problems as 
the decrease of drinking rate due to chlorine odor, residual 
chlorine concentration decay due to the increase of retention 
time, spatiotemporal variation of residual chlorine concen-
tration, and disinfection by-products.

Many studies have derived optimal locations of chlorine 
booster stations or appropriate rechlorination concentrations 
to optimize residual chlorine concentrations in a pipe net-
works through such booster stations.

Boccelli et al. [9], Sert [10], Koker [11], and Ayvaz and 
Kentel [12] attempted to formulate the optimal schedul-
ing problem of chlorine booster stations by utilizing linear 
programming, which is a deterministic method. Tryby et al. 
[13] set the locations of chlorine booster stations by using 
integer decision variables and determined rechlorination 
concentrations by formulating the problem by mixed inte-
ger linear programming. These studies commonly adopted a 
deterministic approach to solve problems.

Munavalli and Kumar [14] fixed locations of chlorine 
booster stations and applied a genetic algorithm (GA) for 
deriving an objective function that could minimize the 
total injection of chlorine. Prasad and Park [15] applied a 
multi-objective genetic algorithm for solving the problem of 
determining the number of chlorine booster stations. Ostfeld 
and Salomons [16] also applied a GA to find out the locations 
of chlorine booster stations, which could minimize the costs of 
installing and operating those facilities under constraints of 
chlorine concentration. Ohar and Ostfeld [17] determined the 
locations of chlorine booster stations and rechlorination con-
centrations, which could minimize the generation of disinfec-
tion by-products along with residual chlorine concentration, 
in association with EPANET Multi-Species. Chu et al. [18] 
and Wang and Guo [19] used an immune algorithm and ant 
colony optimization, respectively, to optimize the locations 
of chlorine booster stations and rechlorination concentration. 
These studies adopted a probabilistic approach to find out 
solutions.

A lot of studies attempt to optimize the locations of 
chlorine booster stations and rechlorination concentration. 
However, most of them focus on simply simulated pipe net-
works or tree-type water distribution networks. In addition, 
locations of chlorine booster stations, injection and concen-
trations are determined mainly by considering the decay of 
residual chlorine concentration according to retention time. 
Some studies performed a numerical analysis for optimizing 
rechlorination, but only daily average injection concentra-
tion of a chlorine booster station could be determined. This 
was not sufficient to find out an appropriate residual chlo-
rine concentration for variable water use. Consequently, it 
seemed to be necessary to develop a model that can derive 
optimal locations of chlorine booster stations and schedule 
by considering residual chlorine concentrations and water 
usage variation based on consumers’ water use patterns.

This study developed a hydraulic water quality analysis 
model by real-time data of flow rate, water pressure, and 
usage in a water distribution system. The model was val-
idated and calibrated to reproduce the condition of a real 
water distribution system more accurately. The hydraulic 
analysis model thus developed was coupled with a genetic 
algorithm. Thus, the model could be an optimization model 
for locations of chlorine booster stations and operation of 
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residual chlorine concentration. This model could equalize 
residual chlorine concentration and enable economical dis-
infection while satisfying relevant water quality standards, 
thereby ensuring water quality safety and improving con-
sumers’ satisfaction for a water supply block where flow 
rates, water pressures, and usage could be monitored. The 
model thus developed was applied to the J water distribu-
tion pipe network to simulate residual chlorine concentra-
tions before and after optimization and verify water quality 
improvement.

2. Study method

2.1. Current status of the study area

The J water distribution district completely estab-
lished an AMR system and a district metered area system. 
Accordingly, the water usage of each consumer and the flow 
rate and water pressure data for each district metered area 
inflow point could be collected every hour in the area. A total 
of 2,077 service connections existed in this region, and the 
daily water supply per person was 374 L in 2015. The study 
area consisted of four small blocks. Water was supplied to 
blocks 1–3 directly from the J WPP and indirectly provided 
to Block 4 through a reservoir. Block 4, to which water was 
supplied indirectly through a reservoir, had the largest 
supply area and a tree-type pipe network, because consumers 
were scattered. In comparison with the other blocks, it had 
a longer pipe network and the water retention time in the 
reservoir was long. Accordingly, the residual chlorine con-
centration was lower than that in the other three blocks. For 
this reason, the J WPP maintained a high residual chlorine 
concentration for the entire district to ensure a sufficient level 
of residual chlorine in Block 4.

2.2. Hydraulic analysis model for the J water distribution district

A water distribution pipe network analysis model was 
constructed from hourly automatic meter readings, hourly 
flow rate data (outflow from a clear well, inflow into a 
reservoir, and inflow into a block), water pressure, depth, 
and AutoCAD drawing files. The capacity of the J district 
WPP was 9,000 m3/d. The direct water supply used two pipe 
networks, while the indirect water supply used the reservoir. 
In this study, we skeletonized the pipe networks by focus-
ing on branch points. To reproduce real flow rates, water 
pressures, and other conditions as closely as possible, each 
consumers’ real water usages and demand patterns, which 
were collected by AMR data, were applied to demand nodes. 
In addition, the amount of water leakage, water pressures, 
and residual chlorine concentrations were calibrated and 
verified using flowmeters and water pressure gauges that 
were installed in pipe networks, field measurements of water 
pressure, and residual chlorine concentration.

2.3. Derivation of residual chlorine decay coefficient and modeling

As water quality for both raw water flowing into the 
WPP and filtered water seemed to vary with the season. 
Filtered water was collected at two different times of year 
from the J WPP to evaluate the residual chlorine bulk decay 

coefficient (first experiment on September 8, 2017, and second 
experiment on March 14, 2018). Sodium hypochlorite was put 
into the filtered water samples to generate the same residual 
chlorine concentration as that measured on each sampling 
day. Batch experiments were conducted to derive bulk decay 
coefficients under different temperature conditions (5°C for 
winter, 15°C for spring and autumn, and 25°C for summer). 
The appropriate order and coefficient for the residual chlo-
rine decay reaction in the J water distribution district were 
derived. The Arrhenius equation was used to express them 
as a decay coefficient according to water temperature, which 
was utilized for analyzing water quality.

To estimate the chlorine wall decay coefficient (kw), resid-
ual chlorine concentration data collected by grab sampling at 
8 points for the first, and at 17 points for the second experi-
ment within the district, were used in the systematic anal-
ysis (that is, trial-and-error) method. The measuring points 
of residual chlorine concentration in the pipe network were 
selected by considering retention time in the direct-connected 
water supply network between the point closest to the WPP 
and consumers. The correlation coefficient between mea-
sured and estimated residual chlorine concentrations was 
compared with root mean squared error) to determine an 
appropriate wall decay coefficient. The coefficient thus deter-
mined was used for modeling.

2.4. Developing an optimization model for residual chlorine 
concentration using a genetic algorithm

A model for the locations and operation schedule of 
chlorine booster stations was developed. This model used a 
genetic algorithm, to optimize the residual chlorine concen-
tration of the study area. The worst-case water quality con-
ditions for the study area were set using monitoring data of 
the outflow rate, water temperature, and residual chlorine 
concentration in the WPP. In other words, a day was selected 
where the water temperature was high, the residual chlo-
rine concentration quickly declined, and the retention time 
was longer due to less water usage. Locations of chlorine 
booster stations and an initial chlorine concentration were 
determined which could satisfy the target residual chlorine 
concentration at demand nodes of the pipe network in worst-
case water quality conditions, and also minimize the costs of 
both disinfection at the WPP and installation and operation 
of the chlorine booster stations.

The distribution of residual chlorine concentration in a 
water distribution pipe network is affected by water tem-
perature and factors influencing water use such as season, 
weather, and day of week. Accordingly, to effectively respond 
to variations in water usage and temperature, and optimally 
manage the residual chlorine concentration in a water dis-
tribution district, it is necessary to develop a model that can 
determine a 24-h residual chlorine concentration for a chlo-
rine booster station. As shown in Fig. 1, we developed such 
a model. The objective function of the optimization model 
for residual chlorine concentration aimed to minimize chlo-
rination cost at the WPP, installation cost of chlorine booster 
stations, and rechlorination cost at the stations. The objec-
tive function can be expressed by Eq. (7) in the following. In 
this study, the locations to minimize installation and opera-
tion costs of chlorine booster stations and disinfection cost 
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were determined, and the operation schedule was derived 
for economical disinfection. Because the residual chlorine 
concentration is a thing that must be strictly observed, the 
optimization model was developed by setting the residual 
chlorine concentration range as a constraint, without setting 
the equalization rate or the satisfaction rate as an objec-
tive function. In addition, the disinfection at the WPP and 
chlorine boosting facilities are not expensive to operate, but 
installation of chlorine boosting facilities is costly. Therefore, 
the locations and number of the chlorine booster stations 
were determined considering both the installation cost and 
the operating cost.

min min[ ( )]B B B Bi ii

n
= + +

=∑WPP CBS COE
1

� (1)

BWPP = CWPP × QWPP × ρWPP� (2)

B C C Qi i a i b i i
CBS CBS CBS CBS CBS= − × ×( ), , ρ � (3)

where B: total cost (KRW/d), BWPP: chlorination cost in WPP 
(KRW/d); Bi

CBS : rechlorination cost in booster station at i node 
(KRW/d); Bi

COE : installation cost of chlorine booster station 
at i node (KRW/d); CWPP: residual chlorine concentration 
in WPP (mg/L); Ci a,

CBS: residual chlorine concentration after 
rechlorination at i node (mg/L); Ci b,

CBS: residual chlorine 
concentration before rechlorination at i node (mg/L); QWPP: 
outflow rate in WPP (m3/d); Qi

CBS : flow rate in chlorine booster 
station at i node (m3/d); ρWPP: the unit price of disinfectant 
mass in WPP (KRW/kg); and ρi

CBS : the unit price of disinfectant 
mass in chlorine booster station (KRW/kg).

The daily cost of installing a chlorine booster station was 
calculated and applied under the assumption that the service 

life of the station is 20 years and the total cost is paid on a 
daily basis. This was because the initial investment cost far 
exceeded the operation cost, and thus the solutions tended 
to suggest installing as few stations as possible. As shown 
in Table 1, this study estimated the installation cost in South 
Korean won according to the capacity of chlorine booster 
stations [20].

When liquefied chlorine is used, the chlorination cost at 
the WPP is the product of unit input price and supply vol-
ume. In the case of a chlorine booster station, the chlorination 
cost is the product of unit input price of sodium hypochlo-
rite and the flow rate at the station. In this study, the unit 
input price of liquefied chlorine at the WPP was assumed to 
be 550 KRW/kg [21], and that of sodium hypochlorite at a 
chlorine booster station was assumed to be 15,000 KRW/kg.

The first constraint of the optimization model for residual 
chlorine concentration was whether the criterion of residual 
chlorine concentration at a demand node was satisfied. The 
management standard of the drinking water supplier, con-
sumers’ requirements, and the perception level of an ordinary 
adult for odor needed to be comprehensively considered to 
set the constraint. In this study, to determine an appropriate 
residual chlorine concentration for the study area, we set up 
a scenario for the upper target concentration that could sat-
isfy the residual chlorine concentration of 0.1 mg/L or above, 
which is provided by the Water Supply Act to improve the 
drinking rate and equalize residual chlorine.

The second constraint was the criterion for residual chlo-
rine concentration in the outflow of the WPP. The maximum 
and minimum values were set by considering the man-
agement standard of drinking water supplier and whether 
chlorine contact time values for each season were satisfied. 
As the third constraint, the upper and lower limit of residual 
chlorine concentration at any chlorine booster station was 

Fig. 1. Flowchart of genetic algorithm optimization model for residual chlorine concentration equalization.
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set. This constraint aimed to prevent the installation of an 
excessive number of chlorine booster stations with too small 
capacity in consideration of economic aspects and the oper-
ation of chlorine booster stations. These constraints can be 
expressed by the following formulas.

minCc ≤ Cc ≤ maxCc� (4)

minCWPP ≤ CWPP ≤ maxCWPP� (5)

minCCBS ≤ CCBS ≤ maxCCBS� (6)

where Cc: residual chlorine concentration at demand node 
(mg/L); CWPP: residual chlorine concentration at outflow rate 
in WPP (mg/L); and CCBS: residual chlorine concentration at 
booster station (mg/L).

To prevent any point where a chlorine booster station 
could not be installed from being selected, it was necessary 
to develop a model that could find out solutions at 25 points 
including the flowmeter chamber, the valve chamber and the 
pump station, which had been designated in advance. The 
abovementioned objective function was used for testing the 
goodness-of-fit and termination condition. A higher good-
ness-of-fit was given a lower cost. The calculation was set to 
terminate when reaching a set number of households. When 
the calculation was completed, any solution obtained at the 
lowest cost was selected as the optimal solution.

2.5. Optimizing locations of chlorine booster stations in the water 
distribution network

The highest water temperature and average flow rate of 
summer were set as the worst-case water quality conditions 
to optimally locate chlorine booster stations in the water dis-
tribution pipe network. A hydraulic and water quality model 
was constructed from the bulk decay coefficient at the high-
est water temperature and the average flow rate. In 2017, the 
annual average outflow rate and the highest water tempera-
ture in the clear well were 4,014 m3/d and 20.9°C, respec-
tively. These values were set as the worst-case conditions. 
As presented in Table 2, scenarios for optimizing locations of 
chlorine booster stations were constructed by considering the 
range of residual chlorine concentration at the WPP, resid-
ual chlorine in each junction, range of residual chlorine con-
centration in boosting stations, and the number of chlorine 
boosting points.

Table 1
Installation cost of chlorine boosting station

Study area Injection range 
(kg/d)

Installation cost 
(KRW/d)

J region 0–0.5 36,200
0.5–1.0 36,700
1.0–1.5 37,300
1.5–2.0 37,800
2.0–2.5 38,400
2.5–3.0 38,900

Table 2
Scenarios for optimization of chlorine boosting stations

Scenario Range of residual chlorine 
concentration in water 
purification plant (mg/L)

Criteria of 
residual chlorine 
in each junction

Range of residual 
chlorine concentration in 
boosting stations (mg/L)

Number of 
chlorine 
boosting points

1-1 0.1–1.0 0.1–0.4 0.1–1.0 1
1-2 0.1–1.0 0.1–0.5 0.1–1.0 1
1-3 0.1–1.0 0.1–0.6 0.1–1.0 1
1-4 0.1–1.0 0.1–0.7 0.1–1.0 1
2-1 0.1–1.0 0.1–0.4 0.1–1.0 2
2-2 0.1–1.0 0.1–0.5 0.1–1.0 2
2-3 0.1–1.0 0.1–0.6 0.1–1.0 2
2-4 0.1–1.0 0.1–0.7 0.1–1.0 2
3-1 0.1–1.0 0.1–0.4 0.1–1.0 3
3-2 0.1–1.0 0.1–0.5 0.1–1.0 3
3-3 0.1–1.0 0.1–0.6 0.1–1.0 3
3-4 0.1–1.0 0.1–0.7 0.1–1.0 3
4-1 0.4 0.1–0.4 0.1–0.4 3
4-2 0.5 0.1–0.5 0.1–0.5 3
4-3 0.6 0.1–0.6 0.1–0.6 3
4-4 0.7 0.1–0.7 0.1–0.7 3
5-1 0.4 0.1–0.4 0.1–0.4 2
5-2 0.5 0.1–0.5 0.1–0.5 2
5-3 0.6 0.1–0.6 0.1–0.6 2
5-4 0.7 0.1–0.7 0.1–0.7 2
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2.6. Optimal operation schedule of chlorine booster stations

After optimal locations for chlorine booster stations were 
determined under the worst-case water quality conditions, that 
is, at the highest summer water temperature and the average 
flow rate, scenarios were set up and optimization was con-
ducted to obtain optimal 24-h residual chlorine concentra-
tions at the WPP and the booster stations. The minimum and 
maximum residual chlorine concentrations had to be 0.1 and 
0.5 mg/L, respectively, at every demand node of the water dis-
tribution district. Fig. 2 shows the locations of the J WPP and 
reservoir and the optimal locations of chlorine boosting points. 
Representative nodes of each block are also shown. These nodes 

were selected to compare residual chlorine concentrations 
according to the optimal operation scenarios of chlorine booster 
stations. To select the boosting points, water flow directions and 
water age were considered. These points included the WPP, res-
ervoirs, chlorine booster stations, main pumping stations, junc-
tions of small blocks, and pipe ends, thereby enabling variations 
in residual chlorine concentration to be easily identified.

Two bulk decay coefficient experiments and field mea-
surements of residual chlorine concentration were conducted 
on September 8, 2017, and March 14, 2018. For those 2 d, 
operation scheduling of the WPP and the chlorine booster 
stations was conducted. The results were compared with the 
real distributions of residual chlorine concentration on the 
same days, and the scheduling effectiveness was analyzed. 
Table 3 presents scheduling scenarios for residual chlorine 
concentration in the chlorine booster stations on the days 
of the first and second experiments (September 8, 2017, and 
March 14, 2018, respectively).

3. Results and discussion

3.1. Analysis of water use characteristics of the study area 
by using AMR data

Water use data of each household, which were collected 
through the AMR system, were used to derive the annual and 
seasonal distributions of the daily average water usage at each 
household. In the study area, the daily average water usage of 
each service connection was 0.643 m3/d. However, the actual 
daily water usage of each service connection ranged from 
0 to 4.815 m3/d, and the standard deviation was 0.588 m3/d. 
It turned out that almost 84.9% of all the households con-
sumed water below 1.0 m3/d. Accordingly, if the average value 
is uniformly input into every node for a numerical analysis, 
the actual distribution of water usage could not be accu-
rately identified, and influential factors on water use such as 
the number of occupants in each household, residence type, 
and other characteristics of each household as well as water 
pressure would not be considered. Thus, there would be a gap 
between reality and the results of numerical analysis.

Table 3
Scenarios for determining optimal operation schedule of chlorine boosting stations

Scenario Range of residual 
chlorine concentration 
in WPP (mg/L)

Criteria of residual 
chlorine concentration 
in customer junction 
(mg/L)

Range of residual 
chlorine concentration 
in chlorine boosting 
point (mg/L)

Number 
of chlorine 
boosting points

September 
08, 2017

Current operation 1.18 – – –
Opti-ReCl-Point 0.39 0.10–0.50 0.20 3

0.36
0.11

Opti-ReCl-Oper 
(WPP: 0.5)

0.50 0.10–0.50 0–0.50 3

March 14, 
2018

Current operation 1.05 – – –
Opti-ReCl-Oper 
(WPP: 0.5)

0.50 0.10–0.50 0–0.50 3

Opti-ReCl-Oper 
(WPP: 0.39)

0.39 0.10–0.50 0–0.36 3

Fig. 2. Chlorine boosting points and residual chlorine 
concentration observation points.
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As shown in Fig. 3, the hourly water usage data of the study 
area were used to present the frequency distribution of the 
average water usage of each service connection both at 3 a.m. 
and 7 p.m. The majority of households recorded water usage of 
20 L/h or below at 3 a.m., where the smallest amount of water 
was used throughout the day. As an hourly water use pattern 
is the basic input for EPS using a hydraulic analysis model, it is 
usually estimated based on outflow rates, which are measured 
at a certain time interval either in a clear well or in a reservoir. In 
Fig. 3, the minimum flow rate period at night shows that each 
household consumes a different amount of water even in the 
same time period. For this reason, if the same hourly pattern is 
applied to a hydraulic analysis, an error is likely to occur.

3.2. Determining the residual chlorine decay coefficient 
for analyzing water quality

The residual chlorine bulk decay coefficients (kb) 
were obtained from the first experiment by assuming the 
first-order, second-order, and third-order residual chlorine 
decay reactions at water temperatures of 5°C, 15°C, and 
25°C, respectively. Curve fitting for the linearized Arrhenius 
equation can be expressed by the following equation:

ln . . ( . )k
T

Rb = − ×








 + =8 7397 1000 30 512 0 91182 � (7)

where T: absolute temperature (K) = 273 + temperature (°C).

In the case of the third-order decay reaction, the decay 
tendency of residual chlorine concentration measured at each 
temperature showed the highest correlation and resulted in 
the closest estimation to measurement. Accordingly, it was 
assumed that the residual chlorine decay reaction of the J 
water distribution district follows the third-order reaction. 
Then, the residual chlorine decay coefficient at the corre-
sponding water temperature was reflected in the modeling 
of this study.

On March 14, 2018, where the second experiment was 
performed, the residual chlorine decay reactions in the J 
WPP were assumed to be the first-order, second-order, and 
third-order reactions, respectively. The curve fitting for the 
linearized Arrhenius equation can be expressed by Eq. (8). 
When the water quality on the day of the second experiment 
was analyzed, the bulk decay coefficient obtained from the 
third-order reaction was used.

ln . . ( . )k
T

Rb = − ×








 + =5 5815 1000 18 826 0 98942 � (8)

where T: absolute temperature (K) = 273 + temperature (°C).
To simulate the worst-case water quality conditions in the 

optimization model of residual chlorine concentration, this 
study estimated a bulk decay coefficient at the highest water 
temperature of summer utilizing the residual chlorine decay 
coefficient obtained from the Arrhenius equation, which was 
derived from the first experiment with high water tempera-
ture conditions, on the basis of the results of the above two 
experiments.

When the field experiment was performed on September 
8, 2017, the water temperature of the J WPP was 17.1°C and 
the bulk decay coefficient (kb) was –1.4703 (mg/L)–2 d–1 under 
the assumption of the third-order reaction. On the exper-
iment day, the average residual chlorine concentration of 
outflow of the WPP was 1.18 mg/L. Hourly residual chlo-
rine concentration data were measured at the outflow point 
of the clear well, and reflected in the water quality analysis 
model. The pipe wall decay coefficient (kw) was calculated to 
be –0.038 m/d. On March 14, 2018, the water temperature of 
the J WPP was 5.2°C, and the bulk decay coefficient (kb) was 
–0.2492 (mg/L)–2 d–1 under the assumption of the third-order 
reaction. On the experiment day, the average residual chlo-
rine concentration of outflow of the WPP was measured 
to be 1.05 mg/L and reflected in the water quality analysis 
model. The pipe wall decay coefficient (kw) was calculated to 
be –0.005 m/d.

3.3. Distribution of residual chlorine concentrations in 
the water distribution pipe network

The residual chlorine concentration at 5 a.m. (Fig. 4(a)) 
was analyzed by water quality analysis on the first experiment 
day (at the water temperature of 17.1°C). The residual chlorine 
concentration of the outflow at J WPP was 1.18 mg/L, and the 
average concentration in the water supply network was sim-
ulated at 0.64 mg/L for 24 h. It has been simulated that there 
is a demand node with a residual chlorine concentration less 
than 0.1 mg/L at the end of the indirect water supply area 
through the reservoir.

at 7 P.M.

at 3 A.M.(a)

(b)

Fig. 3. Histograms of hourly average water demand by 
households in 2015 at (a) 3 a.m. and (b) 7 p.m.
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(b)(a)

Fig. 4. Contour plot of simulated residual chlorine concentration at 5 a.m. on (a) September 8, 2017, and (b) March 14, 2018.

Table 4
Optimized chlorine boosting station locations and concentrations by scenario

Scenario Optimization results
WPP Boosting stations Total 

cost 
(KRW/d)

Number of 
dissatisfied 
points

Residual 
chlorine 
concentration 
(mg/L)

Chlorination 
cost 
(KRW/d)

Residual 
chlorine 
concentration 
(mg/L)

Chlorine 
injection 
dosage 
(kg/d)

Installation 
cost 
(KRW/d)

Operation 
cost 
(KRW/d)

3-1 0.34 766 0.14 0.0046 108,600 1,288 110,654 1
0.17 0.0809
0.37 0.0003

3-2 0.39 878 0.20 0.0952 108,600 1,512 110,991 0
0.36 0.0003
0.11 0.0053

3-3 0.35 788 0.21 0.1000 108,600 1,648 111,037 0
0.29 0.0003
0.20 0.0097

3-4 0.41 924 0.25 0.0608 108,600 1,774 111,298 0
0.12 0.0571
0.41 0.0003

4-1 0.40 901 0.12 0.0040 108,600 992 110,493 1
0.13 0.0619
0.36 0.0003

4-2 0.50 1,126 0.19 0.0905 108,600 1,512 111,238 0
0.25 0.0002
0.21 0.0101

4-3 0.60 1,351 0.14 0.0667 108,600 1,163 111,115 0
0.33 0.0003
0.22 0.0106

4-4 0.70 1,577 0.16 0.0762 108,600 1,235 111,411 0
0.42 0.0003
0.12 0.0058

The bold values of scenario 3-2 was selected the best results for optimized chlorine boosting station locations and concentrations.
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The residual chlorine concentration at 5 a.m. (Fig. 4(b)) 
was analyzed by water quality analysis on the second 
experiment day (at the water temperature of 5.2°C). The resid-
ual chlorine concentration in the effluent of the clear well was 
1.05 mg/L, and the average concentration in the water supply 
network was simulated as 0.90 mg/L for 24 h. Although the 
effluent concentration of the clear well (1.05 mg/L) was lower 
than that of the first experiment, kb was low due to the low 
water temperature and was supplied at a relatively high 
concentration.

3.4. Optimization results for the locations of chlorine 
booster stations

Table 4 presents the optimal locations of chlorine booster 
stations under each scenario. When a scenario produced 
a result that could not satisfy the criteria of the range of 
residual chlorine concentration at demand nodes of the 
water distribution district, the scenario was dismissed. 
Fig. 5 illustrates the optimal concentrations and locations 
of chlorine booster stations derived from the analysis of 
scenarios. Fig. 6 shows the distributions of residual chlorine 
concentration at 5 a.m. and 8 p.m., which were obtained by 
reflecting the optimal concentration and locations of chlorine 
booster stations in the first experiment.

The residual chlorine concentration in the effluent of the 
clear well was simulated at 0.39 mg/L. It has been simulated 
that the residual chlorine concentration was 0.1 mg/L or more 
at all demand nodes in the water supply area, and the devia-
tion of the residual chlorine concentration was simulated as 
low as 0.05 mg/L.

The residual chlorine concentration for the consumers is 
shown in order of water age for 5 a.m. (Fig. 7(a)) and 8 p.m. 
(Fig. 7(b)) before and after rechlorination. After 24-h water 
quality analysis, the ratio of residual chlorine concentration 
of less than 0.1 mg/L was 0.14%, and the ratio of more than 
0.5 mg/L was 85.77%. The water quality satisfaction was 100% 
at all demand nodes through the three chlorine boosting 
points determined by the developed optimization model.

3.5. Optimal operation schedule for chlorine booster stations

3.5.1. Analysis of the optimization effect for 
the residual chlorine concentration in the first 
experiment (September 8, 2017).

In the first experiment, the average residual chlorine con-
centration of the outflow from the J WPP was 1.18 mg/L. This 
required a 2,554 KRW/d disinfection cost for the plant. The 
total disinfection cost was calculated to be 2,267 KRW/d after 
reflecting the residual chlorine concentration obtained by opti-
mizing the locations of chlorine booster stations. Accordingly, 
apart from the installation cost, disinfection seemed to be pos-
sible at a lower cost than the current operation cost. Because 
the locations of chlorine booster stations were determined by 
considering worst-case summer conditions, the residual chlo-
rine concentration at each chlorine booster station was esti-
mated to be too high. For this reason, an appropriate residual 
chlorine concentration for the WPP and chlorine booster 
stations on the first experiment day was derived. When the 
residual chlorine concentration of the outflow from the WPP 

Fig. 5. Residual chlorine concentration after chlorine boosting 
(Scenario 3-2).

(b)

(a)

Fig. 6. Contour plot of simulated residual chlorine concentration 
after rechlorination at (a) 5 a.m. and (b) 8 p.m. on September 8, 
2017.
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was maintained at 0.5 mg/L, the residual chlorine concentra-
tion of the chlorine booster station installed at the outflow 
point of the reservoir could be 0.16 mg/L or below, which low-
ered the operation cost to 1,576 KRW/d.

Fig. 8 illustrates residual chlorine concentrations at main 
points of the three small blocks, to which water was supplied 
directly from the WPP, under each scenario. The water quality 
standard could be satisfied at all demand nodes of the three 
blocks even if 0.5 and 0.39 mg/L were supplied at the WPP 
through operation scheduling in chlorine boosting stations.

The residual chlorine concentration at the representative 
observing points in the indirect water supply area (Block 4) from 
the WPP through the pumping station and reservoir is as fol-
lows: if the chlorine boosting stations can measure and control 

residual chlorine concentration in consideration of hourly water 
consumption, the developed optimization model is expected to 
enable efficient chlorine boosting operation (Fig. 9).

3.5.2. Analysis of the optimization effect for the residual 
chlorine concentration in the second experiment 
(March 14, 2018).

From the optimization results for residual chlorine 
concentration under each scenario, the residual chlorine 
concentrations of the three small blocks, which belonged to 
the area of direct water supply, were derived as shown in 
Fig. 10. Because residual chlorine bulk decay coefficients were 
low due to low water temperatures, the residual chlorine 
concentration did not change much according to retention 
time. Even when the existing residual chlorine concentration 
of 1.05 mg/L at the WPP was decreased to 0.2 mg/L as the 
chlorine booster stations were operated, all the demand 
nodes of three blocks met the requirement of 0.1–0.5mg/L.

Fig. 11 shows the optimization results for residual 
chlorine concentration on March 14, 2018, at the area of 
indirect water supply under each scenario. When the 
residual chlorine concentrations at the WPP were maintained 
at 0.5 and 0.39 mg/L respectively, two out of three chlorine 
boosting points conducted rechlorination at 0.1 mg/L or 
below or were hardly operated, and the rechlorination of 
only Re-chlorination point (ReCl2) was sufficient to satisfy 
the water quality standard at every demand node.

(a)

(b)

Fig. 7. Variation of residual chlorine concentration before and 
after rechlorination at (a) 5 a.m. and (b) 8 p.m.

Fig. 8. Variation of average residual chlorine concentration by 
each block in direct water supply area according to optimal 
operation on September 8, 2017.

Fig. 9. Variation of average residual chlorine concentration by 
each block in indirect water supply area according to optimal 
operation on September 8, 2017.

Fig. 10. Variation of average residual chlorine concentration 
by each block in direct water supply area according to optimal 
operation on March 14, 2018.
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On the second experiment day, the average residual 
chlorine concentration of the outflow from the J WPP was 
1.05 mg/L. This required 2,232 KRW/d as the disinfection 
cost for the plant. When the residual chlorine concentration 
of the WPP was fixed at 0.5 mg/L, a lower disinfection cost 
(1,319 KRW/d) was derived. In the case of fixing the resid-
ual chlorine concentration at 0.39 mg/L, the most economical 
operation (1,101 KRW/d) seemed to be possible.

Although the optimization model developed in this 
study could derive the schedule for 24-h residual chlorine 
concentration at the WPP, as the operational convenience 
of the plant and the safety issue of chlorination needed to 
be considered, it seemed to be appropriate that the effluent 
concentration of the clear well was maintained to be constant.

In this study, we analyzed and optimized water quality 
of the J water distribution district by performing two bulk 
decay coefficient experiments and field measurement of 
residual chlorine concentration. We found that chlorine 
booster stations need to be installed and operated to reduce 
high residual chlorine concentrations in the direct water 
supply area close to the J WPP, and to satisfy the mandatory 
residual chlorine concentration at the small blocks to which 
water is indirectly supplied through reservoirs. Moreover, if 
the operation of residual chlorine concentration in chlorine 
booster stations is optimized by considering the variation of 
residual chlorine concentration according to seasonal vari-
ations of water temperature and usage and the change of 
water use pattern within a day, economical operation could 
be possible within the target range of water quality.

4. Conclusions

This study has developed an optimization model for 
residual chlorine concentration by utilizing AMR data 
of water use and adopting a hydraulic analysis method 
reflecting actual water use characteristics of consumers. The 
locations and operation schedule of chlorine booster stations 
were optimized to propose a method for improving the reli-
ability of water quality.

An optimization model for locating and operating chlorine 
boosting station was developed that can minimize spatial 
and temporal deviation of residual chlorine concentration, 
enabling economical disinfection, based on an optimization 

technique utilizing a genetic algorithm and a water quality 
analysis model that considers consumer water consumption 
patterns. The application of the model deduced three opti-
mal boosting points that allow the achievement of the target 
residual chlorine concentration (0.1–0.5 mg/L) even under 
the worst-case water quality conditions of the service area. 
The calculation of the cost for chlorine disinfection at the 
WPP and for chlorine boosting station installation and opera-
tion resulted in 110,991 KRW/d. According to the first exper-
iment, in which measured water temperature was 17.1°C, 
the average residual chlorine concentration at J WPP was 
1.18 mg/L, and disinfection cost was 2,554 KRW/d. The opti-
mal residual chlorine concentration operating schedule sat-
isfying residual chlorine concentration standard for demand 
nodes was performed at lower cost by fixing residual chlorine 
concentration at the WPP (1,576 KRW/d). Therefore, if resid-
ual chlorine concentration can be measured and controlled 
at chlorine boosting stations, the utilization of the developed 
optimization model is expected to enable efficient disinfec-
tion according to the hourly change of water consumption 
and seasonal changes in water temperature. Maintaining 
the concentration of residual chlorine at the WPP as low as 
possible within the range satisfying the water quality stan-
dards will contribute effectively to reduce the generation of 
disinfection by-products and to prevent the decrease of the 
drinking rate due to chlorine odor.
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