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a b s t r a c t
In this study, to enhance the removal efficiency of nitrogen in runoff, construction waste (CW) was 
used for immobilization of nitrifying and denitrifying bacteria. The efficiency and mechanism of the 
removal of runoff pollutants by immobilized-bacteria construction waste (ICW) were systematically 
investigated in column experiments. The results indicated that the nitrifying and denitrifying bacteria 
could be immobilized onto CW successfully. The highest removal efficiencies of total nitrogen (TN) 
and ammonia nitrogen (NH4

+–N) were 91.97% and 78.82%, which could be attributed to the nitrification 
and denitrification caused by the immobilized microorganisms. Furthermore, the microorganisms 
played an important role in the removal of other pollutants in stormwater runoff. Comparing the 
pollutant concentrations in influent and effluent, the highest removal efficiencies of chemical oxygen 
demand (COD) and total phosphorus (TP) of nearly 100.00% and 80.33% could be achieved after a 
period of instability. ICW showed higher removal efficiency for nearly all runoff pollutants after the 
experiments were conducted for a long time (67 d). This study offers a new approach for the reuse 
of CW in bioretention systems and suggests a useful method for the removal of pollutants in runoff.
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1. Introduction

In recent years, as an important water quality issue, 
eutrophication, which is mostly attributed to the excessive 
release of nitrogen and phosphorus (P) into the environment, 
has drawn attention all over the world [1]. Furthermore, 
excess nitrogen in aquatic ecosystems can cause a series of 
problems such as altering the structure of the ecological com-
munity, deterioration of habitat quality, or even harm toward 
organisms [2].

As an identified major nitrogen pollution source, storm-
water runoff contributes more than 50% of the nitrogen 

pollution in many countries [3]. Due to widespread urban-
ization, the increase in impervious areas has induced 
the discharge of stormwater runoff directly into aquatic 
ecosystems [4,5]. With the rapid development of urbaniza-
tion in China, the contribution of urban stormwater runoff to 
nitrogen pollution has become more prominent [6]. Hence, the 
development of appropriate methods for decreasing nitrogen 
loads into aquatic environments is particularly important.

In order to reduce the pollutants loads in stormwater 
runoff, a number of stormwater control measures have been 
employed such as constructed wetlands, sedimentation 
ponds, sand filters, infiltration and bioretention systems [7]. 
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Among these measures, bioretention systems have attracted 
great attention due to their special ability to improve water 
quality and hydrologic conditions. Although results showed 
that bioretention systems could effectively eliminate heavy 
metals, total suspended solids (TSS) and grease in runoff, 
the nutrient degradation effect was not ideal, especially 
regarding nitrogen removal [8–10]. In recent years, many 
methods have been used to enhance the removal efficiency 
of bioretention systems such as establishing saturated 
zones [11], changing plant species [12], adding additional 
organic carbon [13] and introducing special materials [14]. 
However, the nitrogen removal efficiency by bioretention 
systems was still inconsistent. For example, some research-
ers found that the nitrogen removal efficiency from storm-
water runoff could be more than 90% or less than 20%, and 
that nitrogen might even leach in bioretention systems with 
saturated zones [15–17]. Moreover, appropriate plants have 
always been considered to play the most important role 
in nitrogen removal, but plants can even release nutrients 
due to seasonal senescence [18]. Due to the highly unstable 
nitrogen removal efficiency in bioretention systems, it was 
very important to develop an efficient removal method for 
nitrogen by these systems.

As the key factors in bioretention systems, the filler and 
microorganisms play an important role in the removal of 
pollutants. The filler can offer enough useful sites for the 
adsorption of pollutants and immobilization of microor-
ganisms. The activity of microorganisms can eliminate the 
pollutants in runoff further. Bioaugmentation is a promising 
technology, which introduces proper and sufficient micro-
organisms into bioretention systems. Due to its eco-friendly 
features and low cost, bioaugmentation has become a novel 
and popular alternative method in recent years. As one of 
the optimal bioaugmentation technologies, immobilization 
has been widely used in various areas due to its advantages 
of high biomass density, enhanced microbial stability and 
easy separation. Liu et al. immobilized bacterium D47 onto 
nanocellulose and used it for the removal of diuron [19]. 
Elgueta et al. found that immobilized white-rot fungus could 
improve the degradation of atrazine and reduce its migration 
in surface and groundwater [20]. Fu et al. demonstrated that 
the immobilized microbial activated beads were more effi-
cient for improving the quality of contaminated water and 
sediment. The experiment results showed that the removal 
efficiencies of total nitrogen (TN), NH4

+–N and COD in over-
lying water reached 87.5%, 61.8% and 87.1%, respectively 
[21]. Moreover, immobilization also could be used in other 
refractory wastewaters, such as landfill leachate, heavy metal 
wastewater, oil field wastewater, coking effluent, and phenol 
and dye wastewater [22].

With the rapid development of urbanization in China, 
the amount of construction waste (CW) has increased greatly 
and exceeded 1.5 billion tons in 2015 [23]. Due to the low rate 
of utilization and processing, the large amount of CW in the 
environment could cause a serious problem and increase the 
consumption of natural resources [24]. Therefore, it is urgent 
to find useful methods for the reuse of CW as a resource 
from the aspect of both economics and the environment. 
Results showed that CW could be used as filler in bioret-
ention systems due to its proper hydraulic conductivity 
values [25]. Furthermore, results also showed that the CW 

could be used for the removal of various contaminants by 
adsorption processes, including fluoride, phosphate, dye, 
detergents and heavy metals [26–29]. Due to its favorable 
characteristics, CW could provide an ideal environment for 
the immobilization and growth of microorganisms [30,31]. 
Thus, as a potential filler with the advantages of proper 
porosity, low cost and stable structure, CW could be used for 
the immobilization of microorganisms and removal of run-
off pollutants in bioretention systems. Nevertheless, most 
studies have focused on the reuse of CW in civil engineer-
ing applications. Few reports have investigated the reuse of 
CW as a filler in bioretention systems. No mention has been 
made on the study of CW colonized with proper microor-
ganisms and its use in bioretention systems for the removal 
of pollutants in runoff.

To increasing the removal efficiency toward pollutants 
(especially for nitrogen), immobilized-bacteria construction 
waste (ICW) was prepared by a simple method and used 
for the removal of pollutants in column experiments. In this 
study, industrialized nitrifying and denitrifying bacteria 
(including Nitrobacter, Nitrosomonas, Pseudomonas and 
Alcaligenes) were selected as microorganisms due to their 
high nitrogen removal efficiency and low cost. The prepared 
ICW samples were characterized by X-ray fluorescence (XRF) 
and scanning electron microscope (SEM). The efficiency 
and mechanism of the removal of runoff pollutants were 
calculated based on long-term (67 d) column experiments. 
This study could provide a new method for utilization of 
CW and offer new insight into the elimination of pollutants 
in runoff.

2. Materials and methods

2.1. Materials and chemicals

The industrialized nitrifying and denitrifying bacteria 
employed were obtained from ZhenQing Environmental 
Protection Technology Co., Ltd. in Guangzhou, China. 
The biological glue was bought from WeiPu Chemical 
Technology Service Co., Ltd. in Shanghai, China. Other 
chemicals, including ascorbic acid, hydrochloric acid, 
K2S2O8, (NH4)6Mo7O24·4H2O, HgI2, K2Cr2O7, Ag2SO4, H2SO4 
and NaOH, were all of analytical grade and purchased from 
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 
All solutions were prepared in high-purity water (Milli-Q).

2.2. Immobilization of microorganisms on CW

The CW used in this study was prepared in Lu Cheng 
village near Beijing University of Civil Engineering and 
Architecture in Beijing, China. The CW were mechanically 
crushed to small particles, followed by sieving to 0–2 mm 
and 2–5 mm sizes, washed several times with distilled 
water to remove the surface dust and soluble ions, dried 
overnight at 105°C, and stored at room temperature for 
further use.

The immobilization of microorganisms onto CW was 
carried out as follows: First, CW were sterilized by high 
pressure steam at 121°C for 20 min. Biological glue (starch 
glue) was placed in an oven and dried at 80°C for 4 h. 
Second, the sterilized CW was mixed with the biological 
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glue and stirred evenly, wherein the mass fraction of bio-
logical glue was 10%. Third, the mixed materials (10 g) were 
added to a 500 mL Erlenmeyer flask containing 200 mL of a 
cell suspension of industrialized nitrifying and denitrifying 
bacteria and placed on a rotary shaker at 180 rpm and 25°C 
for 24 h, until the bacteria were adsorbed onto the surface 
of the CW. Finally, the prepared materials were filtered and 
washed several times with deionized water to remove the 
non-adsorbed bacteria, and the obtained ICW were then 
dried before use. The ICW were stored in a dark, ventilated 
and dry place, where the temperature was maintained at 
25°C–30°C, which was proper for maintaining the biological 
activity of the bacteria. Furthermore, the safety characteris-
tics of the CW and ICW were measured and the results are 
listed in Table S1.

2.3. Experimental setup

In order to investigate the removal efficiency of ICW, a 
series of column tests were conducted. The laboratory appa-
ratus was assembled, and the schematic diagram is shown in 
Fig. 1. A 20 L bucket was used as the raw water bucket, and 
two experimental columns were used in the whole exper-
iment. A peristaltic pump (BT100-1F, LongerPump, China) 
was used for the input of raw water to the experimental col-
umns. The column was made of polymethyl methacrylate 
and had an effective volume of 0.25 L, diameter of 40 mm 
and height of 200 mm. Columns I and II were filled with 
0–2 mm or 2–5 mm ICW materials, respectively. Each col-
umn consisted of 10 mm glass beads on the bottom, 180 mm 
of the modified materials, 10 mm of glass beads on the top 
and four pieces of gauze placed between the different layers. 
The role of the glass beads and gauze was to keep the water 
evenly distributed. In order to avoid the side-wall effect and 
make the operation more stable, the inlet of the experimen-
tal column was at the bottom and the operation mode was 
from bottom to top. The porosity of the columns (0–2 mm 
and 2–5 mm) was 47.06% and 50.20%, respectively. During 
the whole experiment, raw water was continuously pumped 
into the experimental columns and the hydraulic retention 
time of the systems was 5.5 h, which met the requirements 
of permeability in filter media obtained by the city sponge 

construction guide in China. The concentration of pollutants 
in the influent and effluent of the column was measured 
daily in the beginning and the entire experiment operated 
for 67 d.

2.4. Test methods

As shown in Table 1, the raw water was prepared for the 
simulation of urban road stormwater runoff in this study 
[32]. The raw water in the bucket was often stirred to confirm 
that the chemicals were mixed uniformly. The samples of the 
influent and effluent were collected at different times and 
tested for COD, NH4

+–N, TN and TP to evaluate the transfor-
mations of pollutants in the columns. The removal efficiency 
of pollutants was calculated as below:

Removal efficiency % %( ) = −
×

C C
C

e0

0

100  (1)

where C0 and Ce are the concentrations of pollutants in 
influent and effluent, respectively.

All pollutants were measured in accordance with 
standard methods. The COD, NH4

+–N, TN and TP were 
measured by the fast digestion-spectrophotometric method 
(HJ/T399-2007), Nessler’s reagent spectrophotometry 
(HJ 535-2009), alkaline potassium persulfate digestion UV 
spectrophotometric method (HJ 636-2012) and ammonium 
molybdate spectrophotometric method (GB 11893-89), 
respectively. The pH values of solutions were measured 
by using a laboratory pH meter (Thermo Scientific Orion 
9157BNMD, USA). The entire experimental process was kept 
at room temperature (about 25°C). All the water samples were 
stored in a freezer at 4°C with special bottles and analyzed 
within 48 h after sampling.

2.5. Characterization

In this study, three kinds of materials (2–5 mm) were 
characterized, including CW, ICW, and ICW in the column 
at the 67th day (ICW-67). All three materials were pre-
treated by freeze-drying by the same process before 
characterization. The surfaces of the samples were exam-
ined by an SEM  (Hitachi SU8010, Japan). The chemical 
analysis of materials was carried out by XRF (PANalytical 
Axios–mAx, Netherlands). The specific surface area, 
pore volume and pore size distribution were measured 
using N2 Brunauer–Emmett–Teller isotherms obtained on a 

Fig. 1. Schematic diagram of the experimental setup.

Table 1
Raw water quality

Water quality 
indicators

Source Typical road 
runoff (mg L–1)

Raw water 
used in study 
(mg L–1)

COD Glucose 308.26 ± 115.80 403.37
TP KH2PO4 1.03 ± 0.49 1.18
NH4

+–N NH4Cl 2.96 ± 2.24 4.07
TN NH4Cl and KNO3 7.73 ± 4.54 9.10
pH – – 7.20
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TriStar II 3020 instrument (Micromeritics, USA) and calcu-
lated with built-in software. Pore size distributions were 
calculated from the desorption branch of the N2 isotherm 
data by the Barrett–Joyner–Halenda method [33].

3. Results and discussion

3.1. Characteristics of materials

Representative SEM micrographs of the three samples 
are depicted in Fig. 2. As shown in Fig. 2(a), the surface 
morphology of the CW was rough and porous, indicat-
ing that the CW could provide enough useful sites for the 
immobilization of microorganisms. Furthermore, the porous 
structure could provide pathways for the transfer of oxygen 
and other substances into the CW, which was very useful 
for the growth of microorganisms. After the incorporation 
of bacteria, it appeared that there were some bacteria on 
the surface of CW (Fig. 2(b)), which suggested that the bac-
teria were successfully immobilized on the surface of CW. 
The CW in the column remained intact during the experi-
ment. As showed in Fig. 2(c), after the treatment of runoff 
for 67 d, a large number of oval microorganisms appeared 
on the surface of ICW-67, which showed that the modified 
CW provided an ideal structure for microbial colonization. 
These results illustrated that the bacteria flourished in the 
experimental column might play an important role in the 
removal of pollutants in runoff.

To investigate the characteristics of materials, XRF was 
used to evaluate the main chemical composition. As shown 
in Table 2, the major constituents of CW were SiO2, Al2O3 and 
CaO, with the contents of 56.96%, 15.20%, and 10.42%, respec-
tively. After the immobilization of bacteria, the contents of the 
main components were changed, which might be attributed 
to the presence of the biological glue. The content of Al2O3 
was reduced from 15.20% to 5.22%, while the content of MgO 
increased from 2.08% to 17.20%. The major components of 
ICW and ICW-67 were SiO2, CaO and MgO with contents of 
36.00%, 32.31%, and 17.20%, and 40.50%, 25.92% and 15.70%, 
respectively. Furthermore, all the materials also contained 
other low-content components such as Fe2O3, K2O and SO3. 
The different components contained in the materials might 
have a great influence on pH, microbial growth and removal 
of contaminants in stormwater runoff [30,34,35].

The specific surface areas of the three materials were 
determined by a nitrogen physical adsorption apparatus. 
The specific surface area, pore volume and pore size were 
2.35 m2 g–1, 0.006 cm³ g–1 and 10.21 nm for CW. The specific 

surface area became smaller after immobilization because 
microorganisms and biological glue were loaded on the 
surface of CW and blocked some channels. Compared 
with other reported materials with specific surface areas of 
0.19–0.36 m2 g–1 [36], the CW in this study could provide 
sufficient area for microbial growth and attachment.

3.2. Changes of pH values in the effluent

The pH value is an important indicator of water quality. 
Higher or lower pH values than optimal could inhibit 
microbial activity in water, resulting in the deterioration 
of water quality. Fig. 3 shows the pH values in the effluent 
for different particle sizes of CW. As shown in Fig. 3, the 
difference in particle size had little effect on the effluent 
pH values of ICW. The pH values in the effluent increased 
sharply at the beginning, followed by some fluctuation and 
finally reaching stability. Compared with the influent pH 
values of 7.20, the ICW could increase the solution pH val-
ues due to the alkaline materials in the structure of the CW 
(Table 2; Fig. S2). During the experiments, some alkaline 
materials such as lime might be dissolved into the aqueous 
solutions, causing the increase of pH values in the efflu-
ent. Although the pH values increased in the experiment, 
the final effluent pH values were maintained at about 8.20, 
which is still in the range of the standards for surface water 
environment quality [34].

(a)

 

(b)

 

(c)

 

Fig. 2. Representative SEM images of materials. (a) CW, (b) ICW and (c) ICW-67.

Table 2
Chemical composition of different samples as determined by 
XRF

Element % Weight

CW ICW ICW-67

SiO2 56.95 36.00 40.50
Al2O3 15.20 5.22 7.29
CaO 10.42 32.31 25.92
Fe2O3 6.94 4.09 5.04
K2O 3.78 2.39 2.73
MgO 2.08 17.20 15.70
SO3 1.79 0.33 0.53
P2O5 1.67 1.38 1.43
TiO2 0.84 0.32 0.47
MnO 0.13 0.06 0.07
Other 0.17 0.67 0.36
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3.3. Changes of COD in the effluent

As one of the major pollutants in stormwater runoff, 
higher values of COD would increase the degradation 
of water quality. Fig. 4 shows the changes of COD con-
centration in the effluent and removal efficiency of the 
experimental column (2–5 mm). Compared with the influ-
ent concentration (403.37 mg L–1), the effluent concentration 
of COD was almost the same as the influent concentration 
during the first 9 d, which suggested that the ICW had little 
effect on the removal of COD in runoff. As the contact time 
increased, the removal efficiency increased rapidly to nearly 
100.00% on day 14. With further operation of the system, 
the removal efficiency showed fluctuation. The effluent 
concentration of COD climbed to about 82.12 mg L–1 and 
the removal efficiency decreased to 79.91% on day 28. After 
the adaptation of microorganisms, the effluent concentra-
tion reduced to 30.25 mg L–1 with the removal efficiency of 
93.27% on day 41. Finally, the effluent concentration of COD 
was stabilized and the removal efficiency was maintained at 
about 90.00%.

The removal mechanism for COD was mainly attributed 
to adsorption and microbial degradation in the column 
[37,38]. At the beginning of the experiment, the removal was 
mainly due to adsorption as the microorganisms had not 
fully adapted to the environment. The biological glue might 
occupy some part of the adsorption sites on the surface of the 
CW and decrease the removal efficiency of COD. At the same 
time, some of the COD might be due to the release of organic 
components from the biological glue (Table S3). With the con-
tact time increasing, the microorganisms multiplied quickly 
and became dominant, resulting in a rapid increase in the 
COD removal efficiency [21]. Studies have shown that bio-
transformation is the main mechanism for the reduction of 
soluble COD and that an attached biofilm could greatly pro-
mote the removal efficiency for soluble organic compounds 
[37]. Therefore, microorganisms attached to the CW played 
a key role in the COD degradation efficiency. However, the 
biofilm formed at this time was unstable and could easily fall 
off, which induced an increase in the concentration of efflu-
ent COD. When the system reached a stable state, the COD 
removal efficiency gradually increased and reached stability. 
In the present study, the COD removal level was efficiently 
maintained at about 90.00%, which was similar to the results 
reported by Sun et al. [39] and Schmitt et al. [40].

3.4. Changes of NH4
+–N in the effluent

Excess NH4
+–N in the water could easily cause the 

multiplication of algae and induce eutrophication. Fig. 5 
shows the concentration and removal efficiency of NH4

+–N 
in the effluent during the whole experiment (2–5 mm). The 
removal efficiency of NH4

+–N increased gradually from 
14.62% to 65.91% during the first 3 d. In addition, the removal 
efficiency of NH4

+–N varied greatly and was unstable (from 
32.21% to 63.55%) between days 4 and 22. After the system 
operated for 22 d, the removal efficiency of NH4

+–N increased 
rapidly and the effluent concentration of NH4

+–N was stabi-
lized gradually. The highest removal efficiency of NH4

+–N 
reached nearly 78.82%.

In this study, the removal mechanism of NH4
+–N 

was mainly attributed to adsorption and nitrification by 

Fig. 3. Changes of pH values in the effluent of the column.

Fig. 4. Changes of COD in the effluent of the column. Fig. 5. Changes of NH4
+–N in the effluent of the column.
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microorganisms [41]. The initial NH4
+–N removal efficiency 

was not stable, probably due to the combined effects of 
adsorption and nitrification. At the beginning of the exper-
iment, as the microorganisms in the column had not fully 
adapted and the system was still in the microbiological accli-
mation stage, adsorption might be the main reason for the 
removal of NH4

+–N, such as by ion exchange [42]. Previous 
studies have also shown that the ion exchange capacity could 
be enhanced between NH4

+–N and materials by the presence 
of monovalent cations, such as K+ (Table 2) [43]. With the con-
tact time increased, adsorption and nitrification would affect 
the removal together, inducing instability in the removal 
efficiency. With the contact time increased further, the use-
ful adsorption sites decreased and nitrification became more 
important, so that the entire system operated stably [38,44]. 
As shown in Eq. (2), nitrifying bacteria attached to the ICW in 
the aerobic state convert NH4

+ to NO3
– eventually.

NH O NO H H O4 2 3 22 2+ − ++ → + +  (2)

The solution pH value is one of the most important 
factors influencing the nitrification process; higher or lower 
pH values than the optimal range would induce the decline 
of nitrification and inhibit the growth of microorganisms 
[45]. The nitrification process could consume the alkalinity 
of the water Eq. (2), which affects the reaction efficiency. 
However, in this study, the pH of the effluent could be stabi-
lized around 8.20 eventually (Fig. 3), which is similar to the 
optimal pH for nitrification (8.25) [45]. Results indicated that 
ICW could provide a suitable environment for nitrification. 
The final (at day 67) concentration of NH4

+–N was 0.97 mg L–1, 
and the removal efficiency reached 73.52%. These values are 
similar to other reported results and met the criteria of the 
standards for surface water environment quality [42,46].

3.5. Changes of TN in the effluent

TN is one of the main indicators reflecting the eutro-
phication of water. Fig. 6 shows the TN concentration and 
removal efficiency in the effluent (2–5 mm). The results 
showed that there was little removal on the first day; however, 
the TN removal efficiency increased rapidly to 87.00% on 
day 7, and more than 90.00% was eliminated on day 24. 
As the system operated, the TN concentration in the efflu-
ent gradually became stable and the removal efficiency was 
maintained (average 80.00%) until the end of the experiment. 
The highest removal efficiency reached nearly 91.97%.

The composition of TN was mainly composed of NH4
+–N 

and nitrate nitrogen (NO3
––N) in this study. At the beginning 

of the experiment, the decrease in TN concentration might 
be due to the adsorption of NH4

+–N, since microorganisms 
were still in the adaptation phase. However, comparing the 
NH4

+–N effluent concentration (1.73 mg L–1) and TN effluent 
concentration (2.04 mg L–1) at 50 d of operation, NO3

––N was 
effectively removed and transformation occurred. As NO3

––N 
is not easily removed by adsorption, this suggested that 
denitrification occurred and to a large extent [37]. As reported 
by other researchers, TN removal could be mainly attributed 
to consumption or denitrification by the microbial commu-
nity [47]. Eq. (3) shows that denitrifying bacteria transformed 
NO3

– to N2 under anoxic and anaerobic conditions.

NO H electron supplier organic matter N H O OH3 2 25 1
2

2− −+ −( ) → + +  
 (3)

In this study, the good TN removal efficiency was 
mainly attributed to the denitrifying bacteria incorporated 
onto CW. The immobilization was conducive to the degra-
dation of pollutants, which had been verified by a previous 
study [19]. Good overall removal efficiency of TN (average 
80.00%) was observed and this result was higher than the 
results (22.00%–55.00%) of various types of stormwater man-
agement systems, which suggested that ICW had a good 
removal effect for TN [37,48]. In the experimental conditions, 
anoxic and anaerobic zones might have existed in upper 
filler for denitrification to occur. Moreover, the pores on the 
CW surface (Fig. 2) could form anaerobic microenviron-
ments, providing space for denitrification [47]. In addition, 
biological glue as a carbon-rich material might be a potential 
carbon source, which could facilitate the denitrification. 
The concentration of TN (at day 50) was 2.04 mg L–1, which 
basically met the requirements of the standards for surface 
water environment quality [46].

3.6. Changes of TP in the effluent

Excessive TP plays a dominant role in causing eutrophi-
cation, algal bloom and other serious environmental risks. 
Fig. 7 shows the concentration and removal efficiency of 
TP in the effluent (2–5 mm). Results showed that the efflu-
ent concentration of TP was almost unchanged during the 
first 8 d, but began to increase rapidly on day 9, and more 
than 75.00% of TP was eliminated on day 24. Moreover, the 
concentration of TP in the effluent remained stable between 
days 24 and 32. The highest removal efficiency reached 
nearly 80.33%.

The removal mechanism of TP was mainly attributed 
to adsorption and chemical precipitation in the matrix 
[49]. Shi et al. [30] verified that CW could be used as useful 
materials for the removal of TP in constructed wetlands. In 
this study, the low TP removal effect in the beginning might 
be attributed to fewer useful adsorption sites being present, 

Fig. 6. Changes of TN in the effluent of the column.
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caused by the biological glue and microorganisms. On the 
other hand, although the calcium-containing components in 
CW could react with P to form a stable sediment (shown in 
Eq. (4)), the preparation process and the use of biological glue 
inhibited the removal efficiency of P in the beginning [38,50].

3 22
4
3

3 4 2
Ca PO Ca PO+ −+ → ( )  (4)

Some studies have shown that the removal of TP can 
also be linked to microorganisms [51]. Microorganisms 
could facilitate removal of P [30,37]. With the operation time 
increasing, the TP removal efficiency began to increase rap-
idly, which might be attributed to the combined effects of 
adsorption, chemical precipitation and microbial uptake. 
Compared with the influent concentration of TP (1.18 mg L–1), 
the concentration of TP in the effluent was lower and kept at 
a relatively stable level (0.2–0.3 mg L–1), which was similar 
to the results of Xia et al. [48]. These values met the criteria 
of the standards for surface water environment quality [46]. 
In addition, there was a coupling mechanism in the removal 
processes of nitrogen and P [14]. In this study, on the one 
hand, TP adsorbed on the materials further contributed to the 
abundance and activity of microorganisms, which facilitated 
the TN removal. On the other hand, effective nitrification– 
denitrification could increase the demand for TP by 
nitrifying and denitrifying bacteria, which was beneficial for 
TP removal.

3.7. Effect of particle size on the removal of pollutants

Differences in the particle size of materials could 
influence the removal of pollutants in the runoff. In this 
study, the effect of CW in two size ranges (0–2 and 2–5 mm) 
on the removal efficiency of different pollutants was stud-
ied and the results are shown in Fig. 8 (32 d). The results 
proved that the particle size had little effect on the removal 
of pollutants in runoff. The removal efficiencies of COD, 
NH4

+–N, TN and TP in 0–2 and 2–5 mm ICW were 78.04%, 
64.42%, 69.43% and 73.53%, and 83.22%, 59.13%, 69.55%, and 
78.73%, respectively. It is widely accepted that the removal 

efficiency would be higher for smaller particles because of 
the larger surface area and better adsorption performance 
[28]. However, in this study, the removal efficiency was 
mainly attributed to the microorganisms, which might be 
little affected by the difference in particle size. The results 
showed that larger particle size (2–5 mm) ICW might have 
greater potential for the application due to the lower cost 
and reduced clogging effect.

4. Conclusions

In this study, ICW were prepared for enhancing the 
removal efficiency for pollutants (especially nitrogen) in 
runoff. Results showed that the CW could be used as a 
potential filler in bioretention systems and could be a good 
candidate as a bacteria-immobilizing carrier. In the column 
experiments, the prepared ICW had a good removal effect 
on nitrogen and other pollutants in runoff. The highest 
removal efficiencies of TN, NH4

+–N, COD and TP reached 
about 91.97%, 78.82%, 100.00% and 80.33%, respectively. 
Moreover, the microorganisms immobilized on the CW 
played an essential role in the removal of contaminants from 
runoff. Results confirmed that ICW were efficient and could 
promote the quality of contaminated water. This research 
could offer a useful method for the utilization of CW and 
provide a new idea for the preparation of high-efficiency 
fillers in bioretention systems.
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Supplementary Information

I. Safety characteristics of the CW and ICW

To investigate the safety characteristics of CW and ICW, 
the two materials were immersed in water with a ratio of 
1:10, the mixed solution was stirred for 5 d, the concen-
tration of typical heavy metals were measured and the 
results were shown in Table S1. The concentration of typi-
cal heavy metals in mixed solution was low. Furthermore, 
as shown in Table S2, the concentrations of heavy metals in 
mixed solutions were in the range of the standard in surface 
water environment quality in China [46]. All these results 
showed that the prepared materials are safe for use in water 
environment.

II. Comparison of removal efficiency between 
CW and ICW

We conducted an experiment on the removal efficiency 
of CW on stormwater runoff pollutants. However, the aim 
of this study was investigated the removal efficiency of ICW 
and we paid more attention to the long-term treatment. 
Therefore, we did not show experimental data for CW in the 
manuscript. As shown in Fig. S1, the removal efficiency of 
ICW was better than CW. Some results confirmed that the 
CW could be used for the removal of contaminants and show 

good removal efficiency by an adsorption process. However, 
the removal of nitrogen was mainly dependent on micro-
organisms degradation. Thus, in this study the removal 
mechanism was mainly attributed to the absorption and 
biotransformation processes.

III. Changes of pH values

Fig. S2 showed the pH values in the effluent of CW and 
ICW, results indicated that the effluent pH values of ICW was 
similar to CW. For CW and ICW, the pH values in the effluent 
increased sharply at the beginning and finally maintained at 
about 8.00. According to previous research and the results 
of XRF, the CW contained large amount alkaline materials 
which could be released into aqueous solution and increased 

Table S1
Concentration of heavy metals in mixed solution

Cu 
(mg L–1)

Zn 
(mg L–1)

As 
(mg L–1)

Cd 
(mg L–1)

Cr 
(mg L–1)

Pb 
(mg L–1)

CW 0.003 0.011 0.057 0.000 0.000 0.000
ICW 0.006 0.018 0.035 0.000 0.001 0.001

Table S2
Standard values of heavy metals for environmental quality 
standard in surface water

Classification standard 
value items

Class 
I

Class 
II

Class 
III

Class 
IV

Class 
V

Concentration 
(mg L–1)

Cu 0.01 1.0 1.0 1.0 1.0
Zn 0.05 1.0 1.0 2.0 2.0
As 0.05 0.05 0.05 0.1 0.1
Cd 0.001 0.005 0.005 0.005 0.01
Cr 0.01 0.05 0.05 0.05 0.1
Pb 0.01 0.01 0.05 0.05 0.1

Fig. S1. Changes of TN in the effluent of the column.
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Fig. S2. Changes of pH values in the effluent of the column.

Table S3
Impact of biological glue on contaminants

Water quality 
indicators

Raw water 
concentration (mg L–1)

Final concentration 
(mg L–1)

COD 400.32 938.45
TP 1.32 1.37
TN 9.91 10.79
NH4

+–N 4.60 5.53

Table S4
Influent and effluent concentration in a field study

Test items Influent (mg L–1) Effluent (mg L–1)

TP 1.32 0.10
NH4

+–N 4.82 0.62
COD 49.00 12.00

Fig. S3. A field study in China.

the pH values. On the other hand, the nitrification could con-
sume the alkalinity of the water, resulting in the decrease 
of pH. Thus, alkaline materials in the CW may be the main 
factors which increase the solution pH values.

IV. Impact of biological glue on contaminants

To verify the effect of biological glue on contaminants, 
batch experiment was carried out with the solid–liquid ratio 
of 0.5 g L–1 and the results were shown in Table S3. Table S3 
revealed that biological glue had little effect on the removal 
of TP, TN and NH4

+–N. On the contrary, biological glue could 
increase the concentration of COD in solution due to release 
of organic components. However, results confirmed that the 
removal efficiency of COD was mainly attributed to ICW.

V. Life-term of ICW

In order to verify the wide applicability of ICW, a field 
study was carried out to investigate the river bioremediation 
by ICW, as shown in Fig. S3. ICW showed a good removal 
effect for different contaminants, such as COD, NH4

+–N and 
TP. Table S4 showed the concentration of different pollutants 
in the influent and effluent on day 15. The materials that 
were exposed to air for a long time would cause weathering, 
resulting in clogging effect and reducing treatment efficiency 
of the entire system. However, the life-term of ICW had not 
been determined at present.
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