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a b s t r a c t
Computational modeling and numerical simulation of separation processes have been carried out in 
this work. A computational model is developed and numerically solved to calculate and obtain the 
concentration of a liquid solution in a pervaporation membrane process. The model considers basic 
conservation equations for the solution of water/alcohol in a membrane separation process. The gov-
erning equations are then solved and interpreted using computational fluid dynamics approach in 
order to optimize and design the process of interest. The results of computational simulations indicate 
that the model is well developed and can predict the performance of separation process with high 
accuracy.
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1. Introduction

Development of theoretical models for prediction, 
design, and optimization of chemical processes is of great 
importance [1–4]. Among various chemical processes, sep-
aration processes play a crucial role in chemical industry 
and optimization of chemical processes can improve the effi-
ciency of the whole process significantly [5–12]. Theoretical 
modeling and simulation of separation processes can be a 
great tool in order to better understand the process, and can 
design the process at both pilot and industrial scale [13–16]. 
There are different types of models developed for process 
modeling and simulation available in literature including 
artificial neural network models, mechanistic models, and 
semi-mechanistic models. Application of each modeling 
approach depends on the process and different phases avail-
able in the process [12,17–22]. Recently computational fluid 
dynamics approach has attracted much attention in process 

modeling and simulation [23–28]. Some authors have used 
different modeling approaches for simulation of chemical 
processes [29–37].

In this study, a computational model is developed for 
simulation of a chemical process used for separation and 
purification of water/alcohol solutions. The model is devel-
oped based on conservation equations and the computational 
fluid dynamic approach is used for numerical simulation of 
the process.

2. Computational model of the process

For the development of the computational model, a 
geometry of process is drawn which is shown in Fig. 1. As 
seen, the process involves separation of a solution of water/
alcohol by a membrane which divides the two solutions. 
The membrane acts as a separation medium for two phases 
and the separation occurs during the membrane module. 
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The membrane processes have been extensively used in lit-
erature for separation and purification of aqueous liquid 
and gas streams and theoretical and experimental analysis 
are available for modeling and numerical simulation of the 
process. Finite element method (FEM) was used to solve 
the problem. The mass transfer in the polymer is Maxwell–
Stefan’s diffusion.

A mechanistic model is developed here in order to track 
the different quantities of interest for the process such as 
concentration, velocity, and pressure. It has already reported 
in the literature that the concentration continuity equation 
along with thermodynamic approaches is a great tool for 
modeling of chemical processes. Therefore, conservation 
equation can be written as [38]:

∂
∂

+ ∇× +( ) =C
t

J C V Rw
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The reaction term is omitted as there is no chemical 
reaction involved in this process.

2.1. Numerical calculations

The derived equations of the model [Eq. (1)] are 
numerically solved by appropriate solver and conditions in 
order to simulate the process. As a starting point, the whole 
geometry of model needs to be discretized which is shown 
in Fig. 2. In this study, FEM was coupled with adaptive mesh-
ing and error control using numerical solver of UMFPACK 
version 4.2.

3. Results and discussion

The concentration of the solute in the process is shown 
in Fig. 3 as a colorful two-dimensional distribution which 
has been obtained by numerical solution of Eq. (1) using 
computational fluid dynamics approach. Fig. 4 also shows 
the contour of diffusive flux. The approach seems to be 

efficient in the modeling of the process and the concentra-
tion distribution of different species can be easily calculated 
in the process. Therefore, the methodology developed in this 
work is capable of prediction and optimizing the chemical 
separation processes.

 

Fig. 1. Model geometry for computational simulation.

 

Fig. 2. Mesh element size used in the computations.

 

Fig. 3. Concentration distribution and arrows of total mass 
transfer flux of solute.
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4. Conclusions

A numerical methodology has been developed in this 
study in order to simulate the chemical separation processes 
used for purification and isolation of chemical compounds. 
The considered process is a membrane-based separation 
in which the equations of conservations were derived and 
numerically solved for various species in the process. The 
governing equations were then solved using the compu-
tational fluid dynamic approach in order to calculate the 
concentration of species in the process. The results indicated 
that the methodology is robust and efficient and can be used 
for computational modeling of processes.
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