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a b s t r a c t
Dissolved oxygen (DO) concentration is an important indicator for monitoring water quality. A reliable 
prediction of DO concentration has significant implications for safeguarding human health and 
promoting environmental sustainability. A novel model that employs support vector regression (SVR) 
algorithm combined with empirical mode decomposition (EMD) and fast independent component 
analysis (FastICA) noise reduction is proposed to ensure the accuracy of DO forecasting. On the basis 
of weekly data from 2008 to 2013, the model is applied to the Sanchakou section of the Haihe River in 
China to forecast DO levels. A host of traditional forecasting models was also studied and compared 
to derive the best-performing model. The mean absolute percentage error (MAPE) and maximum rela-
tive error (MRE) were used as the criteria to assess the models. The estimation results indicate that the 
MAPE and MRE obtained from the model developed in this study were 27% and 1.35%, respectively. 
Compared with other traditional methods, including SVR, SVR based on FastICA and SVR based on 
EMD, the estimation results reveal that the proposed model can improve forecasting accuracy and 
forecast time in the case of an extreme DO situation. The comparison clearly points to the enormous 
potential of SVR based on EMD and FastICA to provide early warning of an extreme DO situation and 
forecast a specific value for a specific week. Thus, the model can be considered a viable alternative for 
promoting an effective environmental protection of the Haihe River.
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1. Introduction

Water is a precious natural resource with strategic 
economic importance. It serves as the basic element of 
ecological environment and is the most essential resource for 
socio-economic development [1]. China is one of the coun-
tries in the world that is facing a serious shortage of water 
resources. Although China possesses 7% of global water 
resources, the country’s water resources per capita only 

account for 25% of the world’s average [2]. In a survey of 
more than 600 Chinese cities, two-thirds of cities suffered 
from inadequate water supplies, and every one in six cities 
experienced severe water shortages [3]. Moreover, the surface 
water environment is widespread and heavily polluted. 
To overcome these challenges, China has established a 
national surface water environmental monitoring network 
for regular water quality monitoring. Among the 749 sections 
of the 406 rivers monitored by the Data Center of Ministry of 
Environmental Protection of the People’s Republic of China 
in August 2013, 69% of the rivers were Class I to III water 
resources, 23% were Class IV water resources and 8% were 
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Class V water resources. The statistics indicate that 69% 
of Class I to III water resources (69%) met the water qual-
ity standard for drinking water. The trend of water quality 
deterioration due to pollution has not yet been fundamen-
tally reversed [4]. The data indicate that water quality in the 
seven biggest rivers in China varies greatly. Fig. 1 shows that 
the water quality of Zhujiang River is the best, followed by 
Chang Jiang River, Huang He River, Huaihe River, Liaohe 
River and Songhuajiang River ranking second to sixth in 
terms of water quality, but these rivers are slightly polluted. 
Meanwhile, Haihe River has the worst water quality and is 
also the most seriously polluted. Chemical oxygen demand 
(COD), biological oxygen demand (BOD), nitrate (NH3), per-
manganate and DO are the main indicators for monitoring 
water quality. These indicators in the seven biggest rivers are 
all below the national water sanitary criteria. As the worst 
polluted river, Haihe River has attracted intense attention for 
promoting effective pollution treatment.

Dissolved oxygen (DO) refers to the amount of oxygen 
that is dissolved in water, and it is widely recognised as 
the representative parameter for measuring the quality of 
water in rivers and streams [5]. DO concentration is usually 
employed as an indicator to measure water quality for the 
following reasons: (1) DO concentration is highly related to a 
host of water quality indicators, such as COD, BOD, NH3 and 
permanganate, and thus is capable of reflecting the general 
quality of a water body to some extent [5]. (2) DO is also an 
indication of the self-purification capacity of a water body. 
The self-purification processes of a water body entail the 
consumption of oxygen, thereby diminishing the DO con-
centration in water. If a water body is heavily polluted, then 
the decomposition of organic matter will consume oxygen, 
which results in a dramatic reduction of DO concentration. 
In addition, DO concentration is an important parameter in 
understanding how well the water can support aquatic plant 
and animal life. Fish will not survive if DO concentration in a 
water body is below 2 mg L–1 [6]. (3) If DO level is above the 
saturation value (7.5 mg L–1), then the water body is possibly 
under eutrophication [6].

As mentioned above, high DO levels generate a signifi-
cant and an adverse impact on the ecological environment. 
Therefore, monitoring and forecasting the fluctuations in 
DO levels are critically important. Accurate forecasting 
of DO levels has been widely studied in the disciplines of 

water source planning, protection and treatment. However, 
DO concentration is influenced by a wide variety of factors, 
such as environmental uncertainty, human disturbance and 
climate change, among others [7]. Thus, changes in DO 
levels show the characteristics of irregularity, high nonlinear-
ity and non-smoothness, which add to the difficulty of DO 
forecasting [8].

The purpose of the present study is to develop a reli-
able forecasting model for measuring DO concentration and 
predicting the advent of extreme DO concentration events. 
Support vector regression (SVR) forecasting algorithm based 
on empirical mode decomposition (EMD)–fast independent 
component analysis (FastICA) noise reduction is proposed 
for the forecasting of DO concentration. The model is capable 
of predicting the specific date on which an extreme situation 
is going to happen (i.e., DO concentration is above or below 
the normal standard). By forecasting the specific DO level 
and specific date of its occurrence, the model can provide 
early warning for authorities to adopt measures and avoid 
extreme consequences of precarious DO levels. The EMD–
FastICA noise reduction is relatively new in water quality 
forecasting and has been applied with SVR for the first time 
in this study to forecast DO levels.

The rest of this paper is organised as follows: 
Section 2 provides an extensive literature review on water 
quality forecast. Section 3 presents data and research meth-
ods. Section 4 outlines the structure, flow and principle of 
the model. Section 5 discusses the prediction results. The last 
section summarises and concludes the paper.

2. Literature review

A large number of time-series-based forecasting models 
have been used in water quality prediction in recent years 
[9–12]. Specifically, these models include spatial autocorrela-
tion [13], time sequence [14], artificial neural network (ANN) 
method [15], regression analysis [16] and support vector 
machine [17–22].

An extensive literature review was conducted to sum-
marise the pros and cons of these models (summarised 
in Table 1). (1) Palani et al. [23] developed a neural net-
work model to forecast the amount of DO in seawater. The 
ANN method has self-adaptive estimation of input–output 
responses without a predefined mathematical model, and it 
is effective in dealing with dynamic or nonlinear water data 
[24]. However, this method has several key shortcomings, 
such as being local optimal, over-fitting and having general-
isation ability defects [25]. (2) Meryem et al. [16] performed 
an analysis based on a time sequence method to choose a 
suitable predictive method. A time sequence method is virtu-
ally based on rigid assumptions, such as linearity, normality 
and independence among predictor variables. However, the 
strong prerequisites limit its application in the real world, 
and the method cannot effectively depict a complex non-
linear relationship in water resource management [26–28]. 
(3) Li [29] indicated that the water simulation model is suit-
able for small-sized data application and can properly reflect 
uncertain changes of water data. However, its forecasting 
accuracy is low and the model is difficult to be established. 
(4) Partalas et al. [30] studied a greedy ensemble selection 
family of algorithms for ensembles of regression models to 

 

Fig. 1. Water quality condition of the seven rivers in China.



149N. Liang et al. / Desalination and Water Treatment 154 (2019) 147–159

solve the forecasting of water quality. Xiang and Jiang [24] 
employed the least squares support vector machine and 
particle swarm optimisation model to predict the quality of 
a drinking water source. Regression analysis, such as SVR, 
performs excellently in dealing with the nonlinear map-
ping problem. The model is theoretically straightforward 
with the ease of using short training time and high-preci-
sion characteristics [31,32]. SVR can effectively minimise the 
empirical uncertainty of training samples and overcome the 
defects of overfitting and local optimal solution [33–37]. Li 
[29] compared various statistical models for forecasting and 
concluded that SVR performs the best among the available 
approaches.

Given that input–output response for DO data is non-
linear complex and of high dimensionality, the key problem 
for prediction is to properly and self-adaptively depict the 
input–output nonlinear relationship. The extensive literature 
review concludes that ANN and regression analysis are more 
applicable for nonlinear mapping problems and big data 
samples than time sequence method and water simulation 
model. Moreover, the multiple nonlinear regression analysis 
is more suitable than the ANN method in effectively forecast-
ing the changing trends in DO levels. Therefore, SVR is the 
best-performing multiple nonlinear regression method for 
DO data prediction.

However, the method also has limitations. Water quality 
data are irregularly distributed and influenced by multiple 
factors. If all data used to train the model in SVR have the 
same weight, then local fluctuation and randomness among 
data will still influence the training model and further weaken 
forecasting accuracy [38,39]. Many researchers have endeav-
oured to overcome the shortcomings of SVR and enhance its 
forecasting accuracy.

The composite forecasting model is an effective 
approach. EMD was employed to self-adaptively decompose 
water quality data into a series of functions with different 
frequencies. Such data transformation can help explore the 
frequency distribution of functions. SVR forecasting on each 
function can reduce the forecasting error of inflection points 
[40–43]. However, high-frequency functions from the EMD 
decomposition results are considered noise signals [44]. In 
addition, it will influence the forecasting accuracy of SVR. 
To effectively solve the problem, FastICA was employed to 

transform groups of experiment data into independent com-
ponents and combined with SVR to enhance its forecasting 
accuracy [45–49]. The FastICA transformation results still 
contain many noise signals and the forecasting error rate 
remains high, especially on inflection points. The forecast-
ing results are still unsatisfactory. Hence, the key problem is 
to further study the benefits of EMD and FastICA for data 
processing, which will help overcome limitations of SVR.

3. Data and research methods

3.1. Study area

Haihe River is approximately 1,090 km long and is one of 
the 10 longest rivers in China. It flows through Tianjin City, 
which is a megacity with a population of more than 10 mil-
lion. The main stream of the river is the one that feeds into 
the sea, and it performs comprehensive functions of drain-
age, water storage, water supply, shipping and environmen-
tal protection for Tianjin City [50]. It plays an important role 
in North China as it helps in environmental protection and 
provides economic significance. However, water in the Haihe 
River has been seriously polluted. Among all the 64 monitor-
ing sections, only 42% of the water in the Haihe River falls 
under Class I to Class III, 28% is categorised as Class IV to 
Class V and 30% is worse than Class V (National Surface 
Water Quality Report of August 2013). Fig. 2 shows the sec-
tion numbers in the Haihe River, which is worse than Class V 
in terms of COD, BOD, NH3, permanganate and DO. Water 
pollution has seriously threatened the lives of the residents 
along its course.

DO concentration is very low around the Sanchakou sec-
tion of the Haihe River in summer and high in winter due 
to a reduction in rainfall, and its minimum value can even 
reach 1 mg L–1 due to the presence of various pollutants. 
In rainy and flood seasons, the concentration of DO usu-
ally drops significantly and the self-purification capability 
of the Haihe River drops dramatically because rainwater 
flushes into the river’s course. However, in winter, much of 
the organic matter pollutants are discharged into the river 
and cannot be diluted in a timely manner in the same sea-
son. Algae and aquatic plants grow fast, and a strong photo-
synthesis produces more oxygen, resulting in a sharp rise in 

Table 1
Comparison of different predictive methods

Predictive methods Reference Applicable condition Accuracy Advantages Defects

Regression analysis Partalas et al. [30] Linear or nonlinear 
regression on a 
large sample

High Good generalisation ability  
and convergence for  
complex or high- 
dimensional models

Weak fault
Tolerant ability

Artificial neural 
network

Kariniotakis  
et al. [25]

Dynamic and uncertain 
water environment

High Self-adaptively estimates 
linear or nonlinear 
relationships

Local optimal and 
overfitting problems

Time series method Meryem et al. [16] Exponential change or 
small sample

Low Based on sophisticated 
theoretical basis

Hardly depicts complex 
nonlinear relationship

Water simulation 
model

Li [29] Simulation prediction 
of small data

Low Reflects uncertain change 
of data

Difficult to establish 
a model
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DO levels. Although the saturation of DO in water is usually 
7.5 mg L–1, the actual measured value in the river often sur-
passes the saturation value and reaches 22 mg L–1 in winter. 
Ultrahigh DO levels also mean that the water quality is bad 
[51–56]. Effectively dealing with the water pollution problem 
is vitally important to the economy, society and environment 
around the Haihe River.

3.2. Research data

The DO concentration data around the Sanchakou sec-
tion of the Haihe River was obtained from the Data Center 
of Ministry of Environmental Protection of the People’s 
Republic of China. The weekly time series data cover the 
period from the 33rd week in 2008 to the 29th week in 
2013, consisting of a total of 256 data sets. The raw data are 
shown in Fig. 3. The figure shows several patterns: (1) the 
average value of DO concentration was generally constant 
at 7.56 mg L–1 and it was higher than the saturation stan-
dard (7.5 mg L–1) because of organic matter pollution. (2) 
DO concentration fluctuated dramatically and irregularly. 
The maximum and minimum values were different per 
year and swept across a wide range and DO level in each 
season showed a wide variation. (3) An extreme value of 

DO in water frequently occurred. In general, the DO level 
reached its maximum value in winter (6th week of 2009, 
8th week of 2010, 3rd week of 2011, 5th week of 2012 and 
1st week of 2013). The highest DO concentration can reach 
18 mg L–1, which is far higher than the normal water qual-
ity standard, clearly showing that the Haihe River is heavily 
polluted. The DO concentration was the lowest in summer 
(41st week of 2009, 34th week of 2010 and 31st week of 2011 
and 2012) and decreased to 1 mg L–1, which is far beyond 
the highest level of poor-quality water (Class V). A dramatic 
fluctuation reflected significant changes in water quality. 
In addition, predicting the extreme value and specific time 
when this occurs is essential to deploy suitable measures for 
environmental protection and economic development.

3.3. Research methods

This section introduces the underlining rationale and 
calculation process of EMD, FastICA and SVR algorithms. 
Fig. 4 shows the relations and steps of model development: 
(1) First, EMD and FastICA achieve the functions of data noise 
reduction. (2) Processed data are used to train the model for 
forecasting future DO levels. (3) Finally, the forecasted results 
are compared and assessed.

  

(a) (b)

Fig. 2. (a) Geographic location and (b) water quality of Haihe River.

 Fig. 3. DO concentration of 256 weeks around Sanchakou section of the Haihe River.
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3.3.1. EMD algorithm

EMD decomposes the data into a series of intrinsic mode 
functions (IMFs) with different frequencies.

The specific decomposing process is explained as follows:

(1) Use cubic spline functions to fit the upper and lower 
enveloping curve of source signal s(t) according to all 
maximum and minimum points in the IMF.

Set mi(t) as the average value of the upper and lower 
enveloping curves.

Set h1(t) as a new data series that mi(t) is subtracted 
from s(t).

Repeat the above process and get IMF1(t) = ∑mi(t) if 
h1(t) satisfies the IMF specified conditions.

(2) Repeat step 1. A series of IMFi(t) and the rest of the inde-
composable function r(t) are obtained until r(t) is smaller 
than the set value or turns into a monotonic function:

s t t r ti
i

n

( ) = ( ) + ( )
=
∑IMF

1

 (1)

where IMFi(t) is the value of IMF at time t.

3.3.2. FastICA algorithm

ICA aims at separating input signals and making com-
ponents of output Y independent. Non-Gaussianity criterion 
is utilised to predict the mutual independence of output 
components, which means that the separation process is fin-
ished when its non-Gaussianity reaches the maximum value. 
The process is shown in Fig. 5. The input component of S is 
assumed to be random and mixed independent signal X is 
separated by the B system. Thus, output signal Y is close to S. 
Entropy is applied to measure non-Gaussianity in FastICA, 
and one direction is obtained to ensure that Y has the biggest 
non-Gaussianity through transformation Y = WTX.

3.3.3. SVR algorithm

The linear regression function f(x) = wx + b can be uti-
lised to fit (xi, yi) with xi ∈ Rn as input and yi ∈ Rn as output, 

where w and b need to be calculated. Assume that all train-
ing data are fitted by the linear function with an error of ε. 
Import slack variables ξi and ξi

*, and then w and b can then 
be determined by solving the minimum of optimisation 
function as follows:

L C
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The above optimisation function is in a quadratic form 
with a linear constraint condition. It can be solved by the 
Lagrange multiplier. If Lagrange multiplier αi, αi

*, γi, γi
* is 

imported, then function L is changed into Eq. (3):

L C y f xi i
i

n

i
i

n

i i i

i
i

n

i

= + +( ) − + − + ( )  −•

= =

=

∑ ∑

∑

1
2 1 1

1

ω ω ξ ξ α ξ ε

α ξ

*

* ** * *+ − + ( )  − +( )
=
∑ε ξ γ ξ γy f xi i i i i i
i

n

1
 (3)

The minimisation of function L to ω, ξi and ξi
* and the 

maximisation of function L into αi, αi
*, γi, γi

* can be calcu-
lated and imported into Eq. (3), achieving the maximisation 
function in dual form as shown below:
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The corresponding constraint condition is as follows:

α α α αi i
i

I

i i C−( ) = ≤ ≤
=
∑ * *, ,

1
0 0  (5)

Variable b can be calculated through Eqs. (3) and (4):

b y x xi i i i j
i j

n

= − −( ) −
= =
∑1

2 1 1
α α ε*

,

 (6)

Linear fitting function can be obtained as follows:

f x wx b x x bi i i
i

n

( ) = + = −( ) +
=
∑ α α*

1
 (7)

 

 

 

Noise reduction       Teach and forecast         Evaluation 

EMD  SVR TEACH  

SVR forecasting  EMD + FastICA  ASSESSMENT  

COMPARISON  

Fig. 4. Algorithms in the model.

 X=AS  S  
B  

Y=BX  
A  

Fig. 5. ICA process.
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The main idea of SVR is to map an input vector into a 
high-dimensional feature space (Hilbert space) through 
the nonlinear map and perform linear regression in a 
high-dimension space. SVR maps input vector x into a high- 
dimensional feature space, employing nonlinear function 
f(x) = K(x) + b to fit data (xi, yi). Thus, Eq. (4) turns into

W K x xi i i i j j i j
i j

n

i i
i

n

α α α α α α

α α

, * * *

,

*

( ) = −( ) −( ) ( ) +

−( )
= =

=

∑1
2 1 1

1

·

∑∑ ∑− −( )
=

yi i i
i

n

α α ε*

1

  

 (8)

Correspondingly, the nonlinear fitting function can be 
obtained as follows:

f x K x x bi i i
i

n

( ) = −( ) ( ) +
=
∑ α α* ,

1
 (9)

4. Development of the model

4.1. Step one: EMD noise reduction

The EMD algorithm can decompose DO data into func-
tions of different frequencies. Power spectrums of IMFs can 
show frequency distribution of IMFs. The highest frequency 
is the noise signal, and its range is low. If it is eliminated, then 
the data will be more regular and forecasting accuracy will be 
enhanced. Therefore, the IMFs of the highest frequency should 
be estimated as noise signals and eliminated in the first stage.

4.2. Step two: EMD–FastICA noise reduction

Real DO data are statistically independent of noise 
signals. Given that FastICA can transform IMFs into inde-
pendent components by calculating non-Gaussianity, it 
may be implemented on IMFs to effectively separate noise 
signals and real DO data. To indicate the component con-
taining noise, Kurtosis coefficient can be employed. EMD 
can be utilised again to decompose the indicated component. 

After decomposition, the IMF of the highest frequency can be 
extracted and eliminated, completing noise reduction at the 
second stage.

4.3. Step three: SVR training and forecasting

After the EMD–FastICA noise reduction procedure is 
completed, the SVR algorithm is employed to train models 
among the output IMFs and the changing trend is forecasted 
on the final stage.

The combined EMD–FastICA algorithm can extract more 
noise signals and will not significantly change the range of 
the original signal. EMD is self-adaptive to extract the high- 
frequency noise signal, which is efficient in performing pre-
liminary noise reduction. To further extract the noise signal, 
FastICA is used to separate noise and real DO data and EMD 
extract the highest-frequency noise signal again. Consecutive 
noise reduction efficiently eliminates noise signals of com-
paratively high frequencies, and the processed data become 
smoother and regular. Correspondingly, the SVR model 
will be trained convincingly and forecasting errors can be 
effectively decreased.

On the basis of the above analysis, the water quality 
forecasting model presented in Fig. 6 is developed in seven 
basic steps:

(1) Decomposition of the water quality data series

EMD algorithm is employed to decompose water data 
x(t) into a series of IMFs {IMFi(t)|t = 1,2,3,…n; i = 1,2,3,…d}:

x t ti
i

d

( ) = ( )
=
∑IMF

1
 (10)

(2) EMD noise reduction

Power spectrums of all functions are calculated, and the 
function of the highest frequency is selected and eliminated. 

After the calculation, x(t) is converted into x t ti
i

d

( ) = ( )
=
∑IMF

2
.

 

Fi(t) 

Fd(t) 

 
 

IMF
d
(t)

IMF
d-1(t)

Fi’(t)

f
3
(t+1)

f
d
(t+1)

IMF1(t)

 

X(t) EMD

FastICA 

EMD 

SVR  

 

 
 

IMF2(t)

IMF3(t)

IMF4(t)

IMF5(t)

F2(t)

IMF2(t)

IMF1(t)

IMFk(t)

f2(t+1)

Y(t) 

Original 

Evaluation 

Fig. 6. Flow chart of the model.
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(3) FastICA transformations

FastICA is employed to transform d − 1 principal com-
ponents. The component with Kurtosis close to 0 is selected. 
The process is expressed by the following equation:

IMFi it i d W F t i d t( ){ = = } = ( ) = =2 3 1 2 3 2 3 1 2 3, ,... ; t , , ,...n , ,... ; , , ,....n}{  
  
 (11)

(4) EMD–FastICA noise reduction

The EMD algorithm is employed to decompose the com-
ponent into a series of IMFs. The IMF of the highest frequency 
is selected and eliminated, completing the noise reduction 
procedure.

Hereafter, {IMF2...IMFd} are reconstructed by the 
processed components.

(5) SVR training

Based on the training of items of {IMF2...IMFd} and 
adaptive parameter adjustment, d − 1 SVR models are 
obtained.

(6) SVR forecasting

d − 1 trained SVR models are employed to forecast water 
quality at the n + 1 moment and derive f2(n + 1), f3(n + 1)…
fd(n + 1). The final result of n + 1 moment is obtained by 
summing up these data.

y n f ni
i

d

+( ) = +( )
=
∑1 1

2
 (12)

(7) Evaluation of results

The mean absolute percentage error (MAPE), root mean 
square error (RMSE), maximum relative error (MRE) and 

maximum absolute error (MAE) are chosen to evaluate the 
forecasting results.

MAPE is the most common index of forecasting error, 
directly reflecting the MAE between the original and 
forecasting value (Eq. (13)):

E
N

W W
W
R F

R
MAPE =

−
∑1  (13)

E
N

W WR FRMSE = −∑1 2
 (14)

E
W W
W
R F

R
MRE =

−
max  (15)

E W WR FMAE = −max  (16)

5. Results and discussion

5.1. Forecasting DO in Sanchakou section of the Haihe River

5.1.1. Step one: EMD noise reduction

The DO data in the Haihe River were decomposed into 
functions by the EMD algorithm, and eight-dimension func-
tions from high to low frequencies are shown in Fig. 7. Then, 
the power spectrums of eight functions are analysed in Fig. 8. 
Among the functions, the first function covered a wide band 
of high frequencies (Fig. 8), but the range was low. This 
finding shows that the first function contained many noise 
signals and can be deleted.

5.1.2. Step two: EMD–FastICA noise reduction

The rest of the seven-dimension functions were then 
transformed to seven dimension-independent components 

 
Fig. 7. EMD decomposition results.
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(a) (b)

(c) (d)

(e) (f )

   

(g) (h)

Fig. 8. Power spectrums of EMD decomposition results. Power spectrum of (a) IMF1, (b) IMF2, (c) IMF3, (d) IMF4, (e) IMF5, (f) IMF6, 
(g) IMF7 and (h) IMF8.
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by FastICA (Fig. 9), further separating the noise signals. 
The power spectrums and Kurtosis coefficients of the seven 
components were analysed in Fig. 10 and Table 2, respec-
tively. As shown by the power spectrum results in Fig. 10, 
components 5, 7 and 8 contain high noise signals, whereas 
the Kurtosis coefficient result in Table 2 meant that compo-
nent 8 was mainly composed of noise signals. Thus, noise in 
component 8 can be reduced through the EMD decomposi-
tion again. The power spectrums proved that the first of the 
eight- dimension functions contained many noise signals 
and can be deleted. After deletion, component 8 was recon-
structed by the rest of the functions, indicating that the noise 
reduction calculation was completed. Input DO data were 
regrouped by components 2–8.

5.1.3. Step three: SVR training

Given China’s environment administrative authority con-
ducting weekly water quality monitoring of big rivers, rich 
water data were provided to train the SVR model. The study 
was designed to employ one season’s data (12 weeks of data) 
for training the model and forecasting the 13th week’s data. 
SVR was applied to train and forecast components 2–8. 
By training for 200 times, the first 212 data sets of each com-
ponent established seven teaching sets for model training 
and achieved seven trained models.

5.1.4. Step four: SVR forecasting

Of the 256 data sets obtained from the Data Center of 
Ministry of Environmental Protection of the People’s Republic 
of China, 44 data sets were employed to establish the forecast-
ing set. In accordance with the seven models, forecasting can 

be implemented and 7 × 44 forecasting data were obtained for 
all the models. By adding up the seven-dimension data, 44 
final forecasting data sets were finally achieved.

5.2. Comparison of the forecasting results

To compare the forecasting results and verify the perfor-
mance of the model, a series of prediction experiments were 
conducted. Single SVR algorithm was first implemented 
to train the model and forecast the DO data. In the second 
experiment, the DO data were decomposed into functions 
by the EMD algorithm. Then, SVR was applied to train and 
forecast the data of each function. Forecasting data of each 
function were added up to one-dimensional data, and the 
final forecasting data were achieved. In the third experiment, 
the EMD decomposition functions of the second experiment 
were transformed into multi-dimension components by 
the FastICA algorithm. Then, SVR was applied to train and 
forecast the data of each component.

The results of the forecasting curves are shown in Fig. 11. 
The results of the experiment were better than those of SVR, 
SVR based on FastICA or SVR based on EMD. MAPE and 
RMSE help determine the forecasting performance of all the 
methods, and its comparison results of the four algorithms 
are shown in Table 3. The MAPE and RMSE of SVR based on 
EMD–FastICA were 27.5% and 2.19%, respectively, and were 
far below the other three algorithms by 27%, 28.9%, 44%, 
26.3%, 24% and 42.2%, respectively. Thus, the model can be 
recognised as the best-performing forecast model with the 
least prediction errors. The forecasting results are also more 
consistent with the actual observed values when compared 
with the forecast results from other models.

Furthermore, MRE and MAE indicate the local deviation 
degree between the original and forecasting values. The 

  
Fig. 9. FastICA transformation results after the first EMD noise reduction.
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Fig. 10. Power spectrums of FastICA transformation results. Power spectrum of (a) IMF2, (b) IMF3, (c) IMF4, (d) IMF5, (e) IMF6,  
(f) IMF7 and (g) IMF8.
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MRE and MAE of SVR based on EMD–FastICA were 1.35 
and 6.59, which were far below the other three algorithms 
by 11.2%, 29.9%, 37.4%, 8.7%, 6.252% and 46.6%. In other 
words, the model can best predict the trend in local changes 
of DO data. Fig. 11 also shows that forecasting results of 
SVR based on EMD–FastICA were nearly the same as the 
original value when the DO level is below 2 mg L–1. When 
the DO level is higher than 6 mg L–1, the forecasting results 
of SVR based on EMD–FastICA were close to the original 
value, but the difference is not large. However, SVR, SVR–
EMD and SVR–FastICA cannot forecast all the wave sum-
mits and valleys and lag behind the trend of DO changes of 
the original signal.

In addition, the forecasting results reflect every up and 
down change, and the position of the maximum or minimum 
value coincided with the original position. These results 
demonstrate that SVR based on EMD–FastICA can provide 
early warning and forecast for the specific week when the 
DO value changes drastically and specific value when DO 
level surges or drops.

6. Conclusions

This study has explored the potentials of the SVR method 
combined with EMD–FastICA noise reduction in water qual-
ity forecasting for the Haihe River in China. For long-term 
forecasting, the results clearly indicate that the proposed 
model’s results are very much close to real values. A com-
parison of the forecasting results with SVR, SVR based on 
FastICA and SVR based on EMD shows that the model per-
forms better and can be a viable alternative in projecting 
future water quality. The empirical results demonstrate that 
the model is a powerful tool for automatic monitoring sys-
tems of water quality and the forecasting results can give 
an early warning about extreme events of DO concentra-
tions. The data generated from this model can be very help-
ful and supplementary for framing suitable environmental 
protection policy. In accordance with the forecast results, 
some policy recommendations are provided: (1) DO level 
is strongly related with COD, BOD, NH3, permanganate 
and DO indices. Therefore, the establishment of a DO level 
monitoring and forecasting system is strongly suggested as 
it can be helpful and supplementary in framing environmen-
tal policies and undertaking early warning and emergency 
response measures. (2) A combination of a monitoring and 
forecasting systems is significant for the environmental 
protection of water.
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